Articles | Volume 16, issue 6
https://doi.org/10.5194/essd-16-3061-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-16-3061-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global forest burn severity dataset from Landsat imagery (2003–2016)
Kang He
Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA
Eversource Energy Center, University of Connecticut, Storrs, CT 06269, USA
Xinyi Shen
School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI 53204, USA
Emmanouil N. Anagnostou
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, USA
Eversource Energy Center, University of Connecticut, Storrs, CT 06269, USA
Related authors
Kang He, Xinyi Shen, Cory Merow, Efthymios Nikolopoulos, Rachael V. Gallagher, Feifei Yang, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 3337–3355, https://doi.org/10.5194/nhess-24-3337-2024, https://doi.org/10.5194/nhess-24-3337-2024, 2024
Short summary
Short summary
A framework combining a fire severity classification with a regression model to predict an indicator of fire severity derived from Landsat imagery (difference normalized burning ratio, dNBR) is proposed. The results show that the proposed predictive technique is capable of providing robust fire severity prediction information, which can be used for forecasting seasonal fire severity and, subsequently, impacts on biodiversity and ecosystems under projected future climate conditions.
Kang He, Qing Yang, Xinyi Shen, Elias Dimitriou, Angeliki Mentzafou, Christina Papadaki, Maria Stoumboudi, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 2375–2382, https://doi.org/10.5194/nhess-24-2375-2024, https://doi.org/10.5194/nhess-24-2375-2024, 2024
Short summary
Short summary
About 820 km2 of agricultural land was inundated in central Greece due to Storm Daniel. A detailed analysis revealed that the crop most affected by the flooding was cotton; the inundated area of more than 282 km2 comprised ~ 30 % of the total area planted with cotton in central Greece. In terms of livestock, we estimate that more than 14 000 ornithoids and 21 500 sheep and goats were affected. Consequences for agriculture and animal husbandry in Greece are expected to be severe.
Kang He, Qing Yang, Xinyi Shen, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 22, 2921–2927, https://doi.org/10.5194/nhess-22-2921-2022, https://doi.org/10.5194/nhess-22-2921-2022, 2022
Short summary
Short summary
This study depicts the flood-affected areas in western Europe in July 2021 and particularly the agriculture land that was under flood inundation. The results indicate that the total inundated area over western Europe is about 1920 km2, of which 1320 km2 is in France. Around 64 % of the inundated area is agricultural land. We expect that the agricultural productivity in western Europe will have been severely impacted.
Kang He, Xinyi Shen, Cory Merow, Efthymios Nikolopoulos, Rachael V. Gallagher, Feifei Yang, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 3337–3355, https://doi.org/10.5194/nhess-24-3337-2024, https://doi.org/10.5194/nhess-24-3337-2024, 2024
Short summary
Short summary
A framework combining a fire severity classification with a regression model to predict an indicator of fire severity derived from Landsat imagery (difference normalized burning ratio, dNBR) is proposed. The results show that the proposed predictive technique is capable of providing robust fire severity prediction information, which can be used for forecasting seasonal fire severity and, subsequently, impacts on biodiversity and ecosystems under projected future climate conditions.
Mariam Khanam, Giulia Sofia, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 28, 3161–3190, https://doi.org/10.5194/hess-28-3161-2024, https://doi.org/10.5194/hess-28-3161-2024, 2024
Short summary
Short summary
Flooding worsens due to climate change, with river dynamics being a key in local flood control. Predicting post-storm geomorphic changes is challenging. Using self-organizing maps and machine learning, this study forecasts post-storm alterations in stage–discharge relationships across 3101 US stream gages. The provided framework can aid in updating hazard assessments by identifying rivers prone to change, integrating channel adjustments into flood hazard assessment.
Kang He, Qing Yang, Xinyi Shen, Elias Dimitriou, Angeliki Mentzafou, Christina Papadaki, Maria Stoumboudi, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 2375–2382, https://doi.org/10.5194/nhess-24-2375-2024, https://doi.org/10.5194/nhess-24-2375-2024, 2024
Short summary
Short summary
About 820 km2 of agricultural land was inundated in central Greece due to Storm Daniel. A detailed analysis revealed that the crop most affected by the flooding was cotton; the inundated area of more than 282 km2 comprised ~ 30 % of the total area planted with cotton in central Greece. In terms of livestock, we estimate that more than 14 000 ornithoids and 21 500 sheep and goats were affected. Consequences for agriculture and animal husbandry in Greece are expected to be severe.
Mariam Khanam, Giulia Sofia, Wilmalis Rodriguez, Efthymios I. Nikolopoulos, Binghao Lu, Dongjin Song, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-120, https://doi.org/10.5194/nhess-2023-120, 2023
Preprint under review for NHESS
Short summary
Short summary
This study comprehends and predicts the socioeconomic effects of floods in the High Mountain Asia (HMA) region. We proposed a machine-learning strategy for mapping flood damages. We predicted the Lifeyears Index (LYI), which quantifies the financial cost and loss of life caused by floods, using variables including climate, geomorphology, and population. The study's overall goal is to offer useful information on flood susceptibility and subsequent risk mapping in the HMA region.
Kang He, Qing Yang, Xinyi Shen, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 22, 2921–2927, https://doi.org/10.5194/nhess-22-2921-2022, https://doi.org/10.5194/nhess-22-2921-2022, 2022
Short summary
Short summary
This study depicts the flood-affected areas in western Europe in July 2021 and particularly the agriculture land that was under flood inundation. The results indicate that the total inundated area over western Europe is about 1920 km2, of which 1320 km2 is in France. Around 64 % of the inundated area is agricultural land. We expect that the agricultural productivity in western Europe will have been severely impacted.
Mariam Khanam, Giulia Sofia, Marika Koukoula, Rehenuma Lazin, Efthymios I. Nikolopoulos, Xinyi Shen, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 21, 587–605, https://doi.org/10.5194/nhess-21-587-2021, https://doi.org/10.5194/nhess-21-587-2021, 2021
Short summary
Short summary
Compound extremes correspond to events with multiple concurrent or consecutive drivers, leading to substantial impacts such as infrastructure failure. In many risk assessment and design applications, however, multihazard scenario events are ignored. In this paper, we present a general framework to investigate current and future climate compound-event flood impact on coastal critical infrastructures such as power grid substations.
Diego Cerrai, Qing Yang, Xinyi Shen, Marika Koukoula, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 20, 1463–1468, https://doi.org/10.5194/nhess-20-1463-2020, https://doi.org/10.5194/nhess-20-1463-2020, 2020
Short summary
Short summary
On 1 September 2019 Hurricane Dorian made landfall on Great Abaco, unleashing unprecedented destruction on the northern Bahamas. Dorian was characterized by extreme winds, extensive coastal flooding, and impressive precipitation. We studied the event through images acquired by the synthetic aperture radars (SARs) mounted on European Space Agency satellites to derive flooding maps showing the extent of the devastation. We found that the flooded area in the Bahamas was at least 3000 km2.
Md Abul Ehsan Bhuiyan, Efthymios I. Nikolopoulos, Emmanouil N. Anagnostou, Jan Polcher, Clément Albergel, Emanuel Dutra, Gabriel Fink, Alberto Martínez-de la Torre, and Simon Munier
Hydrol. Earth Syst. Sci., 23, 1973–1994, https://doi.org/10.5194/hess-23-1973-2019, https://doi.org/10.5194/hess-23-1973-2019, 2019
Short summary
Short summary
This study investigates the propagation of precipitation uncertainty, and its interaction with hydrologic modeling, in global water resource reanalysis. Analysis is based on ensemble hydrologic simulations for a period of 11 years based on six global hydrologic models and five precipitation datasets. Results show that uncertainties in the model simulations are attributed to both uncertainty in precipitation forcing and the model structure.
Efthymios I. Nikolopoulos, Elisa Destro, Md Abul Ehsan Bhuiyan, Marco Borga, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 18, 2331–2343, https://doi.org/10.5194/nhess-18-2331-2018, https://doi.org/10.5194/nhess-18-2331-2018, 2018
Short summary
Short summary
Debris flows, following wildfires, constitute a significant threat to downstream populations and infrastructure. Therefore, developing measures to reduce the vulnerability of local communities to debris flows is of paramount importance. This work proposes a new model for predicting post-fire debris flow occurrence on a regional scale and demonstrates that the proposed model has notably higher skill than the currently used approaches.
Md Abul Ehsan Bhuiyan, Efthymios I. Nikolopoulos, Emmanouil N. Anagnostou, Pere Quintana-Seguí, and Anaïs Barella-Ortiz
Hydrol. Earth Syst. Sci., 22, 1371–1389, https://doi.org/10.5194/hess-22-1371-2018, https://doi.org/10.5194/hess-22-1371-2018, 2018
Short summary
Short summary
This study investigates the use of a nonparametric model for combining multiple global precipitation datasets and characterizing estimation uncertainty. Inputs to the model included three satellite precipitation products, an atmospheric reanalysis precipitation dataset, satellite-derived near-surface daily soil moisture data, and terrain elevation. We evaluated the technique based on high-resolution reference precipitation data and further used generated ensembles to force a hydrological model.
Francesco Marra, Efrat Morin, Nadav Peleg, Yiwen Mei, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 21, 2389–2404, https://doi.org/10.5194/hess-21-2389-2017, https://doi.org/10.5194/hess-21-2389-2017, 2017
Short summary
Short summary
Rainfall frequency analyses from radar and satellite estimates over the eastern Mediterranean are compared examining different climatic conditions. Correlation between radar and satellite results is high for frequent events and decreases with return period. The uncertainty related to record length is larger for drier climates. The agreement between different sensors instills confidence on their use for rainfall frequency analysis in ungauged areas of the Earth.
Yiwen Mei, Xinyi Shen, and Emmanouil N. Anagnostou
Hydrol. Earth Syst. Sci., 21, 2277–2299, https://doi.org/10.5194/hess-21-2277-2017, https://doi.org/10.5194/hess-21-2277-2017, 2017
H. Seyyedi, E. N. Anagnostou, E. Beighley, and J. McCollum
Hydrol. Earth Syst. Sci., 18, 5077–5091, https://doi.org/10.5194/hess-18-5077-2014, https://doi.org/10.5194/hess-18-5077-2014, 2014
Short summary
Short summary
The paper presents a methodology for using global precipitation products from satellite remote sensing to error-correct and downscale global atmospheric reanalysis precipitation data sets. It is shown that streamflow simulations from the satellite-adjusted precipitation reanalysis give similar statistics to the ones derived by high-resolution ground-based radar rainfall data sets. This approach can be applied globally to derive improved flood frequency maps over data-poor areas.
E. Picciotti, F. S. Marzano, E. N. Anagnostou, J. Kalogiros, Y. Fessas, A. Volpi, V. Cazac, R. Pace, G. Cinque, L. Bernardini, K. De Sanctis, S. Di Fabio, M. Montopoli, M. N. Anagnostou, A. Telleschi, E. Dimitriou, and J. Stella
Nat. Hazards Earth Syst. Sci., 13, 1229–1241, https://doi.org/10.5194/nhess-13-1229-2013, https://doi.org/10.5194/nhess-13-1229-2013, 2013
Related subject area
Domain: ESSD – Global | Subject: Energy and Emissions
A global surface CO2 flux dataset (2015–2022) inferred from OCO-2 retrievals using the GONGGA inversion system
Insights into the spatial distribution of global, national, and subnational greenhouse gas emissions in the Emissions Database for Global Atmospheric Research (EDGAR v8.0)
Estimating the uncertainty of the greenhouse gas emission accounts in global multi-regional input–output analysis
A consistent dataset for the net income distribution for 190 countries and aggregated to 32 geographical regions from 1958 to 2015
Temporal and spatial mapping of theoretical biomass potential across the European Union
Enhanced dataset of global marine isoprene emissions from biogenic and photochemical processes for the period 2001–2020
Quantifying greenhouse gas emissions from wood fuel use by households
Heat stored in the Earth system 1960–2020: where does the energy go?
Journals with open-discussion forums are excellent educational resources for peer review training exercises
Energy-related CO2 emission accounts and datasets for 40 emerging economies in 2010–2019
Natural gas supply from Russia derived from daily pipeline flow data and potential solutions for filling a shortage of Russian supply in the European Union (EU)
Global datasets of leaf photosynthetic capacity for ecological and earth system research
Zhe Jin, Xiangjun Tian, Yilong Wang, Hongqin Zhang, Min Zhao, Tao Wang, Jinzhi Ding, and Shilong Piao
Earth Syst. Sci. Data, 16, 2857–2876, https://doi.org/10.5194/essd-16-2857-2024, https://doi.org/10.5194/essd-16-2857-2024, 2024
Short summary
Short summary
An accurate estimate of spatial distribution and temporal evolution of CO2 fluxes is a critical foundation for providing information regarding global carbon cycle and climate mitigation. Here, we present a global carbon flux dataset for 2015–2022, derived by assimilating satellite CO2 observations into the GONGGA inversion system. This dataset will help improve the broader understanding of global carbon cycle dynamics and their response to climate change.
Monica Crippa, Diego Guizzardi, Federico Pagani, Marcello Schiavina, Michele Melchiorri, Enrico Pisoni, Francesco Graziosi, Marilena Muntean, Joachim Maes, Lewis Dijkstra, Martin Van Damme, Lieven Clarisse, and Pierre Coheur
Earth Syst. Sci. Data, 16, 2811–2830, https://doi.org/10.5194/essd-16-2811-2024, https://doi.org/10.5194/essd-16-2811-2024, 2024
Short summary
Short summary
Knowing where emissions occur is essential for planning effective emission reduction measures and atmospheric modelling. Disaggregating national emissions over high-resolution grids requires spatial proxies that contain information on the location of different emission sources. This work incorporates state-of-the-art spatial information to improve the spatial representation of global emissions with the Emissions Database for Global Atmospheric Research (EDGAR).
Simon Schulte, Arthur Jakobs, and Stefan Pauliuk
Earth Syst. Sci. Data, 16, 2669–2700, https://doi.org/10.5194/essd-16-2669-2024, https://doi.org/10.5194/essd-16-2669-2024, 2024
Short summary
Short summary
Greenhouse gas (GHG) emission accounts record emissions according to the economic boundary of a country, irrespective of whether they occur within national borders or not. In this study, we explore the accuracy of those GHG emission accounts. We find that the accuracy varies significantly depending on the country and economic sector. For example, small countries with extensive aviation or shipping activities show a high degree of uncertainty in their GHG emission accounts.
Kanishka B. Narayan, Brian C. O'Neill, Stephanie Waldhoff, and Claudia Tebaldi
Earth Syst. Sci. Data, 16, 2333–2349, https://doi.org/10.5194/essd-16-2333-2024, https://doi.org/10.5194/essd-16-2333-2024, 2024
Short summary
Short summary
Here, we present a consistent dataset of income distributions across 190 countries from 1958 to 2015 measured in terms of net income. We complement the observed values in this dataset with values imputed from a summary measure of the income distribution, specifically the Gini coefficient. We also present another version of this dataset aggregated from the country level to 32 geographical regions.
Susann Günther, Tom Karras, Friederike Naegeli de Torres, Sebastian Semella, and Daniela Thrän
Earth Syst. Sci. Data, 16, 59–74, https://doi.org/10.5194/essd-16-59-2024, https://doi.org/10.5194/essd-16-59-2024, 2024
Short summary
Short summary
The following study was undertaken to provide a continuous open access dataset for 2010-2020 from country to local level. In order to understand the reliability of the final dataset and to enable further use, the modelled data were validated against statistics, which is a novelty in this field. The dataset has been shown to be in good agreement with the statistical data. Biomass potentials modelled in this study are published in an open access database.
Lehui Cui, Yunting Xiao, Wei Hu, Lei Song, Yujue Wang, Chao Zhang, Pingqing Fu, and Jialei Zhu
Earth Syst. Sci. Data, 15, 5403–5425, https://doi.org/10.5194/essd-15-5403-2023, https://doi.org/10.5194/essd-15-5403-2023, 2023
Short summary
Short summary
Isoprene is a crucial non-methane biogenic volatile organic compound with the largest global emissions, which has high chemical reactivity and serves as the primary source of natural secondary organic aerosols. This study built a module to present a 20-year global hourly dataset of marine phytoplankton-generated biological and photochemistry-generated isoprene emissions in the sea microlayers based on the latest advancements in biological, physical, and chemical processes.
Alessandro Flammini, Hanif Adzmir, Kevin Karl, and Francesco Nicola Tubiello
Earth Syst. Sci. Data, 15, 2179–2187, https://doi.org/10.5194/essd-15-2179-2023, https://doi.org/10.5194/essd-15-2179-2023, 2023
Short summary
Short summary
This paper estimates the share of greenhouse gas (GHG) emissions attributable to non-renewable wood fuel harvesting for use in residential food-related activities. It adds to a growing research base estimating GHG emissions from across the entire agri-food value chain and contributes to the development of the FAOSTAT climate change domain.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Nadine Borduas-Dedekind, Karen C. Short, and Samuel P. Carlson
Earth Syst. Sci. Data, 15, 1437–1440, https://doi.org/10.5194/essd-15-1437-2023, https://doi.org/10.5194/essd-15-1437-2023, 2023
Short summary
Short summary
This article describes the use of the open-discussion manuscript review process as an educational exercise for early career scientists.
Can Cui, Shuping Li, Weichen Zhao, Binyuan Liu, Yuli Shan, and Dabo Guan
Earth Syst. Sci. Data, 15, 1317–1328, https://doi.org/10.5194/essd-15-1317-2023, https://doi.org/10.5194/essd-15-1317-2023, 2023
Short summary
Short summary
Emerging economies face challenges regarding net-zero targets: inconsistencies in accounting calibers, missing raw data, non-transparent accounting methods, and a lack of detail about emissions. The authors established an accounting framework and compiled detailed inventories of energy-related CO2 emissions in 40 emerging economies, covering 47 sectors and eight energy types. The dataset will support emission reduction policymaking at global, national, and subnational levels.
Chuanlong Zhou, Biqing Zhu, Steven J. Davis, Zhu Liu, Antoine Halff, Simon Ben Arous, Hugo de Almeida Rodrigues, and Philippe Ciais
Earth Syst. Sci. Data, 15, 949–961, https://doi.org/10.5194/essd-15-949-2023, https://doi.org/10.5194/essd-15-949-2023, 2023
Short summary
Short summary
Our work aims to analyze sectoral and country-based daily natural gas supply–storage–consumption based on ENTSOG, Eurostat, and multiple datasets in the EU27 and UK. We estimated the magnitude of the Russian gas gap if Russian gas imports were to stop as well as potential short-term solutions to fill this gap. Our datasets could be important in various fields, such as gas/energy consumption and market modeling, carbon emission and climate change research, and policy decision-making.
Jing M. Chen, Rong Wang, Yihong Liu, Liming He, Holly Croft, Xiangzhong Luo, Han Wang, Nicholas G. Smith, Trevor F. Keenan, I. Colin Prentice, Yongguang Zhang, Weimin Ju, and Ning Dong
Earth Syst. Sci. Data, 14, 4077–4093, https://doi.org/10.5194/essd-14-4077-2022, https://doi.org/10.5194/essd-14-4077-2022, 2022
Short summary
Short summary
Green leaves contain chlorophyll pigments that harvest light for photosynthesis and also emit chlorophyll fluorescence as a byproduct. Both chlorophyll pigments and fluorescence can be measured by Earth-orbiting satellite sensors. Here we demonstrate that leaf photosynthetic capacity can be reliably derived globally using these measurements. This new satellite-based information overcomes a bottleneck in global ecological research where such spatially explicit information is currently lacking.
Cited articles
Abreu, R. C., Hoffmann, W. A., Vasconcelos, H. L., Pilon, N. A., Rossatto, D. R., and Durigan, G.: The biodiversity cost of carbon sequestration in tropical savanna, Sci. Adv., 3, e1701284, https://doi.org/10.1126/sciadv.1701284, 2017.
Addison, P. and Oommen, T.: Utilizing satellite radar remote sensing for burn severity estimation, Int. J. Appl. Earth Obs., 73, 292–299, https://doi.org/10.1016/j.jag.2018.07.002, 2018.
Alcaras, E., Costantino, D., Guastaferro, F., Parente, C., and Pepe, M.: Normalized Burn Ratio Plus (NBR+): A New Index for Sentinel-2 Imagery, Remote Sens.-Basel, 14, 1727, https://doi.org/10.3390/rs14071727, 2022.
Alonso-González, E. and Fernández-García, V.: MOSEV: a global burn severity database from MODIS (2000–2020), Earth Syst. Sci. Data, 13, 1925–1938, https://doi.org/10.5194/essd-13-1925-2021, 2021.
Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der Werf, G. R., and Randerson, J. T.: The Global Fire Atlas of individual fire size, duration, speed and direction, Earth Syst. Sci. Data, 11, 529–552, https://doi.org/10.5194/essd-11-529-2019, 2019.
Aragão, L. E., Anderson, L. O., Fonseca, M. G., Rosan, T. M., Vedovato, L. B., Wagner, F. H., Silva, C. V., Silva Junior, C. H., Arai, E., Aguiar, A. P., and Barlow, J.: 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions, Nat. Commun., 9, 536, https://doi.org/10.1038/s41467-017-02771-y, 2018.
Archibald, S. and Roy, D. P.: Identifying individual fires from satellite-derived burned area data, 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009, 11150061, https://doi.org/10.1109/IGARSS.2009.5417974, 2009.
Bar, S., Parida, B. R., and Pandey, A. C.: Landsat-8 and Sentinel-2 based Forest fire burn area mapping using machine learning algorithms on GEE cloud platform over Uttarakhand, Western Himalaya, Remote Sens. Appl., 18, 100324, https://doi.org/10.1016/j.rsase.2020.100324, 2020.
Benali, A., Russo, A., Sá, A. C., Pinto, R. M., Price, O., Koutsias, N., and Pereira, J. M.: Determining fire dates and locating ignition points with satellite data, Remote. Sens.-Basel, 8, 326, https://doi.org/10.3390/rs8040326, 2016.
Bradley, C. M., Hanson, C. T., and DellaSala, D. A.: Does increased forest protection correspond to higher fire severity in frequent-fire forests of the western United States?, Ecosphere, 7, e01492, https://doi.org/10.1002/ecs2.1492, 2016.
Chen, D., Loboda, T. V., and Hall, J. V.: A systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems, ISPRS J. Photogramm., 159, 63–77, https://doi.org/10.1016/j.isprsjprs.2019.11.011, 2020.
Chuvieco, E., De Santis, A., Riaño, D., and Halligan, K.: Simulation Approaches for Burn Severity Estimation Using Remotely Sensed Images, Fire Ecol., 6, 85–101, https://doi.org/10.4996/fireecology.0603085, 2010.
Chuvieco, E., Yue, C., Heil, A., Mouillot, F., Alonso-Canas, I., Padilla, M., Pereira, J. M., Oom, D., and Tansey, K.: A new global burned area product for climate assessment of fire impacts, Global Ecol. Biogeogr., 25, 619–629, https://doi.org/10.1111/geb.12440, 2016.
Cocke, A. E., Fulé, P. Z., and Crouse, J. E.: Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data, Int. J. Wildland Fire, 14, 189–198, https://doi.org/10.1071/WF04010, 2005.
Czuchlewski, K. R. and Weissel, J. K.: Synthetic Aperture Radar (SAR)-based mapping of wildfire burn severity and recovery, in: Proceedings 2005 IEEE International Geoscience and Remote Sensing Symposium, IGARSS'05, Vol. 1, https://doi.org/10.1109/IGARSS.2005.1526102, 2005.
Doerr, S. H. and Santín, C.: Global trends in wildfire and its impacts: perceptions versus realities in a changing world, Philos. T. Roy. Soc. B, 371, 1696, https://doi.org/10.1098/rstb.2015.0345, 2016.
Dupuy, J. L., Fargeon, H., Martin-StPaul, N., Pimont, F., Ruffault, J., Guijarro, M., Hernando, C., Madrigal, J., and Fernandes, P.: Climate change impact on future wildfire danger and activity in southern Europe: a review, Ann. For. Sci., 77, 1–24, https://doi.org/10.1007/s13595-020-00933-5, 2020.
Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z. L., Quayle, B., and Howard, S.: A project for monitoring trends in burn severity, Fire Ecol., 3, 3–21, https://doi.org/10.4996/fireecology.0301003, 2007.
Flannigan, M. D., Stocks, B. J., and Wotton, B. M.: Climate change and forest fires, Sci. Total Environ., 262, 221–229, https://doi.org/10.1016/S0048-9697(00)00524-6, 2000.
Flannigan, M. D., Amiro, B. D., Logan, K. A., Stocks, B. J., and Wotton, B. M.: Forest fires and climate change in the 21st century, Mitig. Adapt. Strat. Gl., 11, 847–859, https://doi.org/10.1007/s11027-005-9020-7, 2006.
Friedl, M. and Sulla-Menashe, D.: MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V061, NASA EOSDIS Land Processes Distributed Active Archive Center [data set], https://doi.org/10.5067/MODIS/MCD12Q1.061, 2022.
Fusco, E. J., Abatzoglou, J. T., Balch, J. K., Finn, J. T., and Bradley, B. A.: Quantifying the human influence on fire ignition across the western USA, Ecol. Appl., 26, 2390–2401, https://doi.org/10.1002/eap.1395, 2016.
Guindon, L., Villemaire, P., St-Amant, R., Bernier, P. Y., Beaudoin, A., Caron, F., Bonucelli, M., and Dorion, H.: Canada Landsat Disturbance (CanLaD): a Canada-wide Landsat-based 30 m resolution product of fire and harvest detection and attribution since 1984, https://doi.org/10.23687/add1346b-f632-4eb9-a83d-a662b38655ad, 2017.
Guindon, L., Bernier, P. Y., Gauthier, S., Stinson, G., Villemaire, P., and Beaudoin, A.: Missing forest cover gains in boreal forests explained, Ecosphere, 9, e02094, https://doi.org/10.1002/ecs2.2094, 2018.
Guindon, L., Gauthier, S., Manka, F., Parisien, M. A., Whitman, E., Bernier, P., Beaudoin, A., Villemaire, P., and Skakun, R.: Trends in wildfire burn severity across Canada, 1985 to 2015, Can. J. Forest Res., 51, 1230–1244, https://doi.org/10.1139/cjfr-2020-0353, 2021.
Hantson, S., Pueyo, S., and Chuvieco, E.: Global fire size distribution is driven by human impact and climate, Global Ecol. Biogeogr., 24, 77–86, https://doi.org/10.1111/geb.12246, 2015.
He, K., Shen, X., and Anagnostou, E. N.: A Global Forest Burn Severity Dataset from Landsat Imagery (2003–2016), Zenodo [data set], https://doi.org/10.5281/zenodo.10037629, 2023.
Howe, A. A., Parks, S. A., Harvey, B. J., Saberi, S. J., Lutz, J. A., and Yocom, L. L.: Comparing Sentinel-2 and Landsat 8 for burn severity mapping in Western North America, Remote Sens.-Basel, 14, 5249, https://doi.org/10.3390/rs14205249, 2022.
Huerta, S., Marcos, E., Fernández-García, V., and Calvo, L.: Short-term effects of burn severity on ecosystem multifunctionality in the northwest Iberian Peninsula, Sci. Total Environ., 844, 157193, https://doi.org/10.1016/j.scitotenv.2022.157193, 2022.
Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J., and Bowman, D. M.: Climate-induced variations in global wildfire danger from 1979 to 2013, Nat. Commun., 6, 7537, https://doi.org/10.1038/ncomms8537, 2015.
Kasischke, E. S. and Turetsky, M. R.: Recent changes in the fire regime across the North American boreal region – Spatial and temporal patterns of burning across Canada and Alaska, Geophys. Res. Lett., 33, L09703, https://doi.org/10.1029/2006GL025677, 2006.
Keeley, J. E.: Fire intensity, burn severity and burn severity: a brief review and suggested usage, Int. J. Wildland Fire, 18, 116–126, https://doi.org/10.1071/WF07049, 2009.
Key, C. H. and Benson, N. C.: The Normalized Burn Ratio (NBR): A Landsat TM radiometric measure of burn severity, US Department of the Interior, US Geological Survey, Northern Rocky Mountain Science Center, https://www.frames.gov/catalog/5860 (last access: 27 September 2023), 2003.
Key, C. H. and Benson, N. C.: Landscape assessment (LA): Sampling and Analysis Methods, USDA Forest Service, 55 pp., https://www.fs.usda.gov/research/treesearch/24066 (last access: 27 September 2023), 2006.
Koutsias, N. and Pleniou, M.: Comparing the spectral signal of burned surfaces between Landsat 7 ETM+ and Landsat 8 OLI sensors, Int. J. Remote Sens., 36, 3714–3732, https://doi.org/10.1080/01431161.2015.1070322, 2015.
Laurent, P., Mouillot, F., Yue, C., Ciais, P., Moreno, M. V., and Nogueira, J. M.: FRY, a global database of fire patch functional traits derived from space-borne burned area products, Sci. Data, 5, 1–12, https://doi.org/10.1038/sdata.2018.132, 2018.
Mallinis, G., Mitsopoulos, I., and Chrysafi, I.: Evaluating and comparing Sentinel 2A and Landsat-8 Operational Land Imager (OLI) spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece, GIsci Remote Sens., 55, 1–18, https://doi.org/10.1080/15481603.2017.1354803, 2018.
Meng, R., Wu, J., Zhao, F., Cook, B. D., Hanavan, R. P., and Serbin, S. P.: Measuring short-term post-fire forest recovery across a burn severity gradient in a mixed pine-oak forest using multi-sensor remote sensing techniques, Remote Sens. Environ., 210, 282–296, https://doi.org/10.1016/j.rse.2018.03.019, 2018.
Miller, J. D. and Thode, A. E.: Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR), Remote Sens. Environ., 109, 66–80, https://doi.org/10.1016/j.rse.2006.12.006, 2007.
Miller, J. D., Knapp, E. E., Key, C. H., Skinner, C. N., Isbell, C. J., Creasy, R. M., and Sherlock, J. W.: Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA, Remote Sens. Environ., 113, 645–656, https://doi.org/10.1016/j.rse.2008.11.009, 2009.
Montero, D., Aybar, C., Mahecha, M. D., Martinuzzi, F., Söchting, M., and Wieneke, S.: A standardized catalogue of spectral indices to advance the use of remote sensing in Earth system research, Sci. Data, 10, 197, https://doi.org/10.1038/s41597-023-02096-0, 2023.
Moreira, F., Ascoli, D., Safford, H., Adams, M. A., Moreno, J. M., Pereira, J. M., Catry, F. X., Armesto, J., Bond, W., González, M. E., and Curt, T.: Wildfire management in Mediterranean-type regions: paradigm change needed, Environ. Res. Lett., 15, 011001, https://doi.org/10.1088/1748-9326/ab541e, 2020.
Nasi, R., Dennis, R., Meijaard, E., Applegate, G., and Moore, P.: Forest fire and biological diversity, UNASYLVA-FAO, 36–40, https://www.fao.org/4/y3582e/y3582e08.htm (last access: 1 November 2023), 2002.
Nogueira, J. M., Ruffault, J., Chuvieco, E., and Mouillot, F.: Can we go beyond burned area in the assessment of global remote sensing products with fire patch metrics?, Remote Sens.-Basel, 9, 7, https://doi.org/10.3390/rs9010007, 2016.
Oom, D., Silva, P. C., Bistinas, I., and Pereira, J. M.: Highlighting biome-specific sensitivity of fire size distributions to time-gap parameter using a new algorithm for fire event individuation, Remote Sens.-Basel, 8, 663, https://doi.org/10.3390/rs8080663, 2016.
Peacock, A., Pinto, N., and Lou, Y.: Burn Severity Mapping with L-band UAVSAR Observations Over Los Angeles' Largest Wildfire, in: IGARSS 2023–2023 IEEE International Geoscience and Remote Sensing Symposium, https://doi.org/10.1109/IGARSS52108.2023.10281609, 2023.
Rodrigues, M. and Febrer, M.: Spatial-temporal modeling of forest fire behavior: modeling fire ignition and propagation from MCD64A1, 20th EGU General Assembly, Vienna, Austria, 4–13 April 2018, EGU2018-14568, 2018.
Roy, D. P., Huang, H., Boschetti, L., Giglio, L., Yan, L., Zhang, H. H., and Li, Z.: Landsat-8 and Sentinel-2 burned area mapping-A combined sensor multi-temporal change detection approach, Remote Sens. Environ., 231, 111254, https://doi.org/10.1016/j.rse.2019.111254, 2019.
Scholes, R. J. and Archer, S. R.: Tree-grass interactions in savannas, Annu. Rev. Ecol. Syst., 28, 517–544, https://doi.org/10.1146/annurev.ecolsys.28.1.517, 1997.
Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H. O., Roberts, D. C., Zhai, P., Slade, R., Connors, S., Van Diemen, R., and Ferrat, M.: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, IPCC, 874 pp., https://www.ipcc.ch/srccl/ (last access: 1 November 2023), 2019.
Tanase, M., Santoro, M., de la Riva, J., Kasischke, E., and Korets, M. A.: L-band SAR backscatter prospects for burn severity estimation in boreal forests, in: Proc. ESA Living Planet Symp., Bergen, Norway, ESA Publications Division, SP-686, 1–6, ISBN 978-92-9221-250-6, 2010a.
Tanase, M., Santoro, M., de la Riva, J., Fernando, P., and Le Toan, T.: Sensitivity of X-, C-, and L-band SAR backscatter to burn severity in Mediterranean pine forests, IEEE T. Geosci., 48, 3663–3675, https://doi.org/10.1109/IGARSS52108.2023.10281609, 2010b.
Tanase, M., de la Riva, J., Santoro, M., Pérez-Cabello, F., and Kasischke, E.: Sensitivity of SAR data to post-fire forest regrowth in Mediterranean and boreal forests, Remote Sens. Environ., 115, 2075–2085, https://doi.org/10.1016/j.rse.2011.04.009, 2011.
Xu, W., He, H. S., Hawbaker, T. J., Zhu, Z., and Henne, P. D.: Estimating burn severity and carbon emissions from a historic megafire in boreal forests of China, Sci. Total Environ., 716, 136534, https://doi.org/10.1016/j.scitotenv.2020.136534, 2020.
Short summary
Forest fire risk is expected to increase as fire weather and drought conditions intensify. To improve quantification of the intensity and extent of forest fire damage, we have developed a global forest burn severity (GFBS) database that provides burn severity spectral indices (dNBR and RdNBR) at a 30 m spatial resolution. This database could be more reliable than prior sources of information for future studies of forest burn severity on the global scale in a computationally cost-effective way.
Forest fire risk is expected to increase as fire weather and drought conditions intensify. To...
Altmetrics
Final-revised paper
Preprint