Articles | Volume 15, issue 3
https://doi.org/10.5194/essd-15-1437-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-15-1437-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Journals with open-discussion forums are excellent educational resources for peer review training exercises
Nadine Borduas-Dedekind
CORRESPONDING AUTHOR
Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
Karen C. Short
USDA Forest Service, Missoula Fire Sciences Laboratory, Missoula, Montana 59808, USA
Samuel P. Carlson
Department of Land Resources and Environmental Science, Montana State University, Bozeman, Montana 59717, USA
Related authors
Yuting Lyu, Yin Hau Lam, Yitao Li, Nadine Borduas-Dedekind, and Theodora Nah
Atmos. Chem. Phys., 23, 9245–9263, https://doi.org/10.5194/acp-23-9245-2023, https://doi.org/10.5194/acp-23-9245-2023, 2023
Short summary
Short summary
We measured singlet oxygen (1O2*) and triplet excited states of organic matter (3C*) in illuminated aqueous extracts of PM2.5 collected in different seasons at different sites in Hong Kong SAR, South China. In contrast to the locations, seasonality had significant effects on 3C* and 1O2* production due to seasonal variations in long-range air mass transport. The steady-state concentrations of 3C* and 1O2* correlated with the concentration and absorbance of water-soluble organic carbon.
Anna J. Miller, Killian P. Brennan, Claudia Mignani, Jörg Wieder, Robert O. David, and Nadine Borduas-Dedekind
Atmos. Meas. Tech., 14, 3131–3151, https://doi.org/10.5194/amt-14-3131-2021, https://doi.org/10.5194/amt-14-3131-2021, 2021
Short summary
Short summary
To characterize atmospheric ice nuclei, we present (1) the development of our home-built droplet freezing technique (DFT), which involves the Freezing Ice Nuclei Counter (FINC), (2) an intercomparison campaign using NX-illite and an ambient sample with two other DFTs, and (3) the application of lignin as a soluble and commercial ice nuclei standard with three DFTs. We further compiled the growing number of DFTs in use for atmospheric ice nucleation since 2000 and add FINC.
Sophie Bogler and Nadine Borduas-Dedekind
Atmos. Chem. Phys., 20, 14509–14522, https://doi.org/10.5194/acp-20-14509-2020, https://doi.org/10.5194/acp-20-14509-2020, 2020
Short summary
Short summary
To study the role of organic matter in ice crystal formation, we investigated the ice nucleation ability of a subcomponent of organic aerosols, the biopolymer lignin, using a droplet-freezing technique. We found that lignin is an ice-active macromolecule with changing abilities based on dilutions. The effects of atmospheric processing and of physicochemical treatments on the ability of lignin solutions to freeze were negligible. Thus, lignin is a recalcitrant ice-nucleating macromolecule.
Anna J. Miller, Killian P. Brennan, Claudia Mignani, Jörg Wieder, Assaf Zipori, Robert O. David, and Nadine Borduas-Dedekind
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-361, https://doi.org/10.5194/amt-2020-361, 2020
Preprint withdrawn
Short summary
Short summary
For characterizing atmospheric ice nuclei, we present (1) the development of our home-built droplet freezing technique (DFT), the Freezing Ice Nuclei Counter (FINC), (2) an intercomparison campaign using NX-illite and an ambient sample with three DFTs, and (3) the application of lignin as a soluble and commercial ice nuclei standard with four DFTs. We further compiled the growing number of DFTs in use for atmospheric ice nucleation since 2000, to which we add FINC.
Killian P. Brennan, Robert O. David, and Nadine Borduas-Dedekind
Atmos. Chem. Phys., 20, 163–180, https://doi.org/10.5194/acp-20-163-2020, https://doi.org/10.5194/acp-20-163-2020, 2020
Short summary
Short summary
To contribute to our understanding of the liquid water-to-ice ratio in mixed-phase clouds, this study provides a spatial and temporal dataset of ice-nucleating particle (INP) concentrations in meltwater of 88 snow samples across 17 locations in the Swiss Alps. The impact of altitude, terrain, time since last snowfall and depth on freezing temperatures was also investigated. The measured INP concentrations provide an estimate of cloud glaciation temperatures important for cloud lifetime.
Robert O. David, Maria Cascajo-Castresana, Killian P. Brennan, Michael Rösch, Nora Els, Julia Werz, Vera Weichlinger, Lin S. Boynton, Sophie Bogler, Nadine Borduas-Dedekind, Claudia Marcolli, and Zamin A. Kanji
Atmos. Meas. Tech., 12, 6865–6888, https://doi.org/10.5194/amt-12-6865-2019, https://doi.org/10.5194/amt-12-6865-2019, 2019
Short summary
Short summary
Here we present the development and applicability of the DRoplet Ice Nuclei Counter Zurich (DRINCZ). DRINCZ allows for ice nuclei in the immersion mode to be quantified between 0 and -25 °C with an uncertainty of ±0.9 °C. Furthermore, we present a new method for assessing biases in drop-freezing apparatuses and cumulative ice-nucleating-particle concentrations from snow samples collected in the Austrian Alps at the Sonnblick Observatory.
Nadine Borduas-Dedekind, Rachele Ossola, Robert O. David, Lin S. Boynton, Vera Weichlinger, Zamin A. Kanji, and Kristopher McNeill
Atmos. Chem. Phys., 19, 12397–12412, https://doi.org/10.5194/acp-19-12397-2019, https://doi.org/10.5194/acp-19-12397-2019, 2019
Short summary
Short summary
During atmospheric transport, dissolved organic matter (DOM) within aqueous aerosols undergoes photochemistry. We find that photochemical processing of DOM increases its ability to form cloud droplets but decreases its ability to form ice crystals over a simulated 4.6 days in the atmosphere. A photomineralization mechanism involving the loss of organic carbon and the production of organic acids, CO and CO2 explains the observed changes and affects the liquid-water-to-ice ratio in clouds.
Tracey Leah Laban, Pieter Gideon van Zyl, Johan Paul Beukes, Ville Vakkari, Kerneels Jaars, Nadine Borduas-Dedekind, Miroslav Josipovic, Anne Mee Thompson, Markku Kulmala, and Lauri Laakso
Atmos. Chem. Phys., 18, 15491–15514, https://doi.org/10.5194/acp-18-15491-2018, https://doi.org/10.5194/acp-18-15491-2018, 2018
Short summary
Short summary
Surface O3 was measured at four sites in the north-eastern interior of South Africa, which revealed that O3 is a regional problem in continental South Africa, with elevated O3 levels found at rural background and industrial sites. Increased O3 concentrations were associated with high CO levels predominantly related to regional biomass burning, while the O3 production regime was established to be predominantly VOC limited. Increased O3 is associated with strong seasonality of precursor sources.
N. Borduas, B. Place, G. R. Wentworth, J. P. D. Abbatt, and J. G. Murphy
Atmos. Chem. Phys., 16, 703–714, https://doi.org/10.5194/acp-16-703-2016, https://doi.org/10.5194/acp-16-703-2016, 2016
Short summary
Short summary
HNCO is a toxic molecule and can cause cardiovascular and cataract problems through protein carbamylation once inhaled. Recently reported ambient measurements of HNCO in North America raise concerns for human exposure. To better understand HNCO's loss processes and behaviour in the atmosphere, we provide thermochemical data on HNCO. The parameters allow for more accurate predictions of its lifetime in the atmosphere and consequently help define exposure of this toxic molecule.
Yavar Pourmohamad, John T. Abatzoglou, Erin J. Belval, Erica Fleishman, Karen Short, Matthew C. Reeves, Nicholas Nauslar, Philip E. Higuera, Eric Henderson, Sawyer Ball, Amir AghaKouchak, Jeffrey P. Prestemon, Julia Olszewski, and Mojtaba Sadegh
Earth Syst. Sci. Data, 16, 3045–3060, https://doi.org/10.5194/essd-16-3045-2024, https://doi.org/10.5194/essd-16-3045-2024, 2024
Short summary
Short summary
The FPA FOD-Attributes dataset provides > 300 biological, physical, social, and administrative attributes associated with > 2.3×106 wildfire incidents across the US from 1992 to 2020. The dataset can be used to (1) answer numerous questions about the covariates associated with human- and lightning-caused wildfires and (2) support descriptive, diagnostic, predictive, and prescriptive wildfire analytics, including the development of machine learning models.
Yuting Lyu, Yin Hau Lam, Yitao Li, Nadine Borduas-Dedekind, and Theodora Nah
Atmos. Chem. Phys., 23, 9245–9263, https://doi.org/10.5194/acp-23-9245-2023, https://doi.org/10.5194/acp-23-9245-2023, 2023
Short summary
Short summary
We measured singlet oxygen (1O2*) and triplet excited states of organic matter (3C*) in illuminated aqueous extracts of PM2.5 collected in different seasons at different sites in Hong Kong SAR, South China. In contrast to the locations, seasonality had significant effects on 3C* and 1O2* production due to seasonal variations in long-range air mass transport. The steady-state concentrations of 3C* and 1O2* correlated with the concentration and absorbance of water-soluble organic carbon.
Anna J. Miller, Killian P. Brennan, Claudia Mignani, Jörg Wieder, Robert O. David, and Nadine Borduas-Dedekind
Atmos. Meas. Tech., 14, 3131–3151, https://doi.org/10.5194/amt-14-3131-2021, https://doi.org/10.5194/amt-14-3131-2021, 2021
Short summary
Short summary
To characterize atmospheric ice nuclei, we present (1) the development of our home-built droplet freezing technique (DFT), which involves the Freezing Ice Nuclei Counter (FINC), (2) an intercomparison campaign using NX-illite and an ambient sample with two other DFTs, and (3) the application of lignin as a soluble and commercial ice nuclei standard with three DFTs. We further compiled the growing number of DFTs in use for atmospheric ice nucleation since 2000 and add FINC.
Sophie Bogler and Nadine Borduas-Dedekind
Atmos. Chem. Phys., 20, 14509–14522, https://doi.org/10.5194/acp-20-14509-2020, https://doi.org/10.5194/acp-20-14509-2020, 2020
Short summary
Short summary
To study the role of organic matter in ice crystal formation, we investigated the ice nucleation ability of a subcomponent of organic aerosols, the biopolymer lignin, using a droplet-freezing technique. We found that lignin is an ice-active macromolecule with changing abilities based on dilutions. The effects of atmospheric processing and of physicochemical treatments on the ability of lignin solutions to freeze were negligible. Thus, lignin is a recalcitrant ice-nucleating macromolecule.
Anna J. Miller, Killian P. Brennan, Claudia Mignani, Jörg Wieder, Assaf Zipori, Robert O. David, and Nadine Borduas-Dedekind
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-361, https://doi.org/10.5194/amt-2020-361, 2020
Preprint withdrawn
Short summary
Short summary
For characterizing atmospheric ice nuclei, we present (1) the development of our home-built droplet freezing technique (DFT), the Freezing Ice Nuclei Counter (FINC), (2) an intercomparison campaign using NX-illite and an ambient sample with three DFTs, and (3) the application of lignin as a soluble and commercial ice nuclei standard with four DFTs. We further compiled the growing number of DFTs in use for atmospheric ice nucleation since 2000, to which we add FINC.
Killian P. Brennan, Robert O. David, and Nadine Borduas-Dedekind
Atmos. Chem. Phys., 20, 163–180, https://doi.org/10.5194/acp-20-163-2020, https://doi.org/10.5194/acp-20-163-2020, 2020
Short summary
Short summary
To contribute to our understanding of the liquid water-to-ice ratio in mixed-phase clouds, this study provides a spatial and temporal dataset of ice-nucleating particle (INP) concentrations in meltwater of 88 snow samples across 17 locations in the Swiss Alps. The impact of altitude, terrain, time since last snowfall and depth on freezing temperatures was also investigated. The measured INP concentrations provide an estimate of cloud glaciation temperatures important for cloud lifetime.
Robert O. David, Maria Cascajo-Castresana, Killian P. Brennan, Michael Rösch, Nora Els, Julia Werz, Vera Weichlinger, Lin S. Boynton, Sophie Bogler, Nadine Borduas-Dedekind, Claudia Marcolli, and Zamin A. Kanji
Atmos. Meas. Tech., 12, 6865–6888, https://doi.org/10.5194/amt-12-6865-2019, https://doi.org/10.5194/amt-12-6865-2019, 2019
Short summary
Short summary
Here we present the development and applicability of the DRoplet Ice Nuclei Counter Zurich (DRINCZ). DRINCZ allows for ice nuclei in the immersion mode to be quantified between 0 and -25 °C with an uncertainty of ±0.9 °C. Furthermore, we present a new method for assessing biases in drop-freezing apparatuses and cumulative ice-nucleating-particle concentrations from snow samples collected in the Austrian Alps at the Sonnblick Observatory.
Nadine Borduas-Dedekind, Rachele Ossola, Robert O. David, Lin S. Boynton, Vera Weichlinger, Zamin A. Kanji, and Kristopher McNeill
Atmos. Chem. Phys., 19, 12397–12412, https://doi.org/10.5194/acp-19-12397-2019, https://doi.org/10.5194/acp-19-12397-2019, 2019
Short summary
Short summary
During atmospheric transport, dissolved organic matter (DOM) within aqueous aerosols undergoes photochemistry. We find that photochemical processing of DOM increases its ability to form cloud droplets but decreases its ability to form ice crystals over a simulated 4.6 days in the atmosphere. A photomineralization mechanism involving the loss of organic carbon and the production of organic acids, CO and CO2 explains the observed changes and affects the liquid-water-to-ice ratio in clouds.
Tracey Leah Laban, Pieter Gideon van Zyl, Johan Paul Beukes, Ville Vakkari, Kerneels Jaars, Nadine Borduas-Dedekind, Miroslav Josipovic, Anne Mee Thompson, Markku Kulmala, and Lauri Laakso
Atmos. Chem. Phys., 18, 15491–15514, https://doi.org/10.5194/acp-18-15491-2018, https://doi.org/10.5194/acp-18-15491-2018, 2018
Short summary
Short summary
Surface O3 was measured at four sites in the north-eastern interior of South Africa, which revealed that O3 is a regional problem in continental South Africa, with elevated O3 levels found at rural background and industrial sites. Increased O3 concentrations were associated with high CO levels predominantly related to regional biomass burning, while the O3 production regime was established to be predominantly VOC limited. Increased O3 is associated with strong seasonality of precursor sources.
N. Borduas, B. Place, G. R. Wentworth, J. P. D. Abbatt, and J. G. Murphy
Atmos. Chem. Phys., 16, 703–714, https://doi.org/10.5194/acp-16-703-2016, https://doi.org/10.5194/acp-16-703-2016, 2016
Short summary
Short summary
HNCO is a toxic molecule and can cause cardiovascular and cataract problems through protein carbamylation once inhaled. Recently reported ambient measurements of HNCO in North America raise concerns for human exposure. To better understand HNCO's loss processes and behaviour in the atmosphere, we provide thermochemical data on HNCO. The parameters allow for more accurate predictions of its lifetime in the atmosphere and consequently help define exposure of this toxic molecule.
Related subject area
Domain: ESSD – Global | Subject: Energy and Emissions
A global forest burn severity dataset from Landsat imagery (2003–2016)
A global surface CO2 flux dataset (2015–2022) inferred from OCO-2 retrievals using the GONGGA inversion system
Insights into the spatial distribution of global, national, and subnational greenhouse gas emissions in the Emissions Database for Global Atmospheric Research (EDGAR v8.0)
Estimating the uncertainty of the greenhouse gas emission accounts in global multi-regional input–output analysis
A consistent dataset for the net income distribution for 190 countries and aggregated to 32 geographical regions from 1958 to 2015
Temporal and spatial mapping of theoretical biomass potential across the European Union
Enhanced dataset of global marine isoprene emissions from biogenic and photochemical processes for the period 2001–2020
Quantifying greenhouse gas emissions from wood fuel use by households
Heat stored in the Earth system 1960–2020: where does the energy go?
Energy-related CO2 emission accounts and datasets for 40 emerging economies in 2010–2019
Natural gas supply from Russia derived from daily pipeline flow data and potential solutions for filling a shortage of Russian supply in the European Union (EU)
Global datasets of leaf photosynthetic capacity for ecological and earth system research
Kang He, Xinyi Shen, and Emmanouil N. Anagnostou
Earth Syst. Sci. Data, 16, 3061–3081, https://doi.org/10.5194/essd-16-3061-2024, https://doi.org/10.5194/essd-16-3061-2024, 2024
Short summary
Short summary
Forest fire risk is expected to increase as fire weather and drought conditions intensify. To improve quantification of the intensity and extent of forest fire damage, we have developed a global forest burn severity (GFBS) database that provides burn severity spectral indices (dNBR and RdNBR) at a 30 m spatial resolution. This database could be more reliable than prior sources of information for future studies of forest burn severity on the global scale in a computationally cost-effective way.
Zhe Jin, Xiangjun Tian, Yilong Wang, Hongqin Zhang, Min Zhao, Tao Wang, Jinzhi Ding, and Shilong Piao
Earth Syst. Sci. Data, 16, 2857–2876, https://doi.org/10.5194/essd-16-2857-2024, https://doi.org/10.5194/essd-16-2857-2024, 2024
Short summary
Short summary
An accurate estimate of spatial distribution and temporal evolution of CO2 fluxes is a critical foundation for providing information regarding global carbon cycle and climate mitigation. Here, we present a global carbon flux dataset for 2015–2022, derived by assimilating satellite CO2 observations into the GONGGA inversion system. This dataset will help improve the broader understanding of global carbon cycle dynamics and their response to climate change.
Monica Crippa, Diego Guizzardi, Federico Pagani, Marcello Schiavina, Michele Melchiorri, Enrico Pisoni, Francesco Graziosi, Marilena Muntean, Joachim Maes, Lewis Dijkstra, Martin Van Damme, Lieven Clarisse, and Pierre Coheur
Earth Syst. Sci. Data, 16, 2811–2830, https://doi.org/10.5194/essd-16-2811-2024, https://doi.org/10.5194/essd-16-2811-2024, 2024
Short summary
Short summary
Knowing where emissions occur is essential for planning effective emission reduction measures and atmospheric modelling. Disaggregating national emissions over high-resolution grids requires spatial proxies that contain information on the location of different emission sources. This work incorporates state-of-the-art spatial information to improve the spatial representation of global emissions with the Emissions Database for Global Atmospheric Research (EDGAR).
Simon Schulte, Arthur Jakobs, and Stefan Pauliuk
Earth Syst. Sci. Data, 16, 2669–2700, https://doi.org/10.5194/essd-16-2669-2024, https://doi.org/10.5194/essd-16-2669-2024, 2024
Short summary
Short summary
Greenhouse gas (GHG) emission accounts record emissions according to the economic boundary of a country, irrespective of whether they occur within national borders or not. In this study, we explore the accuracy of those GHG emission accounts. We find that the accuracy varies significantly depending on the country and economic sector. For example, small countries with extensive aviation or shipping activities show a high degree of uncertainty in their GHG emission accounts.
Kanishka B. Narayan, Brian C. O'Neill, Stephanie Waldhoff, and Claudia Tebaldi
Earth Syst. Sci. Data, 16, 2333–2349, https://doi.org/10.5194/essd-16-2333-2024, https://doi.org/10.5194/essd-16-2333-2024, 2024
Short summary
Short summary
Here, we present a consistent dataset of income distributions across 190 countries from 1958 to 2015 measured in terms of net income. We complement the observed values in this dataset with values imputed from a summary measure of the income distribution, specifically the Gini coefficient. We also present another version of this dataset aggregated from the country level to 32 geographical regions.
Susann Günther, Tom Karras, Friederike Naegeli de Torres, Sebastian Semella, and Daniela Thrän
Earth Syst. Sci. Data, 16, 59–74, https://doi.org/10.5194/essd-16-59-2024, https://doi.org/10.5194/essd-16-59-2024, 2024
Short summary
Short summary
The following study was undertaken to provide a continuous open access dataset for 2010-2020 from country to local level. In order to understand the reliability of the final dataset and to enable further use, the modelled data were validated against statistics, which is a novelty in this field. The dataset has been shown to be in good agreement with the statistical data. Biomass potentials modelled in this study are published in an open access database.
Lehui Cui, Yunting Xiao, Wei Hu, Lei Song, Yujue Wang, Chao Zhang, Pingqing Fu, and Jialei Zhu
Earth Syst. Sci. Data, 15, 5403–5425, https://doi.org/10.5194/essd-15-5403-2023, https://doi.org/10.5194/essd-15-5403-2023, 2023
Short summary
Short summary
Isoprene is a crucial non-methane biogenic volatile organic compound with the largest global emissions, which has high chemical reactivity and serves as the primary source of natural secondary organic aerosols. This study built a module to present a 20-year global hourly dataset of marine phytoplankton-generated biological and photochemistry-generated isoprene emissions in the sea microlayers based on the latest advancements in biological, physical, and chemical processes.
Alessandro Flammini, Hanif Adzmir, Kevin Karl, and Francesco Nicola Tubiello
Earth Syst. Sci. Data, 15, 2179–2187, https://doi.org/10.5194/essd-15-2179-2023, https://doi.org/10.5194/essd-15-2179-2023, 2023
Short summary
Short summary
This paper estimates the share of greenhouse gas (GHG) emissions attributable to non-renewable wood fuel harvesting for use in residential food-related activities. It adds to a growing research base estimating GHG emissions from across the entire agri-food value chain and contributes to the development of the FAOSTAT climate change domain.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Can Cui, Shuping Li, Weichen Zhao, Binyuan Liu, Yuli Shan, and Dabo Guan
Earth Syst. Sci. Data, 15, 1317–1328, https://doi.org/10.5194/essd-15-1317-2023, https://doi.org/10.5194/essd-15-1317-2023, 2023
Short summary
Short summary
Emerging economies face challenges regarding net-zero targets: inconsistencies in accounting calibers, missing raw data, non-transparent accounting methods, and a lack of detail about emissions. The authors established an accounting framework and compiled detailed inventories of energy-related CO2 emissions in 40 emerging economies, covering 47 sectors and eight energy types. The dataset will support emission reduction policymaking at global, national, and subnational levels.
Chuanlong Zhou, Biqing Zhu, Steven J. Davis, Zhu Liu, Antoine Halff, Simon Ben Arous, Hugo de Almeida Rodrigues, and Philippe Ciais
Earth Syst. Sci. Data, 15, 949–961, https://doi.org/10.5194/essd-15-949-2023, https://doi.org/10.5194/essd-15-949-2023, 2023
Short summary
Short summary
Our work aims to analyze sectoral and country-based daily natural gas supply–storage–consumption based on ENTSOG, Eurostat, and multiple datasets in the EU27 and UK. We estimated the magnitude of the Russian gas gap if Russian gas imports were to stop as well as potential short-term solutions to fill this gap. Our datasets could be important in various fields, such as gas/energy consumption and market modeling, carbon emission and climate change research, and policy decision-making.
Jing M. Chen, Rong Wang, Yihong Liu, Liming He, Holly Croft, Xiangzhong Luo, Han Wang, Nicholas G. Smith, Trevor F. Keenan, I. Colin Prentice, Yongguang Zhang, Weimin Ju, and Ning Dong
Earth Syst. Sci. Data, 14, 4077–4093, https://doi.org/10.5194/essd-14-4077-2022, https://doi.org/10.5194/essd-14-4077-2022, 2022
Short summary
Short summary
Green leaves contain chlorophyll pigments that harvest light for photosynthesis and also emit chlorophyll fluorescence as a byproduct. Both chlorophyll pigments and fluorescence can be measured by Earth-orbiting satellite sensors. Here we demonstrate that leaf photosynthetic capacity can be reliably derived globally using these measurements. This new satellite-based information overcomes a bottleneck in global ecological research where such spatially explicit information is currently lacking.
Cited articles
ACS Reviewer Lab: Homepage, https://institute.acs.org/acs-reviewer-lab.html, last access: 3 March 2023.
Berlinguette, C., Gabor, N., and Surendranath, Y.: “Refereeing Template”: A Guide to Writing an Effective Peer Review, ChemRxiv, https://doi.org/10.26434/chemrxiv.14723481.v1, 2021.
Kremser, S., Harvey, M., Kuma, P., Hartery, S., Saint-Macary, A., McGregor, J., Schuddeboom, A., von Hobe, M., Lennartz, S. T., Geddes, A., Querel, R., McDonald, A., Peltola, M., Sellegri, K., Silber, I., Law, C. S., Flynn, C. J., Marriner, A., Hill, T. C. J., DeMott, P. J., Hume, C. C., Plank, G., Graham, G., and Parsons, S.: Southern Ocean cloud and aerosol data: a compilation of measurements from the 2018 Southern Ocean Ross Sea Marine Ecosystems and Environment voyage, Earth Syst. Sci. Data, 13, 3115–3153, https://doi.org/10.5194/essd-13-3115-2021, 2021.
McPeek, M. A., DeAngelis, D. L., Shaw, R. G., Moore, A. J., Rausher, M. D., Strong, D. R., Ellison, A. M., Barrett, L., Rieseberg, L., Breed, M. D., Sullivan, J., Osenberg, C. W., Holyoak, M., and Elgar, M. A.: The Golden Rule of Reviewing, Am. Nat., 173, E155–E158, https://doi.org/10.1086/598847, 2009.
Nature Masterclasses: Homepage, https://masterclasses.nature.com/online-course-on-peer-review/16507836, last access: 3 March 2023.
Pain, E.: Learning the Ropes of Peer Reviewing, Science, https://doi.org/10.1126/science.caredit.a0800122, 2008.
Short, K. C.: A spatial database of wildfires in the United States, 1992–2011, Earth Syst. Sci. Data, 6, 1–27, https://doi.org/10.5194/essd-6-1-2014, 2014.
Stiller-Reeve, M.: How to write a thorough peer review, Nature, https://doi.org/10.1038/d41586-018-06991-0, 2018.
Wiley: Homepage, https://authorservices.wiley.com/Reviewers/journal-reviewers/becoming-a-reviewer.html/peer-review-training.html, last access: 3 March 2023.
Short summary
This article describes the use of the open-discussion manuscript review process as an educational exercise for early career scientists.
This article describes the use of the open-discussion manuscript review process as an...
Altmetrics
Final-revised paper
Preprint