Articles | Volume 14, issue 10
https://doi.org/10.5194/essd-14-4525-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-4525-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrography90m: a new high-resolution global hydrographic dataset
Giuseppe Amatulli
CORRESPONDING AUTHOR
Yale University, School of the Environment, 195 Prospect Street, New Haven, CT, 06511, USA
Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Community and Ecosystem Ecology, Müggelseedamm 310, 12587 Berlin, Germany
Spatial Ecology, 35A, Hazlemere Road, Penn, Buckinghamshire, HP10 8AD, UK
Jaime Garcia Marquez
Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Community and Ecosystem Ecology, Müggelseedamm 310, 12587 Berlin, Germany
Tushar Sethi
Spatial Ecology, 35A, Hazlemere Road, Penn, Buckinghamshire, HP10 8AD, UK
Margosa Environmental Solutions Ltd, 35A, Hazlemere Road, Penn, Buckinghamshire, HP10 8AD, UK
Jens Kiesel
Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Community and Ecosystem Ecology, Müggelseedamm 310, 12587 Berlin, Germany
Christian-Albrechts-University Kiel, Institute for Natural Resource Conservation, Department of Hydrology and Water Resources Management, Olshausenstr. 75, 24118 Kiel, Germany
Afroditi Grigoropoulou
Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Community and Ecosystem Ecology, Müggelseedamm 310, 12587 Berlin, Germany
Christian-Albrechts-University Kiel, Institute for Natural Resource Conservation, Department of Hydrology and Water Resources Management, Olshausenstr. 75, 24118 Kiel, Germany
Maria M. Üblacker
Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Community and Ecosystem Ecology, Müggelseedamm 310, 12587 Berlin, Germany
Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Institute of Biology, Königin-Luise-Str. 1–3, Berlin, 14195 Germany
Longzhu Q. Shen
Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Community and Ecosystem Ecology, Müggelseedamm 310, 12587 Berlin, Germany
Spatial Ecology, 35A, Hazlemere Road, Penn, Buckinghamshire, HP10 8AD, UK
Carnegie Mellon University, Center for Green Science, Pittsburgh, PA 15213, USA
Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Community and Ecosystem Ecology, Müggelseedamm 310, 12587 Berlin, Germany
Related authors
Samuel Shou-En Tsao, Tim Jesper Surhoff, Giuseppe Amatulli, Maya Almaraz, Jonathan Gewirtzman, Beck Woollen, Eric W. Slessarev, James E. Saiers, Christopher T. Reinhard, Shuang Zhang, Noah J. Planavsky, and Peter A. Raymond
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-411, https://doi.org/10.5194/essd-2025-411, 2025
Preprint under review for ESSD
Short summary
Short summary
We created the first detailed map of how much agricultural lime has been used across the United States from 1930 to 1987. Lime helps improve soil health and crop growth. Our study shows that how and where lime is used depends on climate, soil, and farming practices. By using machine learning, we found patterns that help explain these differences. This work helps us better understand the environmental role of lime and its impact on farming and climate.
Holger Virro, Giuseppe Amatulli, Alexander Kmoch, Longzhu Shen, and Evelyn Uuemaa
Earth Syst. Sci. Data, 13, 5483–5507, https://doi.org/10.5194/essd-13-5483-2021, https://doi.org/10.5194/essd-13-5483-2021, 2021
Short summary
Short summary
Water quality modeling is essential for understanding and mitigating water quality deterioration in river networks due to agricultural and industrial pollution. Improving the availability and usability of open data is vital to support global water quality modeling efforts. The GRQA extends the spatial and temporal coverage of previously available water quality data and provides a reproducible workflow for combining multi-source water quality datasets.
P. A. Strobl, C. Bielski, P. L. Guth, C. H. Grohmann, J.-P. Muller, C. López-Vázquez, D. B. Gesch, G. Amatulli, S. Riazanoff, and C. Carabajal
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2021, 395–400, https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-395-2021, https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-395-2021, 2021
Samuel Shou-En Tsao, Tim Jesper Surhoff, Giuseppe Amatulli, Maya Almaraz, Jonathan Gewirtzman, Beck Woollen, Eric W. Slessarev, James E. Saiers, Christopher T. Reinhard, Shuang Zhang, Noah J. Planavsky, and Peter A. Raymond
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-411, https://doi.org/10.5194/essd-2025-411, 2025
Preprint under review for ESSD
Short summary
Short summary
We created the first detailed map of how much agricultural lime has been used across the United States from 1930 to 1987. Lime helps improve soil health and crop growth. Our study shows that how and where lime is used depends on climate, soil, and farming practices. By using machine learning, we found patterns that help explain these differences. This work helps us better understand the environmental role of lime and its impact on farming and climate.
Jaime Ricardo Garcia Marquez, Afroditi Grigoropoulou, Thomas Tomiczek, Marlene Schürz, Vanessa Bremerich, Yusdiel Torres-Cambas, Merret Buurman, Kristi Bego, Giuseppe Amatulli, and Sami Domisch
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-399, https://doi.org/10.5194/essd-2025-399, 2025
Preprint under review for ESSD
Short summary
Short summary
To support the conservation of freshwater ecosystems and biodiversity, standardized and high-resolution information is key. Environment90m is a new dataset, which aggregates 103 environmental variables across the 726 million sub-catchments of the Hydrography90m river network. It includes present and future climate, land cover, soils, topography, hydrographic and streamflow information. Environment90m provides an array of opportunities for research and applications in freshwater science.
Hendrik Rathjens, Jens Kiesel, Jeffrey Arnold, Gerald Reinken, and Robin Sur
EGUsphere, https://doi.org/10.5194/egusphere-2025-877, https://doi.org/10.5194/egusphere-2025-877, 2025
Short summary
Short summary
We improved the widely used SWAT model to better predict how pesticides move through the environment. We added a new process that considers how plants take-up chemicals from the soil. Testing this updated model in two catchments showed very good prediction capabilities and a reduction of chemicals in river water by up to 17 % due to the plant uptake. The enhanced model offers a valuable tool for assessing the environmental impacts of agricultural management.
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024, https://doi.org/10.5194/essd-16-5625-2024, 2024
Short summary
Short summary
The CAMELS-DE dataset features data from 1582 streamflow gauges across Germany, with records spanning from 1951 to 2020. This comprehensive dataset, which includes time series of up to 70 years (median 46 years), enables advanced research on water flow and environmental trends and supports the development of hydrological models.
Hendrik Rathjens, Jens Kiesel, Michael Winchell, Jeffrey Arnold, and Robin Sur
Hydrol. Earth Syst. Sci., 27, 159–167, https://doi.org/10.5194/hess-27-159-2023, https://doi.org/10.5194/hess-27-159-2023, 2023
Short summary
Short summary
The SWAT model can simulate the transport of water-soluble chemicals through the landscape but neglects the transport through groundwater or agricultural tile drains. These transport pathways are, however, important to assess the amount of chemicals in streams. We added this capability to the model, which significantly improved the simulation. The representation of all transport pathways in the model enables watershed managers to develop robust strategies for reducing chemicals in streams.
Holger Virro, Giuseppe Amatulli, Alexander Kmoch, Longzhu Shen, and Evelyn Uuemaa
Earth Syst. Sci. Data, 13, 5483–5507, https://doi.org/10.5194/essd-13-5483-2021, https://doi.org/10.5194/essd-13-5483-2021, 2021
Short summary
Short summary
Water quality modeling is essential for understanding and mitigating water quality deterioration in river networks due to agricultural and industrial pollution. Improving the availability and usability of open data is vital to support global water quality modeling efforts. The GRQA extends the spatial and temporal coverage of previously available water quality data and provides a reproducible workflow for combining multi-source water quality datasets.
Nariman Mahmoodi, Jens Kiesel, Paul D. Wagner, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 25, 5065–5081, https://doi.org/10.5194/hess-25-5065-2021, https://doi.org/10.5194/hess-25-5065-2021, 2021
Short summary
Short summary
In this study, we assessed the sustainability of water resources in a wadi region with the help of a hydrologic model. Our assessment showed that the increases in groundwater demand and consumption exacerbate the negative impact of climate change on groundwater sustainability and hydrologic regime alteration. These alterations have severe consequences for a downstream wetland and its ecosystem. The approach may be applicable in other wadi regions with different climate and water use systems.
P. A. Strobl, C. Bielski, P. L. Guth, C. H. Grohmann, J.-P. Muller, C. López-Vázquez, D. B. Gesch, G. Amatulli, S. Riazanoff, and C. Carabajal
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2021, 395–400, https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-395-2021, https://doi.org/10.5194/isprs-archives-XLIII-B4-2021-395-2021, 2021
Christoph Schürz, Bano Mehdi, Jens Kiesel, Karsten Schulz, and Mathew Herrnegger
Hydrol. Earth Syst. Sci., 24, 4463–4489, https://doi.org/10.5194/hess-24-4463-2020, https://doi.org/10.5194/hess-24-4463-2020, 2020
Short summary
Short summary
The USLE is a commonly used model to estimate soil erosion by water. It quantifies soil loss as a product of six inputs representing rainfall erosivity, soil erodibility, slope length and steepness, plant cover, and support practices. Many methods exist to derive these inputs, which can, however, lead to substantial differences in the estimated soil loss. Here, we analyze the effect of different input representations on the estimated soil loss in a large-scale study in Kenya and Uganda.
Cited articles
Abell, R., Allan, J. D., and Lehner, B.: Unlocking the potential of protected
areas for freshwaters, Biol. Conserv., 134, 48–63, 2007. a
Ågren, A. M., Lidberg, W., and Ring, E.: Mapping Temporal Dynamics in a Forest
Stream Network-Implications for Riparian Forest Management, Forests, 6,
2982–3001, https://doi.org/10.3390/f6092982, 2015. a
Allen, G. H., David, C. H., Andreadis, K. M., Hossain, F., and Famiglietti,
J. S.: Global estimates of river flow wave travel times and implications for
low-latency satellite data, Geophys. Res. Lett., 45, 7551–7560,
2018. a
Altermatt, F.: Diversity in riverine metacommunities: a network perspective,
Aquat. Ecol., 47, 365–377, 2013. a
Altermatt, F., Seymour, M., and Martinez, N.: River network properties shape
α-diversity and community similarity patterns of aquatic insect
communities across major drainage basins, J. Biogeogr., 40,
2249–2260, 2013. a
Amatulli, G.: A new and extendable global watershed and stream network
delineation using GRASS-GIS, Geomorphometry, 205, 205–208, 2020. a
Amatulli, G.: Using GRASS for stream-network extraction and basins delineation as a direct link, https://hydrography.org/hydrography90m/hydrography90m_workflow/,
last access: 5 October 2022a.
Amatulli, G.: Hydrography90m layers download script,
https://hydrography.org/hydrography90m/hydrography90m_layers/, last access: 05 October 2022b.
Amatulli, G., Casalegno, S., D’Annunzio, R., Haapanen, R., Kempeneers, P.,
Lindquist, E., Pekkarinen, A., M., W. A., and R., Z.-M.: Teaching
spatiotemporal analysis and efficient data processing in open source
environment, in: Proceedings of the 3rd Open Source Geospatial Research &
Education Symposium, Helsinki,
Finland, 10–13 June 2014, 13–26, 2014. a
Amatulli, G., Domisch, S., Kiesel, J., Sethi, T., Yamazaki, D., and Raymond,
P.: High-resolution stream network delineation using digital elevation
models: assessing the spatial accuracy, Tech. rep., PeerJ Preprints, https://doi.org/10.7287/peerj.preprints.27109v1,
2018a. a
Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, A.,
Malczyk, J., and Jetz, W.: A suite of global, cross-scale topographic
variables for environmental and biodiversity modeling, Sci. Data, 5,
180040, https://doi.org/10.1038/sdata.2018.40, 2018b. a
Amatulli, G., Garcia Marquez, J., Sethi, T., Kiesel, J., Grigoropoulou, A., Üblacker, M., Shen, L., and Domisch, S.:
Hydrography90m: A new high-resolution global hydrographic dataset, IGB Leibniz-Institute of
Freshwater Ecology and Inland Fisheries [data set], https://doi.org/10.18728/igb-fred-762.1, 2022a. a, b, c, d, e
matulli, G., Garcia Marquez, J., Sethi, T., Kiesel, J.,
Grigoropoulou, A., Üblacker, M. M., Shen, L. Q., and Domisch, S.:
Hydrography90m,
https://doi.org/10.5446/56343, 2022b.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area
model of basin hydrology/Un modèle à base physique de zone d'appel
variable de l'hydrologie du bassin versant, Hydrolog. Sci. J.,
24, 43–69, 1979. a
Bishop, A. P., Amatulli, G., Hyseni, C., Pless, E., Bateta, R., Okeyo, W. A.,
Mireji, P. O., Okoth, S., Malele, I., Murilla, G., Aksoy, S., Caccone, A., Saarman, N. S.: A machine learning
approach to integrating genetic and ecological data in tsetse flies (Glossina
pallidipes) for spatially explicit vector control planning,
Evol.Appl., 14, 1762–1777, https://doi.org/10.1111/eva.13237, 2021. a
Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A., Merz, B.,
Arheimer, B., Aronica, G. T., Bilibashi, A., Bonacci, O., Borga, M., Čanjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Fiala, K., Frolova, N., Gorbachova, L.,
Gül, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T. R., Kohnová, S., Koskela J. J., Ledvinka, O.,
Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C., Osuch, M.,
Ovcharuk, V. Radevski, I., Rogger, M., Salinas, J. L., Sauquet, E., Šraj, M., Szolgay, J., Viglione, A., Volpi, E.,
Wilson, D., Zaimi, K., and Živković, N.:
Changing climate shifts timing of European floods, Science, 357, 588–590,
2017. a
Brenden, T., Wang, L., Seelbach, P., Clark, R., Wiley, M., and Sparks-Jackson,
B.: A spatially constrained clustering program for river valley segment
delineation from GIS digital river networks, Environ. Modell.
Softw., 23, 638–649, 2008. a
Bunn, S. E., Thoms, M. C., Hamilton, S. K., and Capon, S. J.: Flow variability
in dryland rivers: boom, bust and the bits in between,
River Res.
Appl., 22, 179–186, https://doi.org/10.1002/rra.904, 2006. a
Buraas, E. M., Renshaw, C. E., Magilligan, F. J., and Dade, W. B.: Impact of
reach geometry on stream channel sensitivity to extreme floods, Earth Surf.
Proc. Land., 39, 1778–1789, 2014. a
Buto, S. G. and Anderson, R. D.: NHDPlus High Resolution (NHDPlus HR)–A
hydrography framework for the Nation, Tech. rep., US Geological Survey, https://doi.org/10.3133/fs20203033, 2020. a, b
Connor, R.: The United Nations world water development report 2015: water for a
sustainable world, vol. 1, UNESCO publishing, ISBN 978-92-3-100080-5 (set), 978-92-3-100071-3, 978-92-3-100099-7 (ePub), 2015. a
Datry, T., Larned, S. T., and Tockner, K.: Intermittent Rivers: A Challenge
for Freshwater Ecology, BioScience, 64, 229–235, 2014. a
Do, H. X., Gudmundsson, L., Leonard, M., and Westra, S.: The Global Streamflow Indices and Metadata Archive (GSIM) – Part 1: The production of a daily streamflow archive and metadata, Earth Syst. Sci. Data, 10, 765–785, https://doi.org/10.5194/essd-10-765-2018, 2018. a
Domisch, S., Jaehnig, S. C., Simaika, J. P., Kuemmerlen, M., and Stoll, S.:
Application of species distribution models in stream ecosystems: the
challenges of spatial and temporal scale, environmental predictors and
species occurrence data, Fund. Appl. Limnol., 186, 45–61, https://doi.org/10.1127/fal/2015/0627,
2015b. a
Domisch, S., Friedrichs, M., Hein, T., Borgwardt, F., Wetzig, A., Jähnig,
S. C., and Langhans, S. D.: Spatially explicit species distribution models: A
missed opportunity in conservation planning?, Divers. Distrib.,
25, 758–769, 2019. a
Erskine, R. H., Green, T. R., Ramirez, J. A., and MacDonald, L. H.: Comparison
of grid-based algorithms for computing upslope contributing area, Water
Resour. Res., 42, W09416, https://doi.org/10.1029/2005WR004648, 2006. a, b
Farquharson, F., Meigh, J., and Sutcliffe, J.: Regional flood frequency
analysis in arid and semi-arid areas, J. Hydrol., 138, 487–501,
https://doi.org/10.1016/0022-1694(92)90132-F, 1992. a
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S.,
Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The shuttle radar
topography mission, Rev. Geophys., 45, https://doi.org/10.1029/2005RG000183, 2007. a
Gallant, J. and Wilson, J.: Terrain analysis: principles and applications, John
Wiley & Sons, ISBN 978-0-471-32188-0, 2000. a
GDAL Development Team: GDAL – Geospatial Data Abstraction Library, Version
3.1.0, Open Source Geospatial Foundation,
http://www.gdal.org (last access: 5 October 2022), 2020. a
Grant, E. H. C., Lowe, W. H., and Fagan, W. F.: Living in the branches:
population dynamics and ecological processes in dendritic networks, Ecol.
Lett., 102, 165–75, 2007. a
GRASS Development Team: Geographic Resources Analysis Support System (GRASS
GIS) Software, Version 7.8.0, Open Source Geospatial Foundation,
http://grass.osgeo.org (last access: 5 October 2022), 2019. a
Gudmundsson, L., Do, H. X., Leonard, M., and Westra, S.: The Global Streamflow Indices and Metadata Archive (GSIM) – Part 2: Quality control, time-series indices and homogeneity assessment, Earth Syst. Sci. Data, 10, 787–804, https://doi.org/10.5194/essd-10-787-2018, 2018. a
Hack, J. T.: Studies of longitudinal stream profiles in Virginia and Maryland,
vol. 294, US Government Printing Office, https://doi.org/10.3133/pp294B, 1957. a
Hankin, B., Metcalfe, P., Beven, K., and Chappell, N. A.: Integration of
hillslope hydrology and 2D hydraulic modelling for natural flood management,
Hydrol. Res., 50, 1535–1548, 2019. a
Hannon, J.: Hydrography90m layers map interface, https://hydrography.org/hydrography90m/hydrography90m_layers/, last access: 5 October 2022.
Harding, M. and Carabajal, C.: ICESat waveform measurements of
within‐footprint topographic relief and vegetation vertical structure,
Geophys. Res. Lett., 32, 0094-8276, https://doi.org/10.1029/2005GL023471, 2005. a
Haubrock, P. J., Ahmed, D. A., Cuthbert, R. N., Stubbington, R., Domisch, S.,
Marquez, J. R., Beidas, A., Amatulli, G., Kiesel, J., Shen, L. Q., Soto, I., Angeler, D. G., Bonada, N., Cañedo-Argüelles, M., Csabai, Z.,
Datry, T., de Eyto, E., Dohet, A., Drohan, E., England, J., Feio, M. J., Forio, M. A. E., Goethals, P., Graf, W.,
Heino, J., Hudgins, E. J., Jähnig, S. C., Johnson, R. K., Larrañaga, A., Leitner, P., L'Hoste, L., Lizee, M. H., Maire,
A., Rasmussen, J. J., Schäfer, R. B., Schmidt-Kloiber, A., Vannevel, R., Várbíró, G., Wiberg-Larsen, P., Haase, and
P.:
Invasion impacts and dynamics of a European-wide introduced species, Glob.
Change Biol., https://doi.org/10.1111/gcb.16207, 2022. a
Heine, R. A., Lant, C. L., and Sengupta, R. R.: Development and comparison of
approaches for automated mapping of stream channel networks,
Ann. Assoc. Am. Geogr., 94, 477–490, 2004. a
Hirt, C.: Artefact detection in global digital elevation models (DEMs): The
Maximum Slope Approach and its application for complete screening of the
SRTM v4. 1 and MERIT DEMs, Remote Sens. Environ., 207, 27–41,
2018. a
Hong, H., Tsangaratos, P., Ilia, I., Chen, W., and Xu, C.: Comparing the
performance of a logistic regression and a random forest model in landslide
susceptibility assessments. The Case of Wuyaun Area, China,
World Landslide Forum, 1043–1050, https://doi.org/10.1007/978-3-319-53498-5_118, 2017. a
Horton, R. E.: Erosional development of streams and their drainage basins;
hydrophysical approach to quantitative morphology, Geol. Soc.
Am. Bull., 56, 275–370, 1945. a
Hosen, J. D., Allen, G. H., Amatulli, G., Breitmeyer, S., Cohen, M. J., Crump, B. C., Lu, Y., Payet, J. P., Poulin,
B. A., Stubbins, A., Yoon, B., and Raymond, P. A.: River
network travel time is correlated with dissolved organic matter composition
in rivers of the contiguous United States, Hydrol. Process., 35,
e14124, https://doi.org/10.1002/hyp.14124, 2021. a
Jackson, M. C., Weyl, O., Altermatt, F., Durance, I., Friberg, N., Dumbrell, A., Piggott, J., Tiegs, S., Tockner, K.,
Krug, C., Leadley, P. W., and Woodward, G.: Recommendations
for the next generation of global freshwater biological monitoring tools,
Adv. Ecol. Res., 55, 615–636, https://doi.org/10.1016/bs.aecr.2016.08.008, 2016. a
Kempeneers, P.: PKTOOLS – Processing Kernel for geospatial data, Version
2.6.7.6, Open Source Geospatial Foundation,
http://pktools.nongnu.org/html/index.html (last access: 5 October 2022), 2018. a
Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., and
Nearing, G. S.: Toward Improved Predictions in Ungauged Basins: Exploiting
the Power of Machine Learning, Water Resour. Res., 55,
11344–11354, 2019. a
Lay, U. S., Pradhan, B., Yusoff, Z. B. M., Abdallah, A. F. B., Aryal, J., and
Park, H.-J.: Data mining and statistical approaches in debris-flow
susceptibility modelling using airborne LiDAR data, Sensors, 19, 3451, https://doi.org/10.3390/s19163451, 2019. a
Leopold, L. B., Wolman, M. G., Miller, J. P., and Wohl, E.: Fluvial processes
in geomorphology, Courier Dover Publications, ISBN 0486685888, 1964. a
Liang, C. and MaCkay, D. S.: A general model of watershed extraction and
representation using globally optimal flow paths and up-slope contributing
areas, Int. J. Geogr. Inf. Sci., 14,
337–358, 2000. a
Lin, P., Pan, M., Beck, H. E., Yang, Y., Yamazaki, D., Frasson, R., David, C. H., Durand, M., Pavelsky, T. M.,
Allen, G. H., and Gleason, C. J.: Global
reconstruction of naturalized river flows at 2.94 million reaches, Water
Resour. Res., 55, 6499–6516, 2019. a
Linke, S., Lehner, B., Dallaire, C. O., Ariwi, J., Grill, G., Anand, M., Beames, P., Burchard-Levine, V., Maxwell,
S., Moidu, H., Tan, F., and Thieme, M.: Global
hydro-environmental sub-basin and river reach characteristics at high spatial
resolution, Sci. Data, 6, 1–15, 2019. a
Liu, S., She, D., Gao, C., Amatulli, G., Wang, L., Lu, X., Raymond, P. A., and
Xia, X.: Groundwater as a limited carbon dioxide source in a large river (the
Yangtze River), Sci. Total Environ., 760, 143336, https://doi.org/10.1016/j.scitotenv.2020.143336, 2021. a
Maasri, A., Jähnig, S., Adamescu, M., Adrian, R., Baigun, C., Baird, D.,
Batista-Morales, A., Bonada, N., Brown, L., Cai, Q., et al.: A Global Agenda
for Advancing Freshwater Biodiversity Research, Ecol. Lett., 25, 255–263,
https://doi.org/10.1111/ele.13931, 2021a. a
Maasri, A., Thorp, J. H., Kotlinski, N., Kiesel, J., Erdenee, B., and Jähnig,
S. C.: Variation in macroinvertebrate community structure of functional
process zones along the river continuum: New elements for the interpretation
of the river ecosystem synthesis, River Res. Appl., 37,
665–674, 2021b. a
Marani, A., Rigon, R., and Rinaldo, A.: A note on fractal channel networks,
Water Resour. Res., 27, 3041–3049, 1991. a
Marzadri, A., Amatulli, G., Tonina, D., Bellin, A., Shen, L. Q., Allen, G. H.,
and Raymond, P. A.: Global riverine nitrous oxide emissions: The role of
small streams and large rivers, Sci. Total Environ., 776,
145148, https://doi.org/10.1016/j.scitotenv.2021.145148, 2021. a
McInerney, D. and Kempeneers, P.: Open Source Geospatial Tools – Applications
in Earth Observation, Springer Verlag, ISBN 13 9783319018232, 2015. a
Messager, M. L., Lehner, B., Cockburn, C., Lamouroux, N., Pella, H., Snelder,
T., Tockner, K., Trautmann, T., Watt, C., and Datry, T.: Global prevalence of
non-perennial rivers and streams, Nature, 594, 391–397, 2021. a
Metz, M., Mitasova, H., and Harmon, R. S.: Efficient extraction of drainage networks from massive, radar-based elevation models with least cost path search, Hydrol. Earth Syst. Sci., 15, 667–678, https://doi.org/10.5194/hess-15-667-2011, 2011. a
Moore, I. D. and Burch, G. J.: Physical basis of the length-slope factor in the
universal soil loss equation, Soil Sci. Soc. Am. J., 50,
1294–1298, 1986. a
Moore, R. B., McKay, L. D., Rea, A. H., Bondelid, T. R., Price, C. V., Dewald,
T. G., and Johnston, C. M.: User's guide for the National Hydrography
Dataset plus (NHDPlus) High Resolution, Open-File Report-US Geological
Survey, 66 p., https://doi.org/10.3133/ofr20191096, 2019. a, b
Moudrỳ, V., Lecours, V., Gdulová, K., Gábor, L., Moudrá, L.,
Kropáček, J., and Wild, J.: On the use of global DEMs in ecological
modelling and the accuracy of new bare-earth DEMs, Ecol. Modell., 383,
3–9, 2018. a
Neteler, M. and Mitasova, H.: Open source GIS: a GRASS GIS approach, vol. 689,
Springer Science & Business Media, ISBN 978-0-387-68574-8, 2013. a
Neteler, M., Bowman, H., Landa, M., and Metz, M.: GRASS GIS: A multi-purpose
open source GIS, Environ. Modell. Softw., 31, 124–130, 2012. a
O'Loughlin, F., Paiva, R., Durand, M., Alsdorf, D., and Bates, P.: A
multi-sensor approach towards a global vegetation corrected SRTM DEM product,
Remote Sens. Environ., 182, 49–59, 2016. a
Orlandini, S., Moretti, G., Franchini, M., Aldighieri, B., and Testa, B.:
Path-based methods for the determination of nondispersive drainage directions
in grid-based digital elevation models, Water Resour. Res., 39, 1144, https://doi.org/10.1029/2002WR001639, 2003. a
Oudin, L., Andréassian, V., Perrin, C., Michel, C., and Le Moine, N.: Spatial
proximity, physical similarity, regression and ungaged catchments: A
comparison of regionalization approaches based on 913 French catchments,
Water Resour. Res., 44, W03413, https://doi.org/10.1029/2007WR006240, 2008. a
Ozdemir, A.: Using a binary logistic regression method and GIS for evaluating
and mapping the groundwater spring potential in the Sultan Mountains
(Aksehir, Turkey), J. Hydrol., 405, 123–136, 2011. a
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term changes, Nature, 540, 418–422, https://doi.org/10.1038/nature20584.,
2016. a
Pless, E., Saarman, N. P., Powell, J. R., Caccone, A., and Amatulli, G.: A
machine-learning approach to map landscape connectivity in Aedes aegypti with
genetic and environmental data, P. Natl. Acad.
Sci. USA, 118, e2003201118, https://doi.org/10.1073/pnas.2003201118, 2021. a
Pourghasemi, H., Pradhan, B., Gokceoglu, C., and Moezzi, K. D.: Landslide
susceptibility mapping using a spatial multi criteria evaluation model at
Haraz Watershed, Iran, in: Terrigenous mass movements, https://doi.org/10.1007/978-3-642-25495-6_2, 23–49, 2012. a, b
Quinn, P., Beven, K., and Lamb, R.: The in (a/tan/β) index: How to
calculate it and how to use it within the topmodel framework, Hydrol.
Process., 9, 161–182, 1995. a
Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mulholland,
P., Laursen, A. E., McDowell, W. H., and Newbold, D.: Scaling the gas
transfer velocity and hydraulic geometry in streams and small rivers,
Limnol. Oceanogr., 2, 41–53, 2012. a
Raymond, P. A., Saiers, J. E., and Sobczak, W. V.: Hydrological and
biogeochemical controls on watershed dissolved organic matter transport:
Pulse-shunt concept, Ecology, 97, 5–16, 2016. a
Read, D. S., Gweon, H. S., Bowes, M. J., Newbold, L. K., Field, D., Bailey,
M. J., and Griffiths, R. I.: Catchment-scale biogeography of riverine
bacterioplankton, ISME J., 9, 516–526, 2015. a
Reichl, J. P. C., Western, A. W., McIntyre, N. R., and Chiew, F. H. S.:
Optimization of a similarity measure for estimating ungauged streamflow,
Water Resour. Res., 45, https://doi.org/10.1029/2008WR007248, 2009. a, b
Rodríguez, E., Morris, C. S., and Belz, J. E.:
A Global Assessment of the SRTM Performance,
Photogramm. Eng. Rem. S., 72, 249–260, https://doi.org/10.14358/PERS.72.3.249, 2006. a, b
Román-Sánchez, A., Vanwalleghem, T., Peña, A., Laguna, A., and
Giráldez, J.: Controls on soil carbon storage from topography and
vegetation in a rocky, semi-arid landscapes, Geoderma, 311, 159–166, 2018. a
Saarman, N., Burak, M., Opiro, R., Hyseni, C., Echodu, R., Dion, K., Opiyo,
E. A., Dunn, A. W., Amatulli, G., Aksoy, S., Caccone, A.: A spatial genetics
approach to inform vector control of tsetse flies (Glossina fuscipes
fuscipes) in Northern Uganda, Ecol. Evol., 8, 5336–5354, 2018. a
Saarman, N., Pless, E., Amatulli, G., and Caccone, A.: Integrating genetic and
environmental data to model and forecast movement and habitat use in the
major insect vector of sleeping sickness in Uganda (Glossina fuscipes
fuscipes), in: Entomology 2019, ESA, https://esa.confex.com/esa/2019/meetingapp.cgi/Paper/144209 (last access: 5 October 2022), 2019. a
Scheidegger, A. E.: The algebra of stream-order numbers, United States
Geological Survey Professional Paper, 525, 187–189, 1965. a
Seibert, J. and McGlynn, B. L.: A new triangular multiple flow direction
algorithm for computing upslope areas from gridded digital elevation models,
Water Resour. Res., 43, W04501, https://doi.org/10.1029/2006WR005128, 2007. a, b, c
Shafizadeh-Moghadam, H., Valavi, R., Shahabi, H., Chapi, K., and Shirzadi, A.:
Novel forecasting approaches using combination of machine learning and
statistical models for flood susceptibility mapping, J. Environ.
Manage., 217, 1–11, 2018. a
Shanafield, M., Bourke, S. A., Zimmer, M. A., and Costigan, K. H.: An overview
of the hydrology of non-perennial rivers and streams, Wiley Interdisciplinary
Reviews: Water, 8, e1504, https://doi.org/10.1002/wat2.1504, 2021. a
Shen, L. Q., Amatulli, G., Sethi, T., Raymond, P., and Domisch, S.: Estimating
nitrogen and phosphorus concentrations in streams and rivers, within a
machine learning framework, Sci. Data, 7, 1–11, 2020. a
Shreve, R. L.: Infinite topologically random channel networks, J.
Geol., 75, 178–186, 1967. a
Shumilova, O., Zak, D., Datry, T., von Schiller, D., Corti, R., Foulquier, A.,
Obrador, B., Tockner, K., Allan, D. C., Altermatt, F., Arce, M. I., Arnon,
S., Banas, D., Banegas-Medina, A., Beller, E., Blanchette, M. L.,
Blanco-Libreros, J. F., Blessing, J., Boëchat, I. G., Boersma, K., Bogan,
M. T., Bonada, N., Bond, N. R., Brintrup, K., Bruder, A., Burrows, R.,
Cancellario, T., Carlson, S. M., Cauvy-Fraunié, S., Cid, N., Danger, M.,
de Freitas Terra, B., Girolamo, A. M. D., del Campo, R., Dyer, F., Elosegi,
A., Faye, E., Febria, C., Figueroa, R., Four, B., Gessner, M. O., Gnohossou,
P., Cerezo, R. G., Gomez-Gener, L., Graça, M. A., Guareschi, S., Gücker,
B., Hwan, J. L., Kubheka, S., Langhans, S. D., Leigh, C., Little, C. J.,
Lorenz, S., Marshall, J., McIntosh, A., Mendoza-Lera, C., Meyer, E. I.,
Miliša, M., Mlambo, M. C., Moleón, M., Negus, P., Niyogi, D.,
Papatheodoulou, A., Pardo, I., Paril, P., Pešić, V., Rodriguez-Lozano, P.,
Rolls, R. J., Sanchez-Montoya, M. M., Savić, A., Steward, A., Stubbington,
R., Taleb, A., Vorste, R. V., Waltham, N., Zoppini, A., and Zarfl, C.:
Simulating rewetting events in intermittent rivers and ephemeral streams: A
global analysis of leached nutrients and organic matter, Glob. Change
Biol., 25, 1591–1611, 2019. a
Simard, M., Pinto, N., Fisher, J. B., and Baccini, A.: Mapping forest canopy
height globally with spaceborne lidar, J. Geophys. Res.- Biogeo., 116, 2011. a
Strobl, P. A., Bielski, C., Guth, P. L., Grohmann, C. H., Muller, J.-P.,
López-Vázquez, C., Gesch, D. B., Amatulli, G., Riazanoff, S., and
Carabajal, C.: The Digital Elevation Model Intercomparison eXperiment DEMIX,
a community-based approach at global DEM benchmarking, The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, 43, 395–400, 2021. a
Sugarbaker, L., Constance, E. W., Heidemann, H. K., Jason, A. L., Lucas, V.,
Saghy, D., and Stoker, J. M.: The 3D Elevation Program initiative: a call for
action, US Geological Survey, https://doi.org/10.3133/cir1399, 2014. a
Tadono, T., Takaku, J., Tsutsui, K., Oda, F., and Nagai, H.: Status of “ALOS
World 3D (AW3D)” global DSM generation, in: 2015 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015, 3822–3825, IEEE, https://doi.org/10.1109/IGARSS.2015.7326657, 2015. a
Takaku, J., Iwasaki, A., and Tadono, T.: Adaptive filter for improving quality
of ALOS PRISM DSM, in: 2016 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), 5370–5373, IEEE, Beijing, China, 10–15 July 2016, https://doi.org/10.1109/IGARSS.2016.7730399, 2016. a
Thalacker, R. J.: Mapping techniques for soil erosion: Modeling stream power
index in eastern North Dakota, The University of North Dakota, 2014. a
USGS: Global 30 Arc-Second Elevation (GTOPO30), United States Geological
Survey, https://doi.org/10.5066/F7DF6PQS, 1996. a
USGS: Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global, United
States Geological Survey, https://doi.org/10.5066/F7PR7TFT, 2015. a
USGS EROS Archive: USGS EROS Archive – Digital Elevation – HYDRO1K, HYDRO1k Elevation Derivative Database,
https://doi.org/10.5066/F77P8WN0, 2018. a, b, c
Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., and Gushing,
C. E.: The River Continuum Concept, Can. J. Fish. Aquat.
Sci., 37, 130–137, 1980. a
Virro, H., Amatulli, G., Kmoch, A., Shen, L., and Uuemaa, E.: GRQA: Global River Water Quality Archive, Earth Syst. Sci. Data, 13, 5483–5507, https://doi.org/10.5194/essd-13-5483-2021, 2021. a
Vogt, J. V., Colombo, R., and Bertolo, F.: Deriving drainage networks and
catchment boundaries: a new methodology combining digital elevation data and
environmental characteristics, Geomorphology, 53, 281–298, 2003. a
Walling, D. E.: The sediment delivery problem, J. Hydrol., 65,
209–237, 1983. a
Wollheim, W. M., Bernal, S., Burns, D. A., Czuba, J., Driscoll, C., Hansen, A.,
Hensley, R., Hosen, J., Inamdar, S., Kaushal, S., Koenig, L. E., Lu, Y. H., Marzadri, A., Raymond, P. A., Scott, D., Stewart, R. J., Vidon, P. G., and
Wohl, E.: River network
saturation concept: factors influencing the balance of biogeochemical supply
and demand of river networks, Biogeochemistry, 141, 503–521, https://doi.org/10.1007/s10533-018-0488-0, 2018. a
Yang, C. T.: The movement of sediment in rivers, Geophysical Surveys, 3,
39–68, 1977. a
Yang, W., Hou, K., Yu, F., Liu, Z., and Sun, T.: A novel algorithm with heuristic information for extracting drainage networks from raster DEMs, Hydrol. Earth Syst. Sci. Discuss., 7, 441–459, https://doi.org/10.5194/hessd-7-441-2010, 2010. a
Zhang, L., Wang, G., Dai, B., and Li, T.: Classification and codification
methods of stream network in a river basin, a review,
Environmental Informatics Archives, 5, 364–372, 2007a. a
Zhang, Y., Liu, Y., and Chen, Z.: Multi-flow direction algorithms for
extracting drainage network based on digital elevation model, in:
Geoinformatics 2007: Geospatial Information Science, 6753, 67532B, https://doi.org/10.1117/12.761930,
2007b. a
Short summary
Streams and rivers drive several processes in hydrology, geomorphology, geography, and ecology. A hydrographic network that accurately delineates streams and rivers, along with their topographic and topological properties, is needed for environmental applications. Using the MERIT Hydro Digital Elevation Model at 90 m resolution, we derived a globally seamless, standardised hydrographic network: Hydrography90m. The validation demonstrates improved accuracy compared to other datasets.
Streams and rivers drive several processes in hydrology, geomorphology, geography, and ecology....
Altmetrics
Final-revised paper
Preprint