Articles | Volume 15, issue 9
https://doi.org/10.5194/essd-15-3891-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-3891-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying exchangeable base cations in permafrost: a reserve of nutrients about to thaw
Elisabeth Mauclet
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Maëlle Villani
CORRESPONDING AUTHOR
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Arthur Monhonval
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Catherine Hirst
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Edward A. G. Schuur
Center for Ecosystem Society and Science, Northern Arizona University,
Flagstaff, AZ, USA
Sophie Opfergelt
Earth and Life Institute, Université catholique de Louvain,
Louvain-la-Neuve, Belgium
Related authors
Elisabeth Mauclet, Yannick Agnan, Catherine Hirst, Arthur Monhonval, Benoît Pereira, Aubry Vandeuren, Maëlle Villani, Justin Ledman, Meghan Taylor, Briana L. Jasinski, Edward A. G. Schuur, and Sophie Opfergelt
Biogeosciences, 19, 2333–2351, https://doi.org/10.5194/bg-19-2333-2022, https://doi.org/10.5194/bg-19-2333-2022, 2022
Short summary
Short summary
Arctic warming and permafrost degradation largely affect tundra vegetation. Wetter lowlands show an increase in sedges, whereas drier uplands favor shrub expansion. Here, we demonstrate that the difference in the foliar elemental composition of typical tundra vegetation species controls the change in local foliar elemental stock and potential mineral element cycling through litter production upon a shift in tundra vegetation.
Arthur Monhonval, Sophie Opfergelt, Elisabeth Mauclet, Benoît Pereira, Aubry Vandeuren, Guido Grosse, Lutz Schirrmeister, Matthias Fuchs, Peter Kuhry, and Jens Strauss
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-359, https://doi.org/10.5194/essd-2020-359, 2020
Preprint withdrawn
Short summary
Short summary
With global warming, ice-rich permafrost soils expose organic carbon to microbial degradation and unlock mineral elements as well. Interactions between mineral elements and organic carbon may enhance or mitigate microbial degradation. Here, we provide a large scale ice-rich permafrost mineral concentrations assessment and estimates of mineral element stocks in those deposits. Si is the most abundant mineral element and Fe and Al are present in the same order of magnitude as organic carbon.
Cécile Osy, Sophie Opfergelt, Arsène Druel, and François Massonnet
EGUsphere, https://doi.org/10.5194/egusphere-2025-3680, https://doi.org/10.5194/egusphere-2025-3680, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
The refreezing period of the active layer (the layer on top of the permafrost that freezes and thaws each year) is changing, with a delay of about five days over a large area in Siberia from 1950 to 2020 in the ERA5-Land reanalysis data. We investigate the drivers of this delay, and find that 2 m air temperature is the main driver of these changes at the large scale, which contrasts with field results in which snow cover is the main driver of changes in refreezing dynamics.
Maxime Thomas, Thomas Moenaert, Julien Radoux, Baptiste Delhez, Eléonore du Bois d'Aische, Maëlle Villani, Catherine Hirst, Erik Lundin, François Jonard, Sébastien Lambot, Kristof Van Oost, Veerle Vanacker, Matthias B. Siewert, Carl-Magnus Mörth, Michael W. Palace, Ruth K. Varner, Franklin B. Sullivan, Christina Herrick, and Sophie Opfergelt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3788, https://doi.org/10.5194/egusphere-2025-3788, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study examines the rate of permafrost degradation, in the form of the transition from intact well-drained palsa to fully thawed and inundated fen at the Stordalen mire, Abisko, Sweden. Across the 14 hectares of the palsa mire, we demonstrate a 5-fold acceleration of the degradation in 2019–2021 compared to previous periods (1970–2014) which might lead to a pool of 12 metric tons of organic carbon exposed annually for the topsoil (23 cm depth), and an increase of ~1.3%/year of GHG emissions.
Maxime Thomas, Julien Fouché, Hugues Titeux, Charlotte Morelle, Nathan Bemelmans, Melissa J. Lafrenière, Joanne K. Heslop, and Sophie Opfergelt
EGUsphere, https://doi.org/10.5194/egusphere-2025-3428, https://doi.org/10.5194/egusphere-2025-3428, 2025
This preprint is open for discussion and under review for SOIL (SOIL).
Short summary
Short summary
This study examines organic carbon (OC)–mineral interactions in permafrost soils undergoing thermokarst degradation in Cape Bounty (Melville Island, Canada). Chemically stabilized OC accounts for 13 ± 5 % as organo-metallic complexes and 6 ± 2 % as associations with iron oxides. Including physical protection, up to 64 ± 10 % of OC is mineral-protected. Deeper layers show a sharp decline in mineral-bound OC, suggesting increased vulnerability to degradation when exposed by deep thaw features.
Judith Vogt, Martijn M. T. A. Pallandt, Luana S. Basso, Abdullah Bolek, Kseniia Ivanova, Mark Schlutow, Gerardo Celis, McKenzie Kuhn, Marguerite Mauritz, Edward A. G. Schuur, Kyle Arndt, Anna-Maria Virkkala, Isabel Wargowsky, and Mathias Göckede
Earth Syst. Sci. Data, 17, 2553–2573, https://doi.org/10.5194/essd-17-2553-2025, https://doi.org/10.5194/essd-17-2553-2025, 2025
Short summary
Short summary
We present a meta-dataset of greenhouse gas observations in the Arctic and boreal regions, including information on sites where greenhouse gases have been measured using different measurement techniques. We provide a novel repository of metadata to facilitate synthesis efforts for regions undergoing rapid environmental change. The meta-dataset shows where measurements are missing and will be updated as new measurements are published.
Yanfei Li, Maud Henrion, Angus Moore, Sébastien Lambot, Sophie Opfergelt, Veerle Vanacker, François Jonard, and Kristof Van Oost
EGUsphere, https://doi.org/10.5194/egusphere-2025-1595, https://doi.org/10.5194/egusphere-2025-1595, 2025
Short summary
Short summary
Combining Unmanned Aerial Vehicle (UAV) remote sensing with in-situ monitoring provides high spatial-temporal insights into CO2 fluxes from temperate peatlands. Dynamic factors (soil temperature and moisture) are the primary drivers contributing to 29% of the spatial and 43% of the seasonal variation. UAVs are effective tools for mapping daily soil respiration. CO2 fluxes from hot spots & moments contribute 20% and 30% of total CO2 fluxes, despite representing only 10% of the area and time.
Fred Worrall, Gareth Clay, Catherine Moody, and Catherine Hirst
EGUsphere, https://doi.org/10.5194/egusphere-2025-1469, https://doi.org/10.5194/egusphere-2025-1469, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Understanding global carbon budgets requires a knowledge of the balance between carbon dioxide and oxygen gas fluxes – oxidative ratio (OR). The OR has proved difficult to measure for terrestrial environments. We present a novel method for measuring OR using an ecosystem's carbon budget and organic matter elemental composition. We found an OR of 0.88, significantly lower than the IPCC's assumed 1.1. This lower OR value implies that terrestrial biosphere carbon budgets have been underestimated.
Bennet Juhls, Anne Morgenstern, Jens Hölemann, Antje Eulenburg, Birgit Heim, Frederieke Miesner, Hendrik Grotheer, Gesine Mollenhauer, Hanno Meyer, Ephraim Erkens, Felica Yara Gehde, Sofia Antonova, Sergey Chalov, Maria Tereshina, Oxana Erina, Evgeniya Fingert, Ekaterina Abramova, Tina Sanders, Liudmila Lebedeva, Nikolai Torgovkin, Georgii Maksimov, Vasily Povazhnyi, Rafael Gonçalves-Araujo, Urban Wünsch, Antonina Chetverova, Sophie Opfergelt, and Pier Paul Overduin
Earth Syst. Sci. Data, 17, 1–28, https://doi.org/10.5194/essd-17-1-2025, https://doi.org/10.5194/essd-17-1-2025, 2025
Short summary
Short summary
The Siberian Arctic is warming fast: permafrost is thawing, river chemistry is changing, and coastal ecosystems are affected. We aimed to understand changes in the Lena River, a major Arctic river flowing to the Arctic Ocean, by collecting 4.5 years of detailed water data, including temperature and carbon and nutrient contents. This dataset records current conditions and helps us to detect future changes. Explore it at https://doi.org/10.1594/PANGAEA.913197 and https://lena-monitoring.awi.de/.
Elisabeth Mauclet, Yannick Agnan, Catherine Hirst, Arthur Monhonval, Benoît Pereira, Aubry Vandeuren, Maëlle Villani, Justin Ledman, Meghan Taylor, Briana L. Jasinski, Edward A. G. Schuur, and Sophie Opfergelt
Biogeosciences, 19, 2333–2351, https://doi.org/10.5194/bg-19-2333-2022, https://doi.org/10.5194/bg-19-2333-2022, 2022
Short summary
Short summary
Arctic warming and permafrost degradation largely affect tundra vegetation. Wetter lowlands show an increase in sedges, whereas drier uplands favor shrub expansion. Here, we demonstrate that the difference in the foliar elemental composition of typical tundra vegetation species controls the change in local foliar elemental stock and potential mineral element cycling through litter production upon a shift in tundra vegetation.
Sarah E. Chadburn, Eleanor J. Burke, Angela V. Gallego-Sala, Noah D. Smith, M. Syndonia Bret-Harte, Dan J. Charman, Julia Drewer, Colin W. Edgar, Eugenie S. Euskirchen, Krzysztof Fortuniak, Yao Gao, Mahdi Nakhavali, Włodzimierz Pawlak, Edward A. G. Schuur, and Sebastian Westermann
Geosci. Model Dev., 15, 1633–1657, https://doi.org/10.5194/gmd-15-1633-2022, https://doi.org/10.5194/gmd-15-1633-2022, 2022
Short summary
Short summary
We present a new method to include peatlands in an Earth system model (ESM). Peatlands store huge amounts of carbon that accumulates very slowly but that can be rapidly destabilised, emitting greenhouse gases. Our model captures the dynamic nature of peat by simulating the change in surface height and physical properties of the soil as carbon is added or decomposed. Thus, we model, for the first time in an ESM, peat dynamics and its threshold behaviours that can lead to destabilisation.
Martijn M. T. A. Pallandt, Jitendra Kumar, Marguerite Mauritz, Edward A. G. Schuur, Anna-Maria Virkkala, Gerardo Celis, Forrest M. Hoffman, and Mathias Göckede
Biogeosciences, 19, 559–583, https://doi.org/10.5194/bg-19-559-2022, https://doi.org/10.5194/bg-19-559-2022, 2022
Short summary
Short summary
Thawing of Arctic permafrost soils could trigger the release of vast amounts of carbon to the atmosphere, thus enhancing climate change. Our study investigated how well the current network of eddy covariance sites to monitor greenhouse gas exchange at local scales captures pan-Arctic flux patterns. We identified large coverage gaps, e.g., in Siberia, but also demonstrated that a targeted addition of relatively few sites can significantly improve network performance.
Anna-Maria Virkkala, Susan M. Natali, Brendan M. Rogers, Jennifer D. Watts, Kathleen Savage, Sara June Connon, Marguerite Mauritz, Edward A. G. Schuur, Darcy Peter, Christina Minions, Julia Nojeim, Roisin Commane, Craig A. Emmerton, Mathias Goeckede, Manuel Helbig, David Holl, Hiroki Iwata, Hideki Kobayashi, Pasi Kolari, Efrén López-Blanco, Maija E. Marushchak, Mikhail Mastepanov, Lutz Merbold, Frans-Jan W. Parmentier, Matthias Peichl, Torsten Sachs, Oliver Sonnentag, Masahito Ueyama, Carolina Voigt, Mika Aurela, Julia Boike, Gerardo Celis, Namyi Chae, Torben R. Christensen, M. Syndonia Bret-Harte, Sigrid Dengel, Han Dolman, Colin W. Edgar, Bo Elberling, Eugenie Euskirchen, Achim Grelle, Juha Hatakka, Elyn Humphreys, Järvi Järveoja, Ayumi Kotani, Lars Kutzbach, Tuomas Laurila, Annalea Lohila, Ivan Mammarella, Yojiro Matsuura, Gesa Meyer, Mats B. Nilsson, Steven F. Oberbauer, Sang-Jong Park, Roman Petrov, Anatoly S. Prokushkin, Christopher Schulze, Vincent L. St. Louis, Eeva-Stiina Tuittila, Juha-Pekka Tuovinen, William Quinton, Andrej Varlagin, Donatella Zona, and Viacheslav I. Zyryanov
Earth Syst. Sci. Data, 14, 179–208, https://doi.org/10.5194/essd-14-179-2022, https://doi.org/10.5194/essd-14-179-2022, 2022
Short summary
Short summary
The effects of climate warming on carbon cycling across the Arctic–boreal zone (ABZ) remain poorly understood due to the relatively limited distribution of ABZ flux sites. Fortunately, this flux network is constantly increasing, but new measurements are published in various platforms, making it challenging to understand the ABZ carbon cycle as a whole. Here, we compiled a new database of Arctic–boreal CO2 fluxes to help facilitate large-scale assessments of the ABZ carbon cycle.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Petra Zahajská, Carolina Olid, Johanna Stadmark, Sherilyn C. Fritz, Sophie Opfergelt, and Daniel J. Conley
Biogeosciences, 18, 2325–2345, https://doi.org/10.5194/bg-18-2325-2021, https://doi.org/10.5194/bg-18-2325-2021, 2021
Short summary
Short summary
The drivers of high accumulation of single-cell siliceous algae (diatoms) in a high-latitude lake have not been fully characterized before. We studied silicon cycling of the lake through water, radon, silicon, and stable silicon isotope balances. Results showed that groundwater brings 3 times more water and dissolved silica than the stream inlet. We demonstrate that groundwater discharge and low sediment deposition have driven the high diatom accumulation in the studied lake in the past century.
Arthur Monhonval, Sophie Opfergelt, Elisabeth Mauclet, Benoît Pereira, Aubry Vandeuren, Guido Grosse, Lutz Schirrmeister, Matthias Fuchs, Peter Kuhry, and Jens Strauss
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-359, https://doi.org/10.5194/essd-2020-359, 2020
Preprint withdrawn
Short summary
Short summary
With global warming, ice-rich permafrost soils expose organic carbon to microbial degradation and unlock mineral elements as well. Interactions between mineral elements and organic carbon may enhance or mitigate microbial degradation. Here, we provide a large scale ice-rich permafrost mineral concentrations assessment and estimates of mineral element stocks in those deposits. Si is the most abundant mineral element and Fe and Al are present in the same order of magnitude as organic carbon.
Cited articles
Adams, W. A.: The effect of organic matter on the bulk and true densities of
some uncultivated podzolic soils, J. Soil Sci., 24, 10–17,
https://doi.org/10.1111/j.1365-2389.1973.tb00737.x, 1973.
Askin, T. and Özdemir, N.: Soil bulk density as related to soil particle size distribution and organic matter content, Poljoprivreda/Agriculture, 9, 52–55, 2003.
Beermann, F., Langer, M., Wetterich, S., Strauss, J., Boike, J., Fiencke,
C., Schirrmeister, L., Pfeiffer, E.-M., and Kutzbach, L.: Permafrost Thaw
and Liberation of Inorganic Nitrogen in Eastern Siberia: Permafrost thaw and
nitrogen release, Permafrost Periglac., 28, 605–618,
https://doi.org/10.1002/ppp.1958, 2017.
Beery, M. and Wilding, L. P.: The relationship between soil pH and
base-saturation percentage for surface and subsoil horizons of selected
Mollisols, Alfisols, and Ultisols in Ohio, Ohio J. Sci., 71, 43–55, 1971.
Bigorre, F., Tessier, D., and Pédro, G.: Contribution des argiles et des
matières organiques: la retention de I'eau dans les sols. Signification
et rôle fondamental de la capacite d'échange en cations, Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 330,
245–250, https://doi.org/10.1016/S1251-8050(00)00136-1, 2000.
Binkley, D. and Vitousek, P.: Soil nutrient availability, in: Plant
Physiological Ecology, edited by: Pearcy, R. W., Ehleringer, J. R., Mooney,
H. A., and Rundel, P. W., Springer Netherlands, Dordrecht, 75–96,
https://doi.org/10.1007/978-94-009-2221-1_5, 1989.
Binkley, D., Valentine, D., Wells, C., and Valentine, U.: An empirical
analysis of the factors contributing to 20-year decrease in soil pH in an
old-field plantation of loblolly pine, Biogeochemistry, 8, 39–54,
https://doi.org/10.1007/BF02180166, 1989.
Blume-Werry, G., Milbau, A., Teuber, L. M., Johansson, M., and Dorrepaal,
E.: Dwelling in the deep – strongly increased root growth and rooting depth
enhance plant interactions with thawing permafrost soil, New Phytol., 223,
1328–1339, https://doi.org/10.1111/nph.15903, 2019.
Bockheim, J. G. and Hinkel, K. M.: The Importance of “Deep” Organic Carbon
in Permafrost-Affected Soils of Arctic Alaska, Soil Sci. Soc. Am. J., 71,
1889–1892, https://doi.org/10.2136/sssaj2007.0070N, 2007.
Bowman, W. D., Cleveland, C. C., Halada, Ĺ., Hreško, J., and Baron,
J. S.: Negative impact of nitrogen deposition on soil buffering capacity,
Nat. Geosci., 1, 767–770, https://doi.org/10.1038/ngeo339, 2008.
Chao, T. T. and Sanzolone, R. F.: Decomposition techniques,
J. Geochem. Explor., 44, 65–106, 1992.
Chapin, F. S., van Cleve, K., and Chapin, M. C.: Soil temperature and
nutrient cycling in the tussock growth form of Eriophorum vaginatum,
J. Ecol., 67, 169–189, https://doi.org/10.2307/2259343, 1979.
Chapin, F. S., Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J., and
Laundre, J. A.: Responses of Arctic tundra to experimental and observed
changes in climate, Ecology, 76, 694–711, https://doi.org/10.2307/1939337, 1995.
Chaudhari, P. R., Ahire, D. V., Ahire, V. D., Chkravarty, M., and Maity, S.:
Soil Bulk Density as related to soil texture, organic matter content and
available total nutrients of coimbatore soil, International Journal of Scientific and Research Publications, 3, 1–8, 2013.
Christensen, T. R., Jonasson, S., Callaghan, T. V., and Havström, M.: On
the potential CO2 release from tundra soils in a changing climate, Appl.
Soil Ecol., 11, 127–134, https://doi.org/10.1016/S0929-1393(98)00146-2,
1999.
Deane-Coe, K. K., Mauritz, M., Celis, G., Salmon, V., Crummer, K. G.,
Natali, S. M., and Schuur, E. A. G.: Experimental warming alters
productivity and isotopic signatures of tundra mosses, Ecosystems, 18,
1070–1082, https://doi.org/10.1007/s10021-015-9884-7, 2015.
Decharme, B., Brun, E., Boone, A., Delire, C., Le Moigne, P., and Morin, S.: Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model, The Cryosphere, 10, 853–877, https://doi.org/10.5194/tc-10-853-2016, 2016.
Doran, J. W. and Safley, M.: Defining and assessing soil health and
sustainable productivity, in: Biological Indicators of Soil Health, CAB
International, New-York, 1997.
Farouki, O. T.: The thermal properties of soils in cold regions, Cold
Reg. Sci. Technol., 5, 67–75,
https://doi.org/10.1016/0165-232X(81)90041-0, 1981.
Feller, C., Albrecht, A., and Tessier, D.: Aggregation and organic matter
storage in kaolinitic and smectitic tropical soils, in: Advances in Soil
Science: Structure and organic matter storage in agicultural soils, Lewis
Publishers: Boca Raton, 309–352, 1991.
Fisher, J. B., Sikka, M., Oechel, W. C., Huntzinger, D. N., Melton, J. R., Koven, C. D., Ahlström, A., Arain, M. A., Baker, I., Chen, J. M., Ciais, P., Davidson, C., Dietze, M., El-Masri, B., Hayes, D., Huntingford, C., Jain, A. K., Levy, P. E., Lomas, M. R., Poulter, B., Price, D., Sahoo, A. K., Schaefer, K., Tian, H., Tomelleri, E., Verbeeck, H., Viovy, N., Wania, R., Zeng, N., and Miller, C. E.: Carbon cycle uncertainty in the Alaskan Arctic, Biogeosciences, 11, 4271–4288, https://doi.org/10.5194/bg-11-4271-2014, 2014.
Flanagan, P. W. and Cleve, K. V.: Nutrient cycling in relation to
decomposition and organic-matter quality in taiga ecosystems, Can. J. Forest
Res., 13, 795–817, https://doi.org/10.1139/x83-110, 1983.
Garnello, A., Marchenko, S., Nicolsky, D., Romanovsky, V., Ledman, J.,
Celis, G., Schädel, C., Luo, Y., and Schuur, E. A. G.: Projecting
Permafrost Thaw of Sub-Arctic Tundra With a Thermodynamic Model Calibrated
to Site Measurements, J. Geophys. Res.-Biogeo., 126, e2020JG006218,
https://doi.org/10.1029/2020JG006218, 2021.
Giesler, R., Högberg, M., and Högberg, P.: Soil chemistry and plants
in fennoscandian boreal forest as exemplified by a local gradient, Ecology,
79, 119–137,
https://doi.org/10.1890/0012-9658(1998)079[0119:SCAPIF]2.0.CO;2, 1998.
Gough, L., Heather, B., and McLaren, J. R.: Effects of increased soil nutrients
on seed rain: a role for seed dispersal in the greening of the Arctic?,
Arct. Antarct. Alp. Res., 47.1, 27–34, 2015.
Havlin, J. L.: Fertility, in: Encyclopedia of Soils in the Environment,
Elsevier, 10–19, https://doi.org/10.1016/B0-12-348530-4/00228-9, 2005.
Heijmans, M. M. P. D., Magnússon, R. Í., Lara, M. J., Frost, G. V.,
Myers-Smith, I. H., van Huissteden, J., Jorgenson, M. T., Fedorov, A. N.,
Epstein, H. E., Lawrence, D. M., and Limpens, J.: Tundra vegetation change
and impacts on permafrost, Nat. Rev. Earth Environ., 3, 68–84,
https://doi.org/10.1038/s43017-021-00233-0, 2022.
Herbillon, A. J.: Chemical estimation of weatherable minerals present in the
diagnostic horizon of low activity clay soils, Proceedings of the 8th
International Classification Workshop: Classification, Characterization and
Utilization of Ultisols, Part 1, Rio de Janeiro, 12–23 May 1986, 39–48, 1986.
Herndon, E., AlBashaireh, A., Singer, D., Roy Chowdhury, T., Gu, B., and
Graham, D.: Influence of iron redox cycling on organo-mineral associations
in Arctic tundra soil, Geochim. Cosmochim. Ac., 207, 210–231,
https://doi.org/10.1016/j.gca.2017.02.034, 2017.
Hewitt, R. E., Taylor, D. L., Genet, H., McGuire, A. D., and Mack, M. C.:
Below-ground plant traits influence tundra plant acquisition of newly thawed
permafrost nitrogen, J. Ecol., 107, 950–962,
https://doi.org/10.1111/1365-2745.13062, 2019.
Hicks Pries, C. E., Schuur, E. A. G., and Crummer, K. G.: Holocene carbon
stocks and carbon accumulation rates altered in soils undergoing permafrost
thaw, Ecosystems, 15, 162–173, https://doi.org/10.1007/s10021-011-9500-4,
2012.
Hinzman, L. D., Kane, D. L., Yoshikawa, K., Carr, A., Bolton, W. R., and
Fraver, M.: Hydrological variations among watersheds with varying degrees of
permafrost, in: Proceedings of the Eighth International Conference on Permafrost, Lisse, the Netherlands, Abingdon, UK, Tokyo, Japan, 21–25 July 2003, AA Balkema Publishers, 21–25, 2003.
Hirst, C., Mauclet, E., Monhonval, A., Tihon, E., Ledman, J., Schuur, E. A.
G., and Opfergelt, S.: Seasonal Changes in Hydrology and Permafrost
Degradation Control Mineral Element-Bound DOC Transport From Permafrost
Soils to Streams, Global Biogeochem. Cy., 36, e2021GB007105,
https://doi.org/10.1029/2021GB007105, 2022.
Hobbie, S. E.: Effects of plant species on nutrient cycling, Trends
Ecol. Evol., 7, 336–339,
https://doi.org/10.1016/0169-5347(92)90126-V, 1992.
Hobbie, S. E. and Chapin, F. S.: An experimental test of limits to tree
establishment in Arctic tundra, J. Ecol., 86, 449–461,
https://doi.org/10.1046/j.1365-2745.1998.00278.x, 1998.
Hobbie, S. E., Nadelhoffer, K. J., and Högberg, P.: A synthesis: The
role of nutrients as constraints on carbon balances in boreal and arctic
regions, Plant Soil, 242, 163–170, 2002.
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014.
Iversen, C. M., Sloan, V. L., Sullivan, P. F., Euskirchen, E. S., McGuire,
A. D., Norby, R. J., Walker, A. P., Warren, J. M., and Wullschleger, S. D.:
The unseen iceberg: plant roots in arctic tundra, New Phytol., 205, 34–58,
https://doi.org/10.1111/nph.13003, 2015.
IUSS Working Group WRB: World Reference Base for Soil Resources 2014, update
2015 International soil classification system for naming soils and creating
legends for soil maps, World Soil Resources Reports, FAO, Rome, 2015.
Jasinski, B., Schuur, E., and Mack, Mi. C.:
Eight Mile Lake Research Watershed, Thaw Gradient: peak growing season
aboveground biomass 2017, Bonanza Creek LTER – University of Alaska Fairbanks, BNZ: 705,
https://doi.org/10.6073/pasta/40f9ae60d635e5aac0e562ee006d24e2, 2018.
Jobbágy, E. G. and Jackson, R. B.: The distribution of soil nutrients
with depth: global patterns and the imprint of plants, Biogeochemistry, 53, 51–77,
https://doi.org/10.1023/A:1010760720215, 2001.
Jorgenson, M. T. and Osterkamp, T. E.: Response of boreal ecosystems to
varying modes of permafrost degradation, Can. J. Forest
Res., 35, 2100–2111, 2005.
Kamprath, E. J. and Smyth, T. J.: LIMING, in: Encyclopedia of Soils in the
Environment, Elsevier, 350–358,
https://doi.org/10.1016/B0-12-348530-4/00225-3, 2005.
Kane, D. L., Hinzman, L. D., and Zarling, J. P.: Thermal response of the
active layer to climatic warming in a permafrost environment, Cold Reg.
Sci. Technol., 19, 111–122,
https://doi.org/10.1016/0165-232X(91)90002-X, 1991.
Keuper, F., Dorrepaal, E., van Bodegom, P. M., van Logtestijn, R.,
Venhuizen, G., van Hal, J., and Aerts, R.: Experimentally increased nutrient
availability at the permafrost thaw front selectively enhances biomass
production of deep-rooting subarctic peatland species, Glob. Change Biol., 23,
4257–4266, https://doi.org/10.1111/gcb.13804, 2017.
Keyser, A. R., Kimball, J. S., Nemani, R. R., and Running, S. W.: Simulating
the effects of climate change on the carbon balance of North American
high-latitude forests: c balanceof high-latitude forests, Glob. Change Biol., 6, 185–195,
https://doi.org/10.1046/j.1365-2486.2000.06020.x, 2000.
Koyama, A., Wallenstein, M. D., Simpson, R. T., and Moore, J. C.: Soil
bacterial community composition altered by increased nutrient availability
in Arctic tundra soils, Front. Microbiol., 5, 516,
https://doi.org/10.3389/fmicb.2014.00516, 2014.
Krull, E. S., Skjemstad, J. O., and Baldock, J. A.: Functions of Soil
Organic Matter and the Effect on Soil Properties, Report for GRDC, Project
CSO00029, Canberra: GRDC, 2004.
Lawrence, D. M. and Slater, A. G.: Incorporating organic soil into a global
climate model, Clim. Dynam., 30, 145–160,
https://doi.org/10.1007/s00382-007-0278-1, 2008.
Marschner, H. (Ed.): Marschner's mineral nutrition of higher plants, 3rd
ed., Elsevier/Academic Press, London; Waltham, MA, 651 pp., 2012.
Mauclet, E., Agnan, Y., Hirst, C., Monhonval, A., Pereira, B., Vandeuren, A., Villani, M., Ledman, J., Taylor, M., Jasinski, B. L., Schuur, E. A. G., and Opfergelt, S.: Changing sub-Arctic tundra vegetation upon permafrost degradation: impact on foliar mineral element cycling, Biogeosciences, 19, 2333–2351, https://doi.org/10.5194/bg-19-2333-2022, 2022a.
Mauclet, E., Villani, M., Monhonval, A., Hirst, C., Schuur, E. A. G.,
and Opfergelt, S.: Characterization of permafrost soil exchange properties and
quantification of stocks in soil exchangeable base cations, Open Data @
UCLouvain, https://doi.org/10.14428/DVN/FQVMEP, 2022b.
Mauclet, E., Hirst, C., Monhonval, A., Stevenson, E., Gérard, M.,
Villani, M., Dailly, H., Schuur, E. A. G., and Opfergelt, S.: Tracing
changes in base cation sources for Arctic tundra vegetation upon permafrost
thaw, Geoderma, 429, 116277, https://doi.org/10.1016/j.geoderma.2022.116277,
2023.
Metson, A. J.: Methods of chemical analysis for soil survey samples,
Soil Sci., 83, 245, 1956.
Michaelson, G. J., Ping, C. L., and Kimble, J. M.: Carbon Storage and
Distribution in Tundra Soils of Arctic Alaska, USA, Arct. Alp.
Res., 28, 414, https://doi.org/10.2307/1551852, 1996.
Monhonval, A., Strauss, J., Mauclet, E., Hirst, C., Bemelmans, N., Grosse,
G., Schirrmeister, L., Fuchs, M., and Opfergelt, S.: Iron Redistribution
Upon Thermokarst Processes in the Yedoma Domain, Front. Earth Sci., 9,
703339, https://doi.org/10.3389/feart.2021.703339, 2021.
Nadelhoffer, K. J., Giblin, A. E., Shaver, G. R., and Laundre, J. A.:
Effects of temperature and substrate quality on element mineralization in
six Arctic soils, Ecology, 72, 242–253, https://doi.org/10.2307/1938918, 1991.
Nadelhoffer, K. J., Giblin, A. E., Shaver, G. R., and Linkins, A. E.:
Microbial processes and plant nutrient availability in Arctic soils, in:
Arctic Ecosystems in a Changing Climate, Elsevier, 281–300,
https://doi.org/10.1016/B978-0-12-168250-7.50019-5, 1992.
Natali, S. M., Schuur, E. A. G., Trucco, C., Hicks Pries, C. E., Crummer, K.
G., and Baron Lopez, A. F.: Effects of experimental warming of air, soil and
permafrost on carbon balance in Alaskan tundra, Glob. Change Biol., 17, 1394–1407,
https://doi.org/10.1111/j.1365-2486.2010.02303.x, 2011.
Natali, S. M., Schuur, E. A. G., and Rubin, R. L.: Increased plant
productivity in Alaskan tundra as a result of experimental warming of soil
and permafrost: Increased plant productivity in Alaskan tundra, J. Ecol., 100,
488–498, https://doi.org/10.1111/j.1365-2745.2011.01925.x, 2012.
Oades, J. M., Gillman, G. P., and Uehara, G.: Interactions of soil organic
matter and variable-charge clays., in: Dynamics of soil organic matter in
tropical ecosystems, University of Hawaii Press: Honolulu, 69–95, 1989.
Olefeldt, D., Goswami, S., Grosse, G., Hayes, D., Hugelius, G., Kuhry, P.,
McGuire, A. D., Romanovsky, V. E., Sannel, A. B. K., Schuur, E. A. G., and
Turetsky, M. R.: Circumpolar distribution and carbon storage of thermokarst
landscapes, Nat. Commun., 7, 13043, https://doi.org/10.1038/ncomms13043, 2016.
Osterkamp, T.: The recent warming of permafrost in Alaska, Global
Planet. Change, 49, 187–202,
https://doi.org/10.1016/j.gloplacha.2005.09.001, 2005.
Osterkamp, T. E., Jorgenson, M. T., Schuur, E. a. G., Shur, Y. L.,
Kanevskiy, M. Z., Vogel, J. G., and Tumskoy, V. E.: Physical and ecological
changes associated with warming permafrost and thermokarst in Interior
Alaska, Permafrost Periglac., 20, 235–256, https://doi.org/10.1002/ppp.656, 2009.
Palmtag, J., Hugelius, G., Lashchinskiy, N., Tamstorf, M. P., Richter, A.,
Elberling, B., and Kuhry, P.: Storage, Landscape Distribution, and Burial
History of Soil Organic Matter in Contrasting Areas of Continuous
Permafrost, Arct. Antarct. Alp. Res., 47, 71–88,
https://doi.org/10.1657/AAAR0014-027, 2015.
Peech, M.: Hydrogen-Ion Activity, in: Agronomy Monographs, edited by:
Norman, A. G., American Society of Agronomy, Soil Science Society of
America, Madison, WI, USA, 914–926,
https://doi.org/10.2134/agronmonogr9.2.c9, 1965.
Périé, C. and Ouimet, R.: Organic carbon, organic matter and bulk
density relationships in boreal forest soils, Can. J. Soil Sci., 88,
315–325, https://doi.org/10.4141/CJSS06008, 2008.
Peverill, K. I., Sparrow, L. A., and Reuter, D. J.: Soil Analysis: An
Interpretation Manual, Csiro Publishing, Collingwood, 388 pp., 1999.
Ping, C. L., Bockheim, J. G., Kimble, J. M., Michaelson, G. J., and Walker,
D. A.: Characteristics of cryogenic soils along a latitudinal transect in
arctic Alaska, J. Geophys. Res., 103, 28917–28928,
https://doi.org/10.1029/98JD02024, 1998.
Ping, C. L., Michaelson, G. J., Kimble, J. M., Romanovsky, V. E., Shur, Y.
L., Swanson, D. K., and Walker, D. A.: Cryogenesis and soil formation along
a bioclimate gradient in Arctic North America, J. Geophys. Res., 113,
G03S12, https://doi.org/10.1029/2008JG000744, 2008.
Ping, C.-L., Michaelson, G. J., Kimble, J. M., and Walker, D. A.: Soil
acidity and exchange properties of cryogenic soils in Arctic Alaska, Soil Sci. Plant Nutr., 51, 649–653, 2005.
Plaza, C., Schuur, E. A. G., and Pegoraro, E. F.: Eight
Mile Lake Research Watershed, Carbon in Permafrost Experimental Heating
Research (CiPEHR): physical and chemical properties of soils, 2009–2013, Bonanza Creek LTER – University of Alaska Fairbanks, BNZ: 655,
https://doi.org/10.6073/pasta/f502d8fe1a2e1d6c6b035c198af04f3e, 2017.
Plaza, C., Pegoraro, E., Bracho, R., Celis, G., Crummer, K. G., Hutchings,
J. A., Hicks Pries, C. E., Mauritz, M., Natali, S. M., Salmon, V. G.,
Schädel, C., Webb, E. E., and Schuur, E. A. G.: Direct observation of
permafrost degradation and rapid soil carbon loss in tundra, Nat. Geosci.,
12, 627–631, https://doi.org/10.1038/s41561-019-0387-6, 2019.
Poszwa, A., Dambrine, E., Pollier, B., and Atteia, O.: A comparison between
Ca and Sr cycling in forest ecosystems, Plant aSoil,225, 229–310, https://doi.org/10.1023/A:1026570812307, 2000.
R Core Team. R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 16 May 2022), 2018.
Salmon, V. G., Soucy, P., Mauritz, M., Celis, G., Natali, S. M., Mack, M.
C., and Schuur, E. A. G.: Nitrogen availability increases in a tundra
ecosystem during five years of experimental permafrost thaw, Glob. Change
Biol., 22, 1927–1941, https://doi.org/10.1111/gcb.13204, 2016.
Schaefer, K., Zhang, T., Bruhwiler, L., and Barrett, A. P.: Amount and
timing of permafrost carbon release in response to climate warming: amount
and timing of permafrost carbon release, Tellus B, 63, 165–180,
https://doi.org/10.1111/j.1600-0889.2011.00527.x, 2011.
Schuur, E. A. G., Crummer, K. G., Vogel, J. G., and Mack, M. C.: Plant
species composition and productivity following permafrost thaw and
thermokarst in Alaskan tundra, Ecosystems, 10, 280–292,
https://doi.org/10.1007/s10021-007-9024-0, 2007.
Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C.
B., Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H.,
Mazhitova, G., Nelson, F. E., Rinke, A., Romanovsky, V. E., Shiklomanov, N.,
Tarnocai, C., Venevsky, S., Vogel, J. G., and Zimov, S. A.: Vulnerability of
permafrost carbon to climate change: implications for the global carbon
cycle, BioScience, 58, 701–714, https://doi.org/10.1641/B580807, 2008.
Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O., and
Osterkamp, T. E.: The effect of permafrost thaw on old carbon release and
net carbon exchange from tundra, Nature, 459, 556–559,
https://doi.org/10.1038/nature08031, 2009.
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J.
W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M.,
Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M.
R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon
feedback, Nature, 520, 171–179, https://doi.org/10.1038/nature14338, 2015.
Schuur, E. A. G., Bracho, R., Celis, G., Belshe, E. F., Ebert, C., Ledman,
J., Mauritz, M., Pegoraro, E. F., Plaza, C., Rodenhizer, H., Romanovsky, V.,
Schädel, C., Schirokauer, D., Taylor, M., Vogel, J. G., and Webb, E. E.:
Tundra Underlain By Thawing Permafrost Persistently Emits Carbon to the
Atmosphere Over 15 Years of Measurements, J. Geophys. Res.-Biogeo., 126, e2020JG006044,
https://doi.org/10.1029/2020JG006044, 2021.
Schuur, T., McGuire, A. D., Romanovsky, V. E., Schadel, C., and Mack, M.: Arctic and boreal carbon, The National Academies Press, https://doi.org/10.17226/25045, 2018.
Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J., Thieler, K. K., Downs, M.
R., Laundre, J. A., and Rastetter, E. B.: Carbon turnover in Alaskan tundra
soils: effects of organic matter quality, temperature, moisture and
fertilizer: Carbon turnover in tundra soils, J. Ecol., 94, 740–753,
https://doi.org/10.1111/j.1365-2745.2006.01139.x, 2006.
Shur, Y., Hinkel, K. M., and Nelson, F. E.: The transient layer:
implications for geocryology and climate-change science, Permafrost
Periglac. Process., 16, 5–17, https://doi.org/10.1002/ppp.518, 2005.
Sistla, S. A., Moore, J. C., Simpson, R. T., Gough, L., Shaver, G. R., and
Schimel, J. P.: Long-term warming restructures Arctic tundra without
changing net soil carbon storage, Nature, 497, 615–618,
https://doi.org/10.1038/nature12129, 2013.
Stevenson, F. J.: Humus Chemistry: Genesis, Composition, Reactions, 2nd ed.,
Wiley and Sons, New York, 1994.
Strauss, J., Schirrmeister, L., Grosse, G., Fortier, D., Hugelius, G., Knoblauch, C., Romanovsky, V., Schädel, C., Schneider von Deimling, T., Schuur, E. A. G., Shmelev, D., Ulrich, M., and Veremeeva, A.: Deep Yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability, Earth-Sci. Rev., 172, 75–86, https://doi.org/10.1016/j.earscirev.2017.07.007, 2017.
Sulman, B. N., Salmon, V. G., Iversen, C. M., Breen, A. L., Yuan, F., and
Thornton, P. E.: Integrating Arctic Plant Functional Types in a Land Surface
Model Using Above- and Belowground Field Observations, J. Adv. Model. Earth.
Sy., 13, e2020MS002396, https://doi.org/10.1029/2020MS002396, 2021.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G.,
and Zimov, S.: Soil organic carbon pools in the northern circumpolar
permafrost region, Global Biogeochem. Cy., 23, GB2023,
https://doi.org/10.1029/2008GB003327, 2009.
Thomas, J.: A study of factors controlling pH in Arctic tundra soils, UMEA
Universiteit, Sweden, 29 pp., https://urn.kb.se/resolve?urn=urn:nbn:se:polar:diva-8371 (last access: 31 August 2023), 2019.
Tian, D. and Niu, S.: A global analysis of soil acidification caused by
nitrogen addition, Environ. Res. Lett., 10, 024019,
https://doi.org/10.1088/1748-9326/10/2/024019, 2015.
Ulrich, B.: Soil Acidity and its Relations to Acid Deposition, in: Effects
of Accumulation of Air Pollutants in Forest Ecosystems, edited by: Ulrich,
B. and Pankrath, J., Springer Netherlands, Dordrecht, 127–146,
https://doi.org/10.1007/978-94-009-6983-4_10, 1983.
van der Kolk, H.-J., Heijmans, M. M. P. D., van Huissteden, J., Pullens, J. W. M., and Berendse, F.: Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw, Biogeosciences, 13, 6229–6245, https://doi.org/10.5194/bg-13-6229-2016, 2016.
Villani, M., Mauclet, E., Agnan, Y., Druel, A., Jasinski, B., Taylor, M.,
Schuur, E. A. G., and Opfergelt, S.: Mineral element recycling in topsoil
following permafrost degradation and a vegetation shift in sub-Arctic
tundra, Geoderma, 421, 115915,
https://doi.org/10.1016/j.geoderma.2022.115915, 2022.
Vogel, J., Schuur, E. A. G., Trucco, C., and Lee, H.: Response of CO2
exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst
development, J. Geophys. Res., 114, G04018,
https://doi.org/10.1029/2008JG000901, 2009.
Weil, R. R. and Brady, N. C.: The nature and properties of soils, Fifteenth
edition, Pearson, Columbus, 1086 pp., 2016.
Wilson, S. A.: Data compilation for USGS reference material BHVO-2, Hawaiian
Basalt, 1997.
Zimov, S. A., Schuur, E. A. G., and Chapin, F. S.: Permafrost and the Global
Carbon Budget, Science, 312, 1612–1613,
https://doi.org/10.1126/science.1128908, 2006.
Short summary
Permafrost ecosystems are limited in nutrients for vegetation development and constrain the biological activity to the active layer. Upon Arctic warming, permafrost degradation exposes organic and mineral soil material that may directly influence the capacity of the soil to retain key nutrients for vegetation growth and development. Here, we demonstrate that the average total exchangeable nutrient density (Ca, K, Mg, and Na) is more than 2 times higher in the permafrost than in the active layer.
Permafrost ecosystems are limited in nutrients for vegetation development and constrain the...
Altmetrics
Final-revised paper
Preprint