Articles | Volume 15, issue 9
https://doi.org/10.5194/essd-15-3941-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-3941-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A comprehensive and version-controlled database of glacial lake outburst floods in High Mountain Asia
Finu Shrestha
CORRESPONDING AUTHOR
International Centre for Integrated Mountain Development (ICIMOD),
44700 Lalitpur, Nepal
International Centre for Integrated Mountain Development (ICIMOD),
44700 Lalitpur, Nepal
Department of Geography and Regional Science, University of Graz,
Heinrichstraße 36, 8010 Graz, Austria
Reeju Shrestha
International Centre for Integrated Mountain Development (ICIMOD),
44700 Lalitpur, Nepal
Department of Environmental Science and Engineering, School of
Science, Kathmandu University, 45210 Dhulikhel, Nepal
Yathartha Dhungel
International Centre for Integrated Mountain Development (ICIMOD),
44700 Lalitpur, Nepal
DPMM, Asian Institute of Technology, 12000 Pathum Thani, Thailand
Sharad P. Joshi
International Centre for Integrated Mountain Development (ICIMOD),
44700 Lalitpur, Nepal
Sam Inglis
The ADM Capital Foundation (ADMCF), 999077 Hong Kong SAR, China
Arshad Ashraf
Pakistan Agricultural Research Council, 44000 Islamabad, Pakistan
Sher Wali
Aga Khan Agency for Habitat, 44000 Islamabad, Pakistan
Khwaja M. Walizada
Aga Khan Agency for Habitat, Kabul, Afghanistan
Taigang Zhang
College of Earth and Environmental Sciences, Lanzhou University,
730000 Lanzhou, China
State Key Laboratory of Tibetan Plateau Earth System, Environment and
Resources (TPESER), Institute of Tibetan Plateau, Research, Chinese Academy of Sciences, 100864 Beijing, China
Related authors
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Francesca Pellicciotti, Adrià Fontrodona-Bach, David R. Rounce, Catriona L. Fyffe, Leif S. Anderson, Álvaro Ayala, Ben W. Brock, Pascal Buri, Stefan Fugger, Koji Fujita, Prateek Gantayat, Alexander R. Groos, Walter Immerzeel, Marin Kneib, Christoph Mayer, Shelley MacDonell, Michael McCarthy, James McPhee, Evan Miles, Heather Purdie, Ekaterina Rets, Akiko Sakai, Thomas E. Shaw, Jakob Steiner, Patrick Wagnon, and Alex Winter-Billington
EGUsphere, https://doi.org/10.5194/egusphere-2025-3837, https://doi.org/10.5194/egusphere-2025-3837, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Rock debris covers many of the world glaciers, modifying the transfer of atmospheric energy to the debris and into the ice. Models of different complexity simulate this process, and we compare 14 models at 9 sites to show that the most complex models at the debris-atmosphere interface have the highest performance. However, we lack debris properties and their derivation from measurements is ambiguous, hindering global modelling and calling for both model development and data collection.
Jakob Steiner, William Armstrong, Will Kochtitzky, Robert McNabb, Rodrigo Aguayo, Tobias Bolch, Fabien Maussion, Vibhor Agarwal, Iestyn Barr, Nathaniel R. Baurley, Mike Cloutier, Katelyn DeWater, Frank Donachie, Yoann Drocourt, Siddhi Garg, Gunjan Joshi, Byron Guzman, Stanislav Kutuzov, Thomas Loriaux, Caleb Mathias, Biran Menounos, Evan Miles, Aleksandra Osika, Kaleigh Potter, Adina Racoviteanu, Brianna Rick, Miles Sterner, Guy D. Tallentire, Levan Tielidze, Rebecca White, Kunpeng Wu, and Whyjay Zheng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-315, https://doi.org/10.5194/essd-2025-315, 2025
Preprint under review for ESSD
Short summary
Short summary
Many mountain glaciers around the world flow into lakes – exactly how many however, has never been mapped. Across a large team of experts we have now identified all glaciers that end in lakes. Only about 1% do so, but they are generally larger than those which end on land. This is important to understand, as lakes can influence the behaviour of glacier ice, including how fast it disappears. This new dataset allows us to better model glaciers at a global scale, accounting for the effect of lakes.
Marc Girona-Mata, Andrew Orr, Martin Widmann, Daniel Bannister, Ghulam Hussain Dars, Scott Hosking, Jesse Norris, David Ocio, Tony Phillips, Jakob Steiner, and Richard E. Turner
Hydrol. Earth Syst. Sci., 29, 3073–3100, https://doi.org/10.5194/hess-29-3073-2025, https://doi.org/10.5194/hess-29-3073-2025, 2025
Short summary
Short summary
We introduce a novel method for improving daily precipitation maps in mountain regions and pilot it across three basins in the Hindu Kush Himalaya (HKH). The approach leverages climate model and weather station data, along with statistical or machine learning techniques. Our results show that this approach outperforms traditional methods, especially in remote ungauged areas, suggesting that it could be used to improve precipitation maps across much of the HKH, as well as other mountain regions.
Jakob Steiner, Jakob Abermann, and Rainer Prinz
EGUsphere, https://doi.org/10.5194/egusphere-2025-2424, https://doi.org/10.5194/egusphere-2025-2424, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Ice in Greenland either ends in the ocean or on land and in lakes. We show that more than 95% of the margin ends on land. Ice ending in lakes is much rarer, but with 1.4% quite similar to the 2.2% ending in oceans. We also see that more than 20% of the margin ends in extremely steep, often vertical cliffs. We will now be able to compare these maps against local ice velocities, mass loss and climate to understand whether the margin shape teaches us something about the health of ice in the region.
Stephan Harrison, Adina Racoviteanu, Sarah Shannon, Darren Jones, Karen Anderson, Neil Glasser, Jasper Knight, Anna Ranger, Arindan Mandal, Brahma Dutt Vishwakarma, Jeffrey Kargel, Dan Shugar, Umesh Haritishaya, Dongfeng Li, Aristeidis Koutroulis, Klaus Wyser, and Sam Inglis
EGUsphere, https://doi.org/10.5194/egusphere-2024-4033, https://doi.org/10.5194/egusphere-2024-4033, 2025
Short summary
Short summary
Climate change is leading to a global recession of mountain glaciers, and numerical modelling suggests that this will result in the eventual disappearance of many glaciers, impacting water supplies. However, an alternative scenario suggests that increased rock fall and debris flows to valley bottoms will cover glaciers with thick rock debris, slowing melting and transforming glaciers into rock-ice mixtures called rock glaciers. This paper explores these scenarios.
Taigang Zhang, Weicai Wang, and Baosheng An
The Cryosphere, 17, 5137–5154, https://doi.org/10.5194/tc-17-5137-2023, https://doi.org/10.5194/tc-17-5137-2023, 2023
Short summary
Short summary
Detailed glacial lake bathymetry surveys are essential for accurate glacial lake outburst flood (GLOF) simulation and risk assessment. We creatively developed a conceptual model for glacial lake bathymetric distribution. The basic idea is that the statistical glacial lake volume–area curves conform to a power-law relationship indicating that the idealized geometric shape of the glacial lake basin should be hemispheres or cones.
Anushilan Acharya, Jakob F. Steiner, Khwaja Momin Walizada, Salar Ali, Zakir Hussain Zakir, Arnaud Caiserman, and Teiji Watanabe
Nat. Hazards Earth Syst. Sci., 23, 2569–2592, https://doi.org/10.5194/nhess-23-2569-2023, https://doi.org/10.5194/nhess-23-2569-2023, 2023
Short summary
Short summary
All accessible snow and ice avalanches together with previous scientific research, local knowledge, and existing or previously active adaptation and mitigation solutions were investigated in the high mountain Asia (HMA) region to have a detailed overview of the state of knowledge and identify gaps. A comprehensive avalanche database from 1972–2022 is generated, including 681 individual events. The database provides a basis for the forecasting of avalanche hazards in different parts of HMA.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Dorothea Stumm, Sharad Prasad Joshi, Tika Ram Gurung, and Gunjan Silwal
Earth Syst. Sci. Data, 13, 3791–3818, https://doi.org/10.5194/essd-13-3791-2021, https://doi.org/10.5194/essd-13-3791-2021, 2021
Short summary
Short summary
Glacier mass change data are valuable as a climate indicator and help to verify simulations of glaciological and hydrological processes. Data from the Himalaya are rare; hence, we established monitoring programmes on two glaciers in the Nepal Himalaya. We measured annual mass changes on Yala and Rikha Samba glaciers from 2011 to 2017 and calculated satellite-based mass changes from 2000 to 2012 for Yala Glacier. Both glaciers are shrinking, following the general trend in the Himalayas.
Maurice van Tiggelen, Paul C. J. P. Smeets, Carleen H. Reijmer, Bert Wouters, Jakob F. Steiner, Emile J. Nieuwstraten, Walter W. Immerzeel, and Michiel R. van den Broeke
The Cryosphere, 15, 2601–2621, https://doi.org/10.5194/tc-15-2601-2021, https://doi.org/10.5194/tc-15-2601-2021, 2021
Short summary
Short summary
We developed a method to estimate the aerodynamic properties of the Greenland Ice Sheet surface using either UAV or ICESat-2 elevation data. We show that this new method is able to reproduce the important spatiotemporal variability in surface aerodynamic roughness, measured by the field observations. The new maps of surface roughness can be used in atmospheric models to improve simulations of surface turbulent heat fluxes and therefore surface energy and mass balance over rough ice worldwide.
Cited articles
Acharya, A., Steiner, J. F., Walizada, K. M., Ali, S., Zakir, Z. H., Caiserman, A., and Watanabe, T.: Review article: Snow and ice avalanches in high mountain Asia – scientific, local and indigenous knowledge, Nat. Hazards Earth Syst. Sci., 23, 2569–2592, https://doi.org/10.5194/nhess-23-2569-2023, 2023.
Ahmed, R., Ahmad, S. T., Wani, G. F., Mir, R. A., Almazroui, M., Bansal, J. K.,
and Ahmed, P.: Glacial lake changes and the identification of potentially
dangerous glacial lakes (PDGLs) under warming climate in the Dibang River
Basin, Eastern Himalaya, India, Geocarto Int., 1–27,
https://doi.org/10.1080/10106049.2022.2134461, 2022.
Allen, S. K., Rastner, P., Arora, M., Huggel, C., and Stoffel, M.: Lake
outburst and debris flow disaster at Kedarnath, June 2013:
hydrometeorological triggering and topographic predisposition, Landslides,
13, 1479–1491, https://doi.org/10.1007/s10346-015-0584-3, 2016.
Allen, S. K., Zhang, G., Wang, W., Yao, T., and Bolch, T.: Potentially
dangerous glacial lakes across the Tibetan Plateau revealed using a
large-scale automated assessment approach, Sci. Bull., 64, 435–445,
https://doi.org/10.1016/j.scib.2019.03.011, 2019.
Ashraf, A., Naz, R., and Roohi, R.: Glacial lake outburst flood hazards in
Hindukush, Karakoram and Himalayan Ranges of Pakistan: implications and risk
analysis, Geomat. Nat. Haz. Risk, 3, 113–132,
https://doi.org/10.1080/19475705.2011.615344, 2012.
Ashraf, A., Naz, R., Mustafa, N., Iqbal, M. B., Ahmad, B., Jawad, A., and
Ahmad, I.: Updating GLOF lake inventory of Northern Pakistan and
establishment of community based early warning system in Bagrot and Bondo
Gol valleys (Technical Report), Pakistan Agricultural Research Council
(PARC), Islamabad, Pakistan, 2015.
Ashraf, A., Iqbal, M. B., Mustafa, N., Naz, R., and Ahmad, B.: Prevalent risk
of glacial lake outburst flood hazard in the Hindu Kush–Karakoram–Himalaya
region of Pakistan, Environ Earth Sci., 80, 451,
https://doi.org/10.1007/s12665-021-09740-1, 2021.
Awal, R., Nakagawa, H., Fujita, M., Kawaike, K., Baba, Y., and Zhang, H.:
Experimental Study on Glacial Lake Outburst Floods Due to Waves Overtopping
and Erosion of Moraine Dam, Ann. Disaster Prev. Res. Inst., 53, 583–594, 2010.
Bajracharya, S. R., Maharjan, S. B., Shrestha, F., Sherpa, T. C., Wagle, N.,
and Shrestha, A. B.: Inventory of glacial lakes and identification of
potentially dangerous glacial lakes in the Koshi, Gandaki, and Karnali river
basins of Nepal, the Tibet Autonomous Region of China, and India, ICIMOD,
Kathmandu, Nepal, International Centre for Integrated Mountain Development (ICIMOD), United Nations Development Programme (UNDP), https://doi.org/10.53055/ICIMOD.773, 2020.
Bhattacharya, A., Bolch, T., Mukherjee, K., King, O., Menounos, B., Kapitsa,
V., Neckel, N., Yang, W., and Yao, T.: High Mountain Asian glacier response
to climate revealed by multi-temporal satellite observations since the
1960s, Nat. Commun., 12, 4133, https://doi.org/10.1038/s41467-021-24180-y,
2021.
Blischak, J. D., Davenport, E. R., and Wilson, G.: A Quick Introduction to
Version Control with Git and GitHub, PLOS Comput. Biol., 12, e1004668,
https://doi.org/10.1371/journal.pcbi.1004668, 2016.
Bolch, T., Buchroithner, M. F., Peters, J., Baessler, M., and Bajracharya, S.: Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery, Nat. Hazards Earth Syst. Sci., 8, 1329–1340, https://doi.org/10.5194/nhess-8-1329-2008, 2008.
Bolch, T., Shea, J. M., Liu, S., Azam, F. M., Gao, Y., Gruber, S., Immerzeel,
W. W., Kulkarni, A., Li, H., Tahir, A. A., Zhang, G., and Zhang, Y.: Status
and Change of the Cryosphere in the Extended Hindu Kush Himalaya Region, in:
The Hindu Kush Himalaya Assessment: Mountains, Climate Change,
Sustainability and People, edited by: Wester, P., Mishra, A., Mukherji, A.,
and Shrestha, A. B., Springer, Cham, 209–255, https://doi.org/10.1007/978-3-319-92288-1_7, 2019.
Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D.: A
spatially resolved estimate of High Mountain Asia glacier mass balances from
2000 to 2016, Nat. Geosci., 10, 668–673, https://doi.org/10.1038/ngeo2999,
2017.
Carrivick, J. L. and Tweed, F. S.: Proglacial lakes: character, behaviour and
geological importance, Quaternary Sci. Rev., 78, 34–52,
https://doi.org/10.1016/j.quascirev.2013.07.028, 2013.
Carrivick, J. L. and Tweed, F. S.: A global assessment of the societal impacts
of glacier outburst floods. Global Planet. Change, 144, 1–16,
https://doi.org/10.1016/j.gloplacha.2016.07.001, 2016.
Chen, F., Zhang, M., Guo, H., Allen, S., Kargel, J. S., Haritashya, U. K., and Watson, C. S.: Annual 30 m dataset for glacial lakes in High Mountain Asia from 2008 to 2017, Earth Syst. Sci. Data, 13, 741–766, https://doi.org/10.5194/essd-13-741-2021, 2021.
Cook, K. L., Andermann, C., Gimbert, F., Adhikari, B. R., and Hovius, N.:
Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya,
Science, 362, 53–57, https://doi.org/10.1126/science.aat4981, 2018.
Cook, S. J. and Quincey, D. J.: Estimating the volume of Alpine glacial lakes, Earth Surf. Dynam., 3, 559–575, https://doi.org/10.5194/esurf-3-559-2015, 2015.
Duan, H., Yao, X., Zhang, D., Qi, M., and Liu, J.: Glacial Lake Changes and
Identification of Potentially Dangerous Glacial Lakes in the Yi'ong Zangbo
River Basin, Water, 12, 538, https://doi.org/10.3390/w12020538, 2020.
Dwiwedi, S. K., Acharya, M. D., and Simard, R.: The Tam Pokhari Glacier Lake
outburst flood of 3 September 1998, J. Nepal Geol. Soc., 22, 539–546, 2000.
Ebrahim, Z.: Climate disasters trigger mental health crisis in Pakistan's
mountains, The Third Pole, http://globeistan.com/?p=101216 (last access: 10 January 2022), 2022.
Emmer, A. and Cochachin, A.: The causes and mechanisms of moraine-dammed
lake failures in the Cordillera Blanca, North American Cordillera, and
Himalayas, Auc. Geogr., 48, 5–15,
https://doi.org/10.14712/23361980.2014.23, 2013.
Emmer, A., Allen, S. K., Carey, M., Frey, H., Huggel, C., Korup, O., Mergili, M., Sattar, A., Veh, G., Chen, T. Y., Cook, S. J., Correas-Gonzalez, M., Das, S., Diaz Moreno, A., Drenkhan, F., Fischer, M., Immerzeel, W. W., Izagirre, E., Joshi, R. C., Kougkoulos, I., Kuyakanon Knapp, R., Li, D., Majeed, U., Matti, S., Moulton, H., Nick, F., Piroton, V., Rashid, I., Reza, M., Ribeiro de Figueiredo, A., Riveros, C., Shrestha, F., Shrestha, M., Steiner, J., Walker-Crawford, N., Wood, J. L., and Yde, J. C.: Progress and challenges in glacial lake outburst flood research (2017–2021): a research community perspective, Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, 2022.
Fischer, M., Brettin, J., Roessner, S., Walz, A., Fort, M., and Korup, O.: Rare flood scenarios for a rapidly growing high-mountain city: Pokhara, Nepal, Nat. Hazards Earth Syst. Sci., 22, 3105–3123, https://doi.org/10.5194/nhess-22-3105-2022, 2022.
Furian, W., Maussion, F., and Schneider, C.: Projected 21st-Century Glacial
Lake Evolution in High Mountain Asia, Front. Earth Sci., 10, 821798,
https://doi.org/10.3389/feart.2022.821798, 2022.
Gardelle, J., Arnaud, Y., and Berthier, E.: Contrasted evolution of glacial
lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009,
Global Planet. Change, 75, 47–55,
https://doi.org/10.1016/j.gloplacha.2010.10.003, 2011.
Gohar, A.: Pre-intervention Survey on Knowledge, Attitudes and Practices
(KAP) in the GLOF prone Valleys of Boni and Gollain in Chitral and the Sosot
and Darkut Valleys Ghizar, Gilgit- Baltistan, Climate Change Division,
Government of Pakistan, Islamabad, Pakistan, 2014.
Guillet, G., King, O., Lv, M., Ghuffar, S., Benn, D., Quincey, D., and Bolch, T.: A regionally resolved inventory of High Mountain Asia surge-type glaciers, derived from a multi-factor remote sensing approach, The Cryosphere, 16, 603–623, https://doi.org/10.5194/tc-16-603-2022, 2022.
Haeberli, W.: Frequency and Characteristics of Glacier Floods in the Swiss
Alps, Ann. Glaciol., 4, 85–90, https://doi.org/10.3189/S0260305500005280, 1983.
Haeberli, W., Schaub, Y., and Huggel, C.: Increasing risks related to
landslides from degrading permafrost into new lakes in de-glaciating
mountain ranges, Geomorphology, 293, 405–417,
https://doi.org/10.1016/j.geomorph.2016.02.009, 2016.
Halvorson, S. J.: Environmental Health Risks and Gender in the
Karakoram-Himalaya, Northern Pakistan, Geogr. Rev., 92, 257–281,
https://doi.org/10.2307/4140973, 2002.
Harrison, S., Kargel, J. S., Huggel, C., Reynolds, J., Shugar, D. H., Betts, R. A., Emmer, A., Glasser, N., Haritashya, U. K., Klimeš, J., Reinhardt, L., Schaub, Y., Wiltshire, A., Regmi, D., and Vilímek, V.: Climate change and the global pattern of moraine-dammed glacial lake outburst floods, The Cryosphere, 12, 1195–1209, https://doi.org/10.5194/tc-12-1195-2018, 2018.
He, X. and Zhou, S.: An Assessment of Glacier Inventories for the Third Pole
Region, Front. Earth Sci., 10, 1–15,
https://doi.org/10.3389/feart.2022.848007,
2022.
Hewitt, K. and Liu, J.: Ice-Dammed Lakes and Outburst Floods, Karakoram
Himalaya: Historical Perspectives on Emerging Threats, Phys. Geogr., 31,
528–551, https://doi.org/10.2747/0272-3646.31.6.528, 2010.
Hoelzle, M., Barandun, M., Bolch, T., Fiddes, J., Gafurov, A., Muccione, V., Saks, T., and Shahgedanova, M.: The status and role of the alpine cryosphere in Central Asia, in: The Aral Sea basin, Water for sustainable development in Central Asia, edited by: Xenarios, S., Schmidt-Vogt, D., Qadir, M., Janusz-Pawletta, B., and Abdullaev, I., Routledge, London, 100–121, https://doi.org/10.4324/9780429436475-8, 2019.
Huggel, C., Muccione, V., Carey, M., James, R., Jurt, C., and Mechler, R.:
Loss and Damage in the mountain cryosphere, Reg. Environ. Change, 19,
1387–1399, https://doi.org/10.1007/s10113-018-1385-8, 2019.
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L.,
Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.:
Accelerated global glacier mass loss in the early twenty-first century,
Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021.
Huss, M., Bauder, A., Werder, M., Funk, M., and Hock, R.: Glacier-dammed
lake outburst events of Gornersee, Switzerland, J. Glaciol., 53, 189–200,
https://doi.org/10.3189/172756507782202784, 2007.
Iribarren Anacona, P., Norton, K. P., and Mackintosh, A.: Moraine-dammed lake failures in Patagonia and assessment of outburst susceptibility in the Baker Basin, Nat. Hazards Earth Syst. Sci., 14, 3243–3259, https://doi.org/10.5194/nhess-14-3243-2014, 2014.
Ives, J. D.: Glacial Lake Outburst Floods and Risk Engineering in the
Himalaya: A Review of the Langmoche Disaster, Khumbu Himal, 4 August 1985
(Occasional Paper No. 5), ICIMOD, Kathmandu, Nepal, 52 pp., ISBN 9971 84 756. 6, 1986.
Ives, J. D., Shrestha, R. B., and Mool, P. K.: Formation of Glacial Lakes in the Hindu Kush-Himalayas and GLOF Risk Assessment,
ICIMOD, Kathmandu, Nepal, 66 pp., ISBN 978 92 9115 1370, 2010.
Jiang, Z., Cui, P., and Jiang, L.: Critical hydrologic conditions for
overflow burst of moraine lake, Chin. Geograph. Sc., 14, 39–47,
https://doi.org/10.1007/s11769-004-0007-1, 2004.
Kääb, A., Leinss, S., Gilbert, A., Bühler, Y., Gascoin, S.,
Evans, S. G., Bartelt, P., Berthier, E., Brun, F., Chao, W.-A., Farinotti,
D., Gimbert, F., Guo, W., Huggel, C., Kargel, J. S., Leonard, G. J., Tian, L.,
Treichler, D., and Yao, T.: Massive collapse of two glaciers in western
Tibet in 2016 after surge-like instability, Nat. Geosci., 11, 114–120,
https://doi.org/10.1038/s41561-017-0039-7, 2018.
Kääb, A., Jacquemart, M., Gilbert, A., Leinss, S., Girod, L., Huggel, C., Falaschi, D., Ugalde, F., Petrakov, D., Chernomorets, S., Dokukin, M., Paul, F., Gascoin, S., Berthier, E., and Kargel, J. S.: Sudden large-volume detachments of low-angle mountain glaciers – more frequent than thought?, The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, 2021.
Khanal, N. R., Hu, J.-M., and Mool, P.: Glacial Lake Outburst Flood Risk in
the Poiqu/Bhote Koshi/Sun Koshi River Basin in the Central Himalayas, Mt.
Res. Dev., 35, 351–364, https://doi.org/10.1659/MRD-JOURNAL-D-15-00009,
2015.
Kingslake, J. and Ng, F.: Quantifying the predictability of the timing of
jökulhlaups from Merzbacher Lake, Kyrgyzstan, J. Glaciol., 59, 805–818,
https://doi.org/10.3189/2013JoG12J156, 2013.
Kreutzmann, H.: The Karakoram Highway: The Impact of Road Construction on
Mountain Societies, Mod. Asian Stud., 25, 711–736,
https://doi.org/10.1017/S0026749X00010817, 1991.
Lee, E., Carrivick, J. L., Quincey, D. J., Cook, S. J., James, W. H. M., and
Brown, L. E.: Accelerated mass loss of Himalayan glaciers since the Little
Ice Age, Sci. Rep., 11, 24284, https://doi.org/10.1038/s41598-021-03805-8,
2021.
Li, D., Lu, X., Walling, D. E., Zhang, T., Steiner, J. F., Wasson, R. J.,
Harrison, S., Nepal, S., Nie, Y., Immerzeel, W. W., Shugar, D. H., Koppes, M.,
Lane, S., Zeng, Z., Sun, X., Yegorov, A., and Bolch, T.: High Mountain Asia
hydropower systems threatened by climate-driven landscape instability, Nat.
Geosci., 15, 520–530,
https://doi.org/10.1038/s41561-022-00953-y, 2022.
Linsbauer, A., Frey, H., Haeberli, W., Machguth, H., Azam, M. F., and Allen,
S.: Modelling glacier-bed overdeepenings and possible future lakes for the
glaciers in the Himalaya – Karakoram region, Ann. Glaciol., 57, 119–130,
https://doi.org/10.3189/2016AoG71A627, 2015.
Mamadjanova, G., Wild, S., Walz, M. A., and Leckebusch, G. C.: The role of synoptic processes in mudflow formation in the piedmont areas of Uzbekistan, Nat. Hazards Earth Syst. Sci., 18, 2893–2919, https://doi.org/10.5194/nhess-18-2893-2018, 2018.
Mankoff, K. D., Fettweis, X., Langen, P. L., Stendel, M., Kjeldsen, K. K., Karlsson, N. B., Noël, B., van den Broeke, M. R., Solgaard, A., Colgan, W., Box, J. E., Simonsen, S. B., King, M. D., Ahlstrøm, A. P., Andersen, S. B., and Fausto, R. S.: Greenland ice sheet mass balance from 1840 through next week, Earth Syst. Sci. Data, 13, 5001–5025, https://doi.org/10.5194/essd-13-5001-2021, 2021.
Medeu, A. R., Baimoldayev, T. A., and Kirenskay, T. L.: Anthology debris flows and their processes, Debris flows in the Southeast
Kazakhstan, Ministry of Education and Science Republic of Kazakhstan, Almaty, 4, 576 pp., ISBN 978 601 7150 78 5, 2016.
Medeu, A. R., Blagoveshchenskiy, V. P., Gulyayeva, T. S., and Ranova, S. U.:
Debris Flow Activity in Trans-Ili Alatau in the 20th – Early 21st
Centuries, Geogr. Nat. Resour., 40, 292–298,
https://doi.org/10.1134/S1875372819030120, 2019.
Mool, P. K., Bajracharya, S. R., and Joshi, S. P.: Inventory of Glaciers, Glacial Lakes and Glacial Lake Outburst Floods, ICI MOD, Kathmandu, Nepal, 375 pp., ISBN 92 9115 359 1, 2001.
Muhammad, S. and Thapa, A.: Daily Terra–Aqua MODIS cloud-free snow and Randolph Glacier Inventory 6.0 combined product (M*D10A1GL06) for high-mountain Asia between 2002 and 2019, Earth Syst. Sci. Data, 13, 767–776, https://doi.org/10.5194/essd-13-767-2021, 2021.
Muhammad, S., Li, J., Steiner, J. F., Shrestha, F., Shah, G. M., Berthier, E.,
Guo, L., Wu, L., and Tian, L.: A holistic view of Shisper Glacier surge and
outburst floods: from physical processes to downstream impacts, Geomat. Nat.
Haz. Risk, 12, 2755–2775, https://doi.org/10.1080/19475705.2021.1975833,
2021.
Nie, Y., Liu, Q., and Liu, S.: Glacial lake expansion in the Central Himalayas by Landsat images, 1990–2010, PLOS ONE, 8, e83973, https://doi.org/10.1371/journal.pone.0083973, 2013.
Nie, Y., Sheng, Y., Liu, Q., Liu, L., Liu, S., Zhang, Y., and Song, C.: A
regional-scale assessment of Himalayan glacial lake changes using satellite
observations from 1990 to 2015, Remote Sens. Environ., 189, 1–13,
https://doi.org/10.1016/j.rse.2016.11.008, 2017.
Nie, Y., Liu, Q., Wang, J., Zhang, Y., Sheng, Y., and Liu, S.: An inventory
of historical glacial lake outburst floods in the Himalayas based on remote
sensing observations and geomorphological analysis, Geomorphology, 308,
91–106, https://doi.org/10.1016/j.geomorph.2018.02.002, 2018.
Nie, Y., Liu, W., Liu, Q., Hu, X., and Westoby, M. J.: Reconstructing the
Chongbaxia Tsho glacial lake outburst flood in the Eastern Himalaya:
Evolution, process and impacts, Geomorphology, 370, 107393,
https://doi.org/10.1016/j.geomorph.2020.107393, 2020.
Obu, J.: How Much of the Earth's Surface is Underlain by Permafrost?, J.
Geophys. Res-Earth, 126, 1–5, https://doi.org/10.1029/2021JF006123, 2021.
Osti, R., Bhattarai, T. N., and Miyake, K.: Causes of catastrophic failure of
Tam Pokhari moraine dam in the Mt. Everest region, Nat. Hazards, 58,
1209–1223, https://doi.org/10.1007/s11069-011-9723-x, 2011.
Petley, D.: Global patterns of loss of life from landslides, Geology, 40,
927–930, https://doi.org/10.1130/G33217.1, 2012.
Pfeffer, W. T.: Randolph Glacier Inventory – A Dataset of Global Glacier
Outlines: Version 6.0: Technical Report (No. 6.0), Colorado, USA, Digital Media, https://doi.org/10.7265/N5-RGI-60, 2017.
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner,
A. S., Hagen, J.-O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S., Moholdt,
G., Mölg, N., Paul, F., Radiæ, V., Rastner, P., Raup, B. H., Rich,
J., and Sharp, M. J., The Randolph Consortium.: The Randolph Glacier
Inventory: a globally complete inventory of glaciers, J. Glaciol., 60,
537–552, https://doi.org/10.3189/2014JoG13J176, 2014.
Resurrección, B. P., Goodrich, C. G., Song, Y., Bastola, A., Prakash, A.,
Joshi, D., Liebrand, J., and Shah, S. A.: In the Shadows of the Himalayan
Mountains: Persistent Gender and Social Exclusion in Development, in: The
Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability
and People, edited by: Wester, P., Mishra, A., Mukherji, A., and Shrestha,
A.B., Springer International Publishing, Cham, 491–516, https://doi.org/10.1007/978-3-319-92288-1_14, 2019.
Rounce, D. R., Byers, A. C., Byers, E. A., and McKinney, D. C.: Brief communication: Observations of a glacier outburst flood from Lhotse Glacier, Everest area, Nepal, The Cryosphere, 11, 443–449, https://doi.org/10.5194/tc-11-443-2017, 2017.
Round, V., Leinss, S., Huss, M., Haemmig, C., and Hajnsek, I.: Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram, The Cryosphere, 11, 723–739, https://doi.org/10.5194/tc-11-723-2017, 2017.
Schwanghart, W., Worni, R., Huggel, C., Stoffel, M., and Korup, O.: Uncertainty in the Himalayan energy–water nexus: estimating regional exposure to glacial lake outburst floods, Environ. Res. Lett., 11, 074005, https://doi.org/10.1088/1748-9326/11/7/074005, 2016.
Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S.,
Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., and Strattman,
K.: Rapid worldwide growth of glacial lakes since 1990, Nat. Clim. Change,
10, 939–945, https://doi.org/10.1038/s41558-020-0855-4, 2020.
Shugar, D. H., Jacquemart, M., Shean, D., Bhushan, S., Upadhyay, K., Sattar,
A., Schwanghart, W., McBride, S., Vries, M. V. W. de, Mergili, M., Emmer, A.,
Deschamps-Berger, C., McDonnell, M., Bhambri, R., Allen, S., Berthier, E.,
Carrivick, J. L., Clague, J. J., Dokukin, M., Dunning, S. A., Frey, H.,
Gascoin, S., Haritashya, U. K., Huggel, C., Kääb, A., Kargel, J. S.,
Kavanaugh, J. L., Lacroix, P., Petley, D., Rupper, S., Azam, M. F., Cook,
S. J., Dimri, A. P., Eriksson, M., Farinotti, D., Fiddes, J., Gnyawali, K. R.,
Harrison, S., Jha, M., Koppes, M., Kumar, A., Leinss, S., Majeed, U., Mal,
S., Muhuri, A., Noetzli, J., Paul, F., Rashid, I., Sain, K., Steiner, J.,
Ugalde, F., Watson, C. S., and Westoby, M. J.: A massive rock and ice
avalanche caused the 2021 disaster at Chamoli, Indian Himalaya, Science, 373, 300–306,
https://doi.org/10.1126/science.abh4455, 2021.
Soheb, M., Ramanathan, A., Bhardwaj, A., Coleman, M., Rea, B. R., Spagnolo, M., Singh, S., and Sam, L.: Multitemporal glacier inventory revealing four decades of glacier changes in the Ladakh region, Earth Syst. Sci. Data, 14, 4171–4185, https://doi.org/10.5194/essd-14-4171-2022, 2022.
Somos-Valenzuela, M. A., McKinney, D. C., Rounce, D. R., and Byers, A. C.: Changes in Imja Tsho in the Mount Everest region of Nepal, The Cryosphere, 8, 1661–1671, https://doi.org/10.5194/tc-8-1661-2014, 2014.
Song, C., Sheng, Y., Ke, L., Nie, Y., and Wang, J.: Glacial lake evolution
in the southeastern Tibetan Plateau and the cause of rapid expansion of
proglacial lakes linked to glacial-hydrogeomorphic processes, J. Hydrol.,
540, 504–514, https://doi.org/10.1016/j.jhydrol.2016.06.054, 2016.
Steiner, J. and Shrestha, F.: fidelsteiner/HMAGLOFDB: HMAGLOFDB v1.0.1
(v1.0.1), Zenodo [code],
https://doi.org/10.5281/zenodo.7271187, 2023.
Steiner, J., Wester, P., Muccione, V., and Shrestha, A. B.: Transboundary
climate risks for terrestrial shared natural resources, in: The Global
Transboundary Climate Risk Report, edited by: Anisimov, A. and Magnan, A. M.,
The Institute for Sustainable Development and International Relations &
Adaptation Without Borders, 33–39, https://adaptationwithoutborders.org/knowledge-base/adaptation-without-borders/the-global-transboundary-climate-risk-report (last access: 1 September 2023),
2023.
Steiner, J. F., Kraaijenbrink, P. D. A., Jiduc, S. G., and Immerzeel, W. W.: Brief communication: The Khurdopin glacier surge revisited – extreme flow velocities and formation of a dammed lake in 2017, The Cryosphere, 12, 95–101, https://doi.org/10.5194/tc-12-95-2018, 2018.
Taylor, C., Robinson, T. R., Dunning, S. A., Carr, J. R., and Westoby, M. J.:
Glacial lake outburst floods threaten millions globally, Nat. Commun., 14, 487,
https://doi.org/10.1038/s41467-023-36033-x, 2023.
Thapa, V. and Pathranarakul, P.: Gender inclusiveness in disaster risk
governance for sustainable recovery of 2015 Gorkha Earthquake, Nepal, Int.
J. Disast. Risk Re., 34, 209–219,
https://doi.org/10.1016/j.ijdrr.2018.11.019, 2019.
Thornton, J. M., Snethlage, M. A., Sayre, R., Urbach, D. R., Viviroli, D.,
Ehrlich, D., Muccione, V., Wester, P., Insarov, G., and Adler, C.: Human
populations in the world's mountains: Spatio-temporal patterns and potential
controls, PLOS ONE, 17, e0271466,
https://doi.org/10.1371/journal.pone.0271466, 2022.
UNISDR: Sendai Framework for Disaster Risk Reduction 2015–2030, Geneva, Switzerland, United Nations Office for Disaster Risk Reduction, 37 pp., 2015.
Veh, G., Korup, O., von Specht, S., Roessner, S., and Walz, A.: Unchanged
frequency of moraine-dammed glacial lake outburst floods in the Himalaya,
Nat. Clim. Change, 9, 379–383, https://doi.org/10.1038/s41558-019-0437-5,
2019a.
Veh, G., Korup, O., and Walz, A.: Hazard from Himalayan glacier lake
outburst floods, P. Natl. Acad. Sci. USA, 117, 907–912, https://doi.org/10.1073/pnas.1914898117,
2019b.
Veh, G., Lützow, N., Kharlamova, V., Petrakov, D., Hugonnet, R., and
Korup, O.: Trends, Breaks, and Biases in the Frequency of Reported Glacier
Lake Outburst Floods, Earth's Future, 10, e2021EF002426,
https://doi.org/10.1029/2021EF002426, 2022.
Veh, G., Lützow, N., Tamm, J., Luna, L. V., Hugonnet, R., Vogel, K.,
Geertsema, M., Clague, J. J., and Korup, O.: Less extreme and earlier
outbursts of ice-dammed lakes since 1900, Nature, 614, 701–707,
https://doi.org/10.1038/s41586-022-05642-9, 2023.
Vincent, C., Thibert, E., Gagliardini, O., Legchenko, A., Gilbert, A.,
Garambois, S., Condom, T., Baltassat, J. M., and Girard, J. F.: Mechanisms of
subglacial cavity filling in Glacier de Tête Rousse, French Alps, J.
Glaciol., 61, 609–623, https://doi.org/10.3189/2015JoG14J238, 2015.
Wang, X., Guo, X., Yang, C., Liu, Q., Wei, J., Zhang, Y., Liu, S., Zhang, Y., Jiang, Z., and Tang, Z.: Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images, Earth Syst. Sci. Data, 12, 2169–2182, https://doi.org/10.5194/essd-12-2169-2020, 2020.
Wang, X., Tolksdorf, V., Otto, M., and Scherer, D.: WRF-based dynamical
downscaling of ERA5 reanalysis data for High Mountain Asia: Towards a new
version of the High Asia Refined analysis. Int. J. Climatol., 41, 743–762,
https://doi.org/10.1002/joc.6686, 2021.
Welty, E., Zemp, M., Navarro, F., Huss, M., Fürst, J. J., Gärtner-Roer, I., Landmann, J., Machguth, H., Naegeli, K., Andreassen, L. M., Farinotti, D., Li, H., and GlaThiDa Contributors: Worldwide version-controlled database of glacier thickness observations, Earth Syst. Sci. Data, 12, 3039–3055, https://doi.org/10.5194/essd-12-3039-2020, 2020.
Westoby, M. J., Glasser, N. F., Brasington, J., Hambrey, M. J., Quincey, D. J.,
and Reynolds, J. M.: Modelling outburst floods from moraine-dammed glacial
lakes, Earth Sci. Rev., 134, 137–159,
https://doi.org/10.1016/j.earscirev.2014.03.009, 2014.
Wilcox, A. C., Wade, A. A., and Evans, E. G.: Drainage events from a
glacier-dammed lake, Bear Glacier, Alaska: Remote sensing and field
observations, Geomorphology, 220, 41–49,
https://doi.org/10.1016/j.geomorph.2014.05.025, 2014.
Worni, R., Stoffel, M., Huggel, C., Volz, C., Casteller, A., and Luckman,
B.: Analysis and dynamic modeling of a moraine failure and glacier lake
outburst flood at Ventisquero Negro, Patagonian Andes (Argentina), J.
Hydrol., 444–445, 134–145, https://doi.org/10.1016/j.jhydrol.2012.04.013,
2012.
Worni, R., Huggel, C., Clague, J. J., Schaub, Y., and Stoffel, M.: Coupling
glacial lake impact, dam breach, and flood processes: A modeling
perspective, Geomorphology, 224, 161–176,
https://doi.org/10.1016/j.geomorph.2014.06.031, 2014.
Xie, F., Liu, S., Gao, Y., Zhu, Y., Bolch, T., Kääb, A., Duan, S., Miao, W., Kang, J., Zhang, Y., Pan, X., Qin, C., Wu, K., Qi, M., Zhang, X., Yi, Y., Han, F., Yao, X., Liu, Q., Wang, X., Jiang, Z., Shangguan, D., Zhang, Y., Grünwald, R., Adnan, M., Karki, J., and Saifullah, M.: Interdecadal glacier inventories in the Karakoram since the 1990s, Earth Syst. Sci. Data, 15, 847–867, https://doi.org/10.5194/essd-15-847-2023, 2023.
Yamada, T. and Sharma, C.: Glacier lakes and outburst floods in the
Nepal Himalaya, in: Proceedings of the Kathmandu Symposium on Snow and Glacier Hydrology, Nepal, 16-21 November 1992, IAHS Publ. no. 218, 319–330, 1993.
Zaidi, R. Z. and Fordham, M.: The missing half of the Sendai framework:
Gender and women in the implementation of global disaster risk reduction
policy, Prog. Disaster Sci., 10, 100170,
https://doi.org/10.1016/j.pdisas.2021.100170, 2021.
Zhang, G., Yao, T., Xie, H., Wang, W., and Yang, W.: An inventory of glacial
lakes in the Third Pole region and their changes in response to global
warming, Global Planet. Change, 131, 148–157,
https://doi.org/10.1016/j.gloplacha.2015.05.013, 2015.
Zhang, M., Chen, F., Zhao, H., Wang, J., and Wang, N.: Recent Changes of
Glacial Lakes in the High Mountain Asia and Its Potential Controlling
Factors Analysis, Remote Sens., 13, 3757,
https://doi.org/10.3390/rs13183757, 2021.
Zhang, T., Wang, W., Gao, T., An, B., and Shang, X.: Glacial lake outburst
floods on the High Mountain Asia: a review, J. Glaciol. Geocryol., 43,
1673–1692, https://doi.org/10.7522/j.issn.1000-0240.2021.0066, 2021.
Zhang, T., Wang, W., An, B., Gao, T., and Yao, T.: Ice thickness and
morphological analysis reveal the future glacial lake distribution and
formation probability in the Tibetan Plateau and its surroundings, Global
Planet. Change, 216, 103923,
https://doi.org/10.1016/j.gloplacha.2022.103923, 2022a.
Zhang, T., Wang, W., Gao, T., An, B., and Yao, T.: An integrative method for
identifying potentially dangerous glacial lakes in the Himalayas, Sci. Total
Environ., 806, 150442, https://doi.org/10.1016/j.scitotenv.2021.150442,
2022b.
Zheng, G., Allen, S. K., Bao, A., Ballesteros-Cánovas, J. A., Huss, M.,
Zhang, G., Li, J., Yuan, Y., Jiang, L., Yu, T., Chen, W., and Stoffel, M.:
Increasing risk of glacial lake outburst floods from future Third Pole
deglaciation, Nat. Clim. Change, 11, 411–417,
https://doi.org/10.1038/s41558-021-01028-3, 2021a.
Zheng, G., Bao, A., Allen, S., Ballesteros-Canovas, J., Yuan, Y., and
Jiapaer, G.: Numerous unreported glacial lake outburst floods in the Third
Pole revealed by high-resolution satellite data and geomorphological
evidence, Sci. Bull., 66, 1270–1273, https://doi.org/10.1016/j.scib.2021.01.014, 2021b.
Zheng, G., Mergili, M., Emmer, A., Allen, S., Bao, A., Guo, H., and Stoffel, M.: The 2020 glacial lake outburst flood at Jinwuco, Tibet: causes, impacts, and implications for hazard and risk assessment, The Cryosphere, 15, 3159–3180, https://doi.org/10.5194/tc-15-3159-2021, 2021c.
Short summary
A new inventory of glacial lake outburst floods (GLOFs) in High Mountain Asia found 697 events, causing 906 deaths, 3 times more than previously reported. This study provides insights into the contributing factors behind GLOFs on a regional scale and highlights the need for interdisciplinary approaches, including scientific communities and local knowledge, to understand GLOF risks in Asia. This study allows integration with other datasets, enabling future local and regional risk assessments.
A new inventory of glacial lake outburst floods (GLOFs) in High Mountain Asia found 697 events,...
Altmetrics
Final-revised paper
Preprint