Articles | Volume 14, issue 7
https://doi.org/10.5194/essd-14-3167-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-3167-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Volcanic stratospheric sulfur injections and aerosol optical depth during the Holocene (past 11 500 years) from a bipolar ice-core array
Michael Sigl
CORRESPONDING AUTHOR
Department of Climate and Environmental Physics, University of Bern,
3012 Bern, Switzerland
Oeschger Centre for Climate Change Research, 3012 Bern, Switzerland
Matthew Toohey
Institute of Space and Atmospheric Studies, Department of Physics &
Engineering Physics, University of Saskatchewan, S7N 5A2 Saskatoon, Canada
Joseph R. McConnell
Division of Hydrologic Sciences, Desert Research Institute,
Reno, NV 89512, USA
Jihong Cole-Dai
Department of Chemistry and Biochemistry, South Dakota State
University, Brookings, SD 57007, USA
Mirko Severi
Department of Chemistry “Ugo Schiff”, University of Florence, 50019
Florence, Italy
Related authors
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Markus Stoffel, Christophe Corona, Francis Ludlow, Michael Sigl, Heli Huhtamaa, Emmanuel Garnier, Samuli Helama, Sébastien Guillet, Arlene Crampsie, Katrin Kleemann, Chantal Camenisch, Joseph McConnell, and Chaochao Gao
Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, https://doi.org/10.5194/cp-18-1083-2022, 2022
Short summary
Short summary
The mid-17th century saw several volcanic eruptions, deteriorating climate, political instability, and famine in Europe, China, and Japan. We analyze impacts of the eruptions on climate but also study their socio-political context. We show that an unambiguous distinction of volcanic cooling or wetting from natural climate variability is not straightforward. It also shows that political instability, poor harvest, and famine cannot only be attributed to volcanic climatic impacts.
Jiamei Lin, Anders Svensson, Christine S. Hvidberg, Johannes Lohmann, Steffen Kristiansen, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Sune Olander Rasmussen, Eliza Cook, Helle Astrid Kjær, Bo M. Vinther, Hubertus Fischer, Thomas Stocker, Michael Sigl, Matthias Bigler, Mirko Severi, Rita Traversi, and Robert Mulvaney
Clim. Past, 18, 485–506, https://doi.org/10.5194/cp-18-485-2022, https://doi.org/10.5194/cp-18-485-2022, 2022
Short summary
Short summary
We employ acidity records from Greenland and Antarctic ice cores to estimate the emission strength, frequency and climatic forcing for large volcanic eruptions from the last half of the last glacial period. A total of 25 volcanic eruptions are found to be larger than any eruption in the last 2500 years, and we identify more eruptions than obtained from geological evidence. Towards the end of the glacial period, there is a notable increase in volcanic activity observed for Greenland.
Gill Plunkett, Michael Sigl, Hans F. Schwaiger, Emma L. Tomlinson, Matthew Toohey, Joseph R. McConnell, Jonathan R. Pilcher, Takeshi Hasegawa, and Claus Siebe
Clim. Past, 18, 45–65, https://doi.org/10.5194/cp-18-45-2022, https://doi.org/10.5194/cp-18-45-2022, 2022
Short summary
Short summary
We report the identification of volcanic ash associated with a sulfate layer in Greenland ice cores previously thought to have been from the Vesuvius 79 CE eruption and which had been used to confirm the precise dating of the Greenland ice-core chronology. We find that the tephra was probably produced by an eruption in Alaska. We show the importance of verifying sources of volcanic signals in ice cores through ash analysis to avoid errors in dating ice cores and interpreting volcanic impacts.
Anne Dallmeyer, Martin Claussen, Stephan J. Lorenz, Michael Sigl, Matthew Toohey, and Ulrike Herzschuh
Clim. Past, 17, 2481–2513, https://doi.org/10.5194/cp-17-2481-2021, https://doi.org/10.5194/cp-17-2481-2021, 2021
Short summary
Short summary
Using the comprehensive Earth system model, MPI-ESM1.2, we explore the global Holocene vegetation changes and interpret them in terms of the Holocene climate change. The model results reveal that most of the Holocene vegetation transitions seen outside the high northern latitudes can be attributed to modifications in the intensity of the global summer monsoons.
Woon Mi Kim, Richard Blender, Michael Sigl, Martina Messmer, and Christoph C. Raible
Clim. Past, 17, 2031–2053, https://doi.org/10.5194/cp-17-2031-2021, https://doi.org/10.5194/cp-17-2031-2021, 2021
Short summary
Short summary
To understand the natural characteristics and future changes of the global extreme daily precipitation, it is necessary to explore the long-term characteristics of extreme daily precipitation. Here, we used climate simulations to analyze the characteristics and long-term changes of extreme precipitation during the past 3351 years. Our findings indicate that extreme precipitation in the past is associated with internal climate variability and regional surface temperatures.
Peter M. Abbott, Gill Plunkett, Christophe Corona, Nathan J. Chellman, Joseph R. McConnell, John R. Pilcher, Markus Stoffel, and Michael Sigl
Clim. Past, 17, 565–585, https://doi.org/10.5194/cp-17-565-2021, https://doi.org/10.5194/cp-17-565-2021, 2021
Short summary
Short summary
Volcanic eruptions are a key source of climatic variability, and greater understanding of their past influence will increase the accuracy of future projections. We use volcanic ash from a 1477 CE Icelandic eruption in a Greenlandic ice core as a temporal fix point to constrain the timing of two eruptions in the 1450s CE and their climatic impact. Despite being the most explosive Icelandic eruption in the last 1200 years, the 1477 CE event had a limited impact on Northern Hemisphere climate.
Dimitri Osmont, Sandra Brugger, Anina Gilgen, Helga Weber, Michael Sigl, Robin L. Modini, Christoph Schwörer, Willy Tinner, Stefan Wunderle, and Margit Schwikowski
The Cryosphere, 14, 3731–3745, https://doi.org/10.5194/tc-14-3731-2020, https://doi.org/10.5194/tc-14-3731-2020, 2020
Short summary
Short summary
In this interdisciplinary case study, we were able to link biomass burning emissions from the June 2017 wildfires in Portugal to their deposition in the snowpack at Jungfraujoch, Swiss Alps. We analysed black carbon and charcoal in the snowpack, calculated backward trajectories, and monitored the fire evolution by remote sensing. Such case studies help to understand the representativity of biomass burning records in ice cores and how biomass burning tracers are archived in the snowpack.
Ewa M. Bednarz, Amy H. Butler, Xinyue Wang, Zhihong Zhuo, Wandi Yu, Georgiy Stenchikov, Matthew Toohey, and Yunqian Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1970, https://doi.org/10.5194/egusphere-2025-1970, 2025
Short summary
Short summary
Injection of sulfur and water vapour by the Hunga volcanic eruption significantly altered chemical composition and radiative budget of the stratosphere. Yet, whether the eruption could also affect surface climate, especially via indirect pathways, remains poorly understood. Here we investigate these effects using large ensembles of simulations with the CESM2(WACCM6) Earth system model.
Aaron Chesler, Dominic Winski, Karl Kreutz, Bess Koffman, Erich Osterberg, David Ferris, Zayta Thundercloud, Jihong Cole-Dai, Mark Wells, Aaron Putnam, and Katherine Anderson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1897, https://doi.org/10.5194/egusphere-2025-1897, 2025
Short summary
Short summary
The Southern Hemisphere Westerly Winds impact global climate and Antarctic ice sheet stability; however, there are few complete records over the past 12,000 years. We use a new mineral dust record from a South Pole ice core and identify a decrease in particle concentration and an increase in coarse particle percentage over the past ~11,000 years. Together with other records, our data suggests a southward shift in the winds starting ~6,500 years ago related to warming in the Southern Hemisphere.
Ursula A. Jongebloed, Jacob I. Chalif, Linia Tashmim, William C. Porter, Kelvin H. Bates, Qianjie Chen, Erich C. Osterberg, Bess G. Koffman, Jihong Cole-Dai, Dominic A. Winski, David G. Ferris, Karl J. Kreutz, Cameron P. Wake, and Becky Alexander
Atmos. Chem. Phys., 25, 4083–4106, https://doi.org/10.5194/acp-25-4083-2025, https://doi.org/10.5194/acp-25-4083-2025, 2025
Short summary
Short summary
Marine phytoplankton emit dimethyl sulfide (DMS), which forms methanesulfonic acid (MSA) and sulfate. MSA concentrations in ice cores decreased over the industrial era, which has been attributed to pollution-driven changes in DMS chemistry. We use a model to investigate DMS chemistry compared to observations of DMS, MSA, and sulfate. We find that modeled DMS, MSA, and sulfate are influenced by pollution-sensitive oxidant concentrations, characterization of DMS chemistry, and other variables.
Matthew Toohey, Yue Jia, Sujan Khanal, and Susann Tegtmeier
Atmos. Chem. Phys., 25, 3821–3839, https://doi.org/10.5194/acp-25-3821-2025, https://doi.org/10.5194/acp-25-3821-2025, 2025
Short summary
Short summary
The climate impact of volcanic eruptions depends in part on how long aerosols spend in the stratosphere. We develop a conceptual model for stratospheric aerosol lifetime in terms of production and decay timescales, as well as a lag between injection and decay. We find residence time depends strongly on injection height in the lower stratosphere. We show that the lifetime of stratospheric aerosol from the 1991 Pinatubo eruption is around 22 months, significantly longer than is commonly reported.
Roberto Bilbao, Thomas J. Aubry, Matthew Toohey, and Pablo Ortega
EGUsphere, https://doi.org/10.5194/egusphere-2025-609, https://doi.org/10.5194/egusphere-2025-609, 2025
Short summary
Short summary
Large volcanic eruptions are unpredictable and can have significant climatic impacts. If one occurs, operational decadal forecasts will become invalid and must be rerun including the volcanic forcing. By analyzing the climate response in EC-Earth3 retrospective predictions, we show that idealised forcings produced with two simple models could be used in operational decadal forecasts to account for the radiative impacts of the next major volcanic eruption.
Magali Verkerk, Thomas J. Aubry, Christopher Smith, Peter O. Hopcroft, Michael Sigl, Jessica E. Tierney, Kevin Anchukaitis, Matthew Osman, Anja Schmidt, and Matthew Toohey
EGUsphere, https://doi.org/10.5194/egusphere-2024-3635, https://doi.org/10.5194/egusphere-2024-3635, 2024
Short summary
Short summary
Large volcanic eruptions can trigger global cooling, affecting human societies. Using ice-core records and simple climate model to simulate volcanic effect over the last 8500 years, we show that volcanic eruptions cool climate by 0.12 °C on average. By comparing model results with temperature recorded by tree rings over the last 1000 years, we demonstrate that our models can predict the large-scale cooling caused by volcanic eruptions, and can be used in case of large eruption in the future.
Sujan Khanal, Matthew Toohey, Adam Bourassa, C. Thomas McElroy, Christopher Sioris, and Kaley A. Walker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3286, https://doi.org/10.5194/egusphere-2024-3286, 2024
Short summary
Short summary
Measurements of stratospheric aerosol from the MAESTRO instrument are compared to other measurements to assess their scientific value. We find that medians of MAESTRO measurements binned by month and latitude show reasonable correlation with other data sets, with notable increases after volcanic eruptions, and that biases in the data can be alleviated through a simple correction technique. Used with care, MAESTRO aerosol measurements provide information that can complement other data sets.
Rachael H. Rhodes, Yvan Bollet-Quivogne, Piers Barnes, Mirko Severi, and Eric W. Wolff
Clim. Past, 20, 2031–2043, https://doi.org/10.5194/cp-20-2031-2024, https://doi.org/10.5194/cp-20-2031-2024, 2024
Short summary
Short summary
Some ionic components slowly move through glacier ice by diffusion, but the rate of this diffusion, its exact mechanism(s), and the factors that might influence it are poorly understood. In this study, we model how peaks in sulfate, deposited at Dome C on the Antarctic ice sheet after volcanic eruptions, change with depth and time. We find that the sulfate diffusion rate in ice is relatively fast in young ice near the surface, but the rate is markedly reduced over time.
Moritz Günther, Hauke Schmidt, Claudia Timmreck, and Matthew Toohey
Atmos. Chem. Phys., 24, 7203–7225, https://doi.org/10.5194/acp-24-7203-2024, https://doi.org/10.5194/acp-24-7203-2024, 2024
Short summary
Short summary
Stratospheric aerosol has been shown to cause pronounced cooling in the tropical Indian and western Pacific oceans. Using a climate model, we show that this arises from enhanced meridional energy export via the stratosphere. The aerosol causes stratospheric heating and thus an acceleration of the Brewer–Dobson circulation that accomplishes this transport. Our findings highlight the importance of circulation adjustments and surface perspectives on forcing for understanding temperature responses.
Zhihong Zhuo, Herman F. Fuglestvedt, Matthew Toohey, and Kirstin Krüger
Atmos. Chem. Phys., 24, 6233–6249, https://doi.org/10.5194/acp-24-6233-2024, https://doi.org/10.5194/acp-24-6233-2024, 2024
Short summary
Short summary
This work simulated volcanic eruptions with varied eruption source parameters under different initial conditions with a fully coupled Earth system model. We show that initial atmospheric conditions control the meridional distribution of volcanic volatiles and modulate volcanic forcing and subsequent climate and environmental impacts of tropical and Northern Hemisphere extratropical eruptions. This highlights the potential for predicting these impacts as early as the first post-eruption month.
Susanne Preunkert, Pascal Bohleber, Michel Legrand, Adrien Gilbert, Tobias Erhardt, Roland Purtschert, Lars Zipf, Astrid Waldner, Joseph R. McConnell, and Hubertus Fischer
The Cryosphere, 18, 2177–2194, https://doi.org/10.5194/tc-18-2177-2024, https://doi.org/10.5194/tc-18-2177-2024, 2024
Short summary
Short summary
Ice cores from high-elevation Alpine glaciers are an important tool to reconstruct the past atmosphere. However, since crevasses are common at these glacier sites, rigorous investigations of glaciological conditions upstream of drill sites are needed before interpreting such ice cores. On the basis of three ice cores extracted at Col du Dôme (4250 m a.s.l; French Alps), an overall picture of a dynamic crevasse formation is drawn, which disturbs the depth–age relation of two of the three cores.
Julie Christin Schindlbeck-Belo, Matthew Toohey, Marion Jegen, Steffen Kutterolf, and Kira Rehfeld
Earth Syst. Sci. Data, 16, 1063–1081, https://doi.org/10.5194/essd-16-1063-2024, https://doi.org/10.5194/essd-16-1063-2024, 2024
Short summary
Short summary
Volcanic forcing of climate resulting from major explosive eruptions is a dominant natural driver of past climate variability. To support model studies of the potential impacts of explosive volcanism on climate variability across timescales, we present an ensemble reconstruction of volcanic stratospheric sulfur injection over the last 140 000 years that is based primarily on tephra records.
Tyler J. Fudge, Raphael Sauvage, Linh Vu, Benjamin H. Hills, Mirko Severi, and Edwin D. Waddington
Clim. Past, 20, 297–312, https://doi.org/10.5194/cp-20-297-2024, https://doi.org/10.5194/cp-20-297-2024, 2024
Short summary
Short summary
We use the oldest Antarctic ice core to estimate the rate of diffusion of sulfuric acid. Sulfuric acid is a marker of past volcanic activity and is critical in developing ice core timescales. The rate of diffusion is uncertain and is important to know, both for selecting future ice core locations and interpreting ice core records. We find the effective diffusivity of sulfate is 10 times smaller than previously estimated, indicating that the sulfuric acid signals will persist for longer.
Xavier Faïn, David M. Etheridge, Kévin Fourteau, Patricia Martinerie, Cathy M. Trudinger, Rachael H. Rhodes, Nathan J. Chellman, Ray L. Langenfelds, Joseph R. McConnell, Mark A. J. Curran, Edward J. Brook, Thomas Blunier, Grégory Teste, Roberto Grilli, Anthony Lemoine, William T. Sturges, Boris Vannière, Johannes Freitag, and Jérôme Chappellaz
Clim. Past, 19, 2287–2311, https://doi.org/10.5194/cp-19-2287-2023, https://doi.org/10.5194/cp-19-2287-2023, 2023
Short summary
Short summary
We report on a 3000-year record of carbon monoxide (CO) levels in the Southern Hemisphere's high latitudes by combining ice core and firn air measurements with modern direct atmospheric samples. Antarctica [CO] remained stable (–835 to 1500 CE), decreased during the Little Ice Age, and peaked around 1985 CE. Such evolution reflects stable biomass burning CO emissions before industrialization, followed by growth from CO anthropogenic sources, which decline after 1985 due to improved combustion.
Elizabeth R. Thomas, Diana O. Vladimirova, Dieter R. Tetzner, B. Daniel Emanuelsson, Nathan Chellman, Daniel A. Dixon, Hugues Goosse, Mackenzie M. Grieman, Amy C. F. King, Michael Sigl, Danielle G. Udy, Tessa R. Vance, Dominic A. Winski, V. Holly L. Winton, Nancy A. N. Bertler, Akira Hori, Chavarukonam M. Laluraj, Joseph R. McConnell, Yuko Motizuki, Kazuya Takahashi, Hideaki Motoyama, Yoichi Nakai, Franciéle Schwanck, Jefferson Cardia Simões, Filipe Gaudie Ley Lindau, Mirko Severi, Rita Traversi, Sarah Wauthy, Cunde Xiao, Jiao Yang, Ellen Mosely-Thompson, Tamara V. Khodzher, Ludmila P. Golobokova, and Alexey A. Ekaykin
Earth Syst. Sci. Data, 15, 2517–2532, https://doi.org/10.5194/essd-15-2517-2023, https://doi.org/10.5194/essd-15-2517-2023, 2023
Short summary
Short summary
The concentration of sodium and sulfate measured in Antarctic ice cores is related to changes in both sea ice and winds. Here we have compiled a database of sodium and sulfate records from 105 ice core sites in Antarctica. The records span all, or part, of the past 2000 years. The records will improve our understanding of how winds and sea ice have changed in the past and how they have influenced the climate of Antarctica over the past 2000 years.
Aymeric P. M. Servettaz, Anaïs J. Orsi, Mark A. J. Curran, Andrew D. Moy, Amaelle Landais, Joseph R. McConnell, Trevor J. Popp, Emmanuel Le Meur, Xavier Faïn, and Jérôme Chappellaz
Clim. Past, 19, 1125–1152, https://doi.org/10.5194/cp-19-1125-2023, https://doi.org/10.5194/cp-19-1125-2023, 2023
Short summary
Short summary
The temperature of the past 2000 years is still poorly known in vast parts of the East Antarctic plateau. In this study, we present temperature reconstructions based on water and gas stable isotopes from the Aurora Basin North ice core. Spatial and temporal significance of each proxy differs, and we can identify some cold periods in the snow temperature up to 2°C cooler in the 1000–1400 CE period, which could not be determined with water isotopes only.
Lucie J. Lücke, Andrew P. Schurer, Matthew Toohey, Lauren R. Marshall, and Gabriele C. Hegerl
Clim. Past, 19, 959–978, https://doi.org/10.5194/cp-19-959-2023, https://doi.org/10.5194/cp-19-959-2023, 2023
Short summary
Short summary
Evidence from tree rings and ice cores provides incomplete information about past volcanic eruptions and the Sun's activity. We model past climate with varying solar and volcanic scenarios and compare it to reconstructed temperature. We confirm that the Sun's influence was small and that uncertain volcanic activity can strongly influence temperature shortly after the eruption. On long timescales, independent data sources closely agree, increasing our confidence in understanding of past climate.
Simone Ventisette, Samuele Baldini, Claudio Artoni, Silvia Becagli, Laura Caiazzo, Barbara Delmonte, Massimo Frezzotti, Raffaello Nardin, Joel Savarino, Mirko Severi, Andrea Spolaor, Barbara Stenni, and Rita Traversi
EGUsphere, https://doi.org/10.5194/egusphere-2023-393, https://doi.org/10.5194/egusphere-2023-393, 2023
Preprint archived
Short summary
Short summary
The paper reports the spatial variability of concentration and fluxes of chemical impurities in superficial snow over unexplored area of the East Antarctic ice sheet. Pinatubo and Puyehue-Cordón Caulle volcanic eruptions in non-sea salt sulfate and dust snow pits record were used to achieve the accumulation rates. Deposition (wet, dry and uptake from snow surface) and post deposition processes are constrained. These knowledges are fundamental in Antarctic ice cores stratigraphies interpretation.
Aaron Chesler, Dominic Winski, Karl Kreutz, Bess Koffman, Erich Osterberg, David Ferris, Zayta Thundercloud, Joseph Mohan, Jihong Cole-Dai, Mark Wells, Michael Handley, Aaron Putnam, Katherine Anderson, and Natalie Harmon
Clim. Past, 19, 477–492, https://doi.org/10.5194/cp-19-477-2023, https://doi.org/10.5194/cp-19-477-2023, 2023
Short summary
Short summary
Ice core microparticle data typically use geometry assumptions to calculate particle mass and flux. We use dynamic particle imaging, a novel technique for ice core dust analyses, combined with traditional laser particle counting and Coulter counter techniques to assess particle shape in the South Pole Ice Core (SPC14) spanning 50–16 ka. Our results suggest that particles are dominantly ellipsoidal in shape and that spherical assumptions overestimate particle mass and flux.
Michael N. Dyonisius, Vasilii V. Petrenko, Andrew M. Smith, Benjamin Hmiel, Peter D. Neff, Bin Yang, Quan Hua, Jochen Schmitt, Sarah A. Shackleton, Christo Buizert, Philip F. Place, James A. Menking, Ross Beaudette, Christina Harth, Michael Kalk, Heidi A. Roop, Bernhard Bereiter, Casey Armanetti, Isaac Vimont, Sylvia Englund Michel, Edward J. Brook, Jeffrey P. Severinghaus, Ray F. Weiss, and Joseph R. McConnell
The Cryosphere, 17, 843–863, https://doi.org/10.5194/tc-17-843-2023, https://doi.org/10.5194/tc-17-843-2023, 2023
Short summary
Short summary
Cosmic rays that enter the atmosphere produce secondary particles which react with surface minerals to produce radioactive nuclides. These nuclides are often used to constrain Earth's surface processes. However, the production rates from muons are not well constrained. We measured 14C in ice with a well-known exposure history to constrain the production rates from muons. 14C production in ice is analogous to quartz, but we obtain different production rates compared to commonly used estimates.
Eric W. Wolff, Andrea Burke, Laura Crick, Emily A. Doyle, Helen M. Innes, Sue H. Mahony, James W. B. Rae, Mirko Severi, and R. Stephen J. Sparks
Clim. Past, 19, 23–33, https://doi.org/10.5194/cp-19-23-2023, https://doi.org/10.5194/cp-19-23-2023, 2023
Short summary
Short summary
Large volcanic eruptions leave an imprint of a spike of sulfate deposition that can be measured in ice cores. Here we use a method that logs the number and size of large eruptions recorded in an Antarctic core in a consistent way through the last 200 000 years. The rate of recorded eruptions is variable but shows no trends. In particular, there is no increase in recorded eruptions during deglaciation periods. This is consistent with most recorded eruptions being from lower latitudes.
Yanzhi Cao, Zhuang Jiang, Becky Alexander, Jihong Cole-Dai, Joel Savarino, Joseph Erbland, and Lei Geng
Atmos. Chem. Phys., 22, 13407–13422, https://doi.org/10.5194/acp-22-13407-2022, https://doi.org/10.5194/acp-22-13407-2022, 2022
Short summary
Short summary
We investigate the potential of ice-core preserved nitrate isotopes as proxies of stratospheric ozone variability by measuring nitrate isotopes in a shallow ice core from the South Pole. The large variability in the snow accumulation rate and its slight increase after the 1970s masked any signals caused by the ozone hole. Moreover, the nitrate oxygen isotope decrease may reflect changes in the atmospheric oxidation environment in the Southern Ocean.
Fabio Giardi, Silvia Nava, Giulia Calzolai, Giulia Pazzi, Massimo Chiari, Andrea Faggi, Bianca Patrizia Andreini, Chiara Collaveri, Elena Franchi, Guido Nincheri, Alessandra Amore, Silvia Becagli, Mirko Severi, Rita Traversi, and Franco Lucarelli
Atmos. Chem. Phys., 22, 9987–10005, https://doi.org/10.5194/acp-22-9987-2022, https://doi.org/10.5194/acp-22-9987-2022, 2022
Short summary
Short summary
The restriction measures adopted to contain the COVID-19 virus offered a unique opportunity to study urban particulate emissions in the near absence of traffic, which is one of the main emission sources in the urban environment. However, the drastic decrease in this source of particulate matter during the months of national lockdown did not lead to an equal decrease in the total particulate load. This is due to the inverse behavior shown by different sources, especially secondary sources.
Carlton Xavier, Metin Baykara, Robin Wollesen de Jonge, Barbara Altstädter, Petri Clusius, Ville Vakkari, Roseline Thakur, Lisa Beck, Silvia Becagli, Mirko Severi, Rita Traversi, Radovan Krejci, Peter Tunved, Mauro Mazzola, Birgit Wehner, Mikko Sipilä, Markku Kulmala, Michael Boy, and Pontus Roldin
Atmos. Chem. Phys., 22, 10023–10043, https://doi.org/10.5194/acp-22-10023-2022, https://doi.org/10.5194/acp-22-10023-2022, 2022
Short summary
Short summary
The focus of this work is to study and improve our understanding of processes involved in the formation and growth of new particles in a remote Arctic marine environment. We run the 1D model ADCHEM along air mass trajectories arriving at Ny-Ålesund in May 2018. The model finds that ion-mediated H2SO4–NH3 nucleation can explain the observed new particle formation at Ny-Ålesund. The growth of particles is driven via H2SO4 condensation and formation of methane sulfonic acid in the aqueous phase.
Silvia Becagli, Elena Barbaro, Simone Bonamano, Laura Caiazzo, Alcide di Sarra, Matteo Feltracco, Paolo Grigioni, Jost Heintzenberg, Luigi Lazzara, Michel Legrand, Alice Madonia, Marco Marcelli, Chiara Melillo, Daniela Meloni, Caterina Nuccio, Giandomenico Pace, Ki-Tae Park, Suzanne Preunkert, Mirko Severi, Marco Vecchiato, Roberta Zangrando, and Rita Traversi
Atmos. Chem. Phys., 22, 9245–9263, https://doi.org/10.5194/acp-22-9245-2022, https://doi.org/10.5194/acp-22-9245-2022, 2022
Short summary
Short summary
Measurements of phytoplanktonic dimethylsulfide and its oxidation products in the Antarctic atmosphere allow us to understand the role of the oceanic (sea ice melting, Chl α and dimethylsulfoniopropionate) and atmospheric (wind direction and speed, humidity, solar radiation and transport processes) factors in the biogenic aerosol formation, concentration and characteristic ratio between components in an Antarctic coastal site facing the polynya of the Ross Sea.
Helen Mackay, Gill Plunkett, Britta J. L. Jensen, Thomas J. Aubry, Christophe Corona, Woon Mi Kim, Matthew Toohey, Michael Sigl, Markus Stoffel, Kevin J. Anchukaitis, Christoph Raible, Matthew S. M. Bolton, Joseph G. Manning, Timothy P. Newfield, Nicola Di Cosmo, Francis Ludlow, Conor Kostick, Zhen Yang, Lisa Coyle McClung, Matthew Amesbury, Alistair Monteath, Paul D. M. Hughes, Pete G. Langdon, Dan Charman, Robert Booth, Kimberley L. Davies, Antony Blundell, and Graeme T. Swindles
Clim. Past, 18, 1475–1508, https://doi.org/10.5194/cp-18-1475-2022, https://doi.org/10.5194/cp-18-1475-2022, 2022
Short summary
Short summary
We assess the climatic and societal impact of the 852/3 CE Alaska Mount Churchill eruption using environmental reconstructions, historical records and climate simulations. The eruption is associated with significant Northern Hemisphere summer cooling, despite having only a moderate sulfate-based climate forcing potential; however, evidence of a widespread societal response is lacking. We discuss the difficulties of confirming volcanic impacts of a single eruption even when it is precisely dated.
Markus Stoffel, Christophe Corona, Francis Ludlow, Michael Sigl, Heli Huhtamaa, Emmanuel Garnier, Samuli Helama, Sébastien Guillet, Arlene Crampsie, Katrin Kleemann, Chantal Camenisch, Joseph McConnell, and Chaochao Gao
Clim. Past, 18, 1083–1108, https://doi.org/10.5194/cp-18-1083-2022, https://doi.org/10.5194/cp-18-1083-2022, 2022
Short summary
Short summary
The mid-17th century saw several volcanic eruptions, deteriorating climate, political instability, and famine in Europe, China, and Japan. We analyze impacts of the eruptions on climate but also study their socio-political context. We show that an unambiguous distinction of volcanic cooling or wetting from natural climate variability is not straightforward. It also shows that political instability, poor harvest, and famine cannot only be attributed to volcanic climatic impacts.
Aki Virkkula, Henrik Grythe, John Backman, Tuukka Petäjä, Maurizio Busetto, Christian Lanconelli, Angelo Lupi, Silvia Becagli, Rita Traversi, Mirko Severi, Vito Vitale, Patrick Sheridan, and Elisabeth Andrews
Atmos. Chem. Phys., 22, 5033–5069, https://doi.org/10.5194/acp-22-5033-2022, https://doi.org/10.5194/acp-22-5033-2022, 2022
Short summary
Short summary
Optical properties of surface aerosols at Dome C, Antarctica, in 2007–2013 and their potential source areas are presented. The equivalent black carbon (eBC) mass concentrations were compared with eBC measured at three other Antarctic sites: the South Pole (SPO) and two coastal sites, Neumayer and Syowa. Transport analysis suggests that South American BC emissions are the largest contributor to eBC at Dome C.
Xavier Faïn, Rachael H. Rhodes, Philip Place, Vasilii V. Petrenko, Kévin Fourteau, Nathan Chellman, Edward Crosier, Joseph R. McConnell, Edward J. Brook, Thomas Blunier, Michel Legrand, and Jérôme Chappellaz
Clim. Past, 18, 631–647, https://doi.org/10.5194/cp-18-631-2022, https://doi.org/10.5194/cp-18-631-2022, 2022
Short summary
Short summary
Carbon monoxide (CO) is a regulated pollutant and one of the key components determining the oxidizing capacity of the atmosphere. In this study, we analyzed five ice cores from Greenland at high resolution for CO concentrations by coupling laser spectrometry with continuous melting. By combining these new datasets, we produced an upper-bound estimate of past atmospheric CO abundance since preindustrial times for the Northern Hemisphere high latitudes, covering the period from 1700 to 1957 CE.
Davide Zanchettin, Claudia Timmreck, Myriam Khodri, Anja Schmidt, Matthew Toohey, Manabu Abe, Slimane Bekki, Jason Cole, Shih-Wei Fang, Wuhu Feng, Gabriele Hegerl, Ben Johnson, Nicolas Lebas, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Landon Rieger, Alan Robock, Sara Rubinetti, Kostas Tsigaridis, and Helen Weierbach
Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022, https://doi.org/10.5194/gmd-15-2265-2022, 2022
Short summary
Short summary
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of CMIP6-VolMIP. Results from six Earth system models reveal significant differences in radiative flux anomalies that trace back to different implementations of volcanic forcing. Surface responses are in contrast overall consistent across models, reflecting the large spread due to internal variability. A second phase of VolMIP shall consider both aspects toward improved protocol for volc-pinatubo-full.
Jiamei Lin, Anders Svensson, Christine S. Hvidberg, Johannes Lohmann, Steffen Kristiansen, Dorthe Dahl-Jensen, Jørgen Peder Steffensen, Sune Olander Rasmussen, Eliza Cook, Helle Astrid Kjær, Bo M. Vinther, Hubertus Fischer, Thomas Stocker, Michael Sigl, Matthias Bigler, Mirko Severi, Rita Traversi, and Robert Mulvaney
Clim. Past, 18, 485–506, https://doi.org/10.5194/cp-18-485-2022, https://doi.org/10.5194/cp-18-485-2022, 2022
Short summary
Short summary
We employ acidity records from Greenland and Antarctic ice cores to estimate the emission strength, frequency and climatic forcing for large volcanic eruptions from the last half of the last glacial period. A total of 25 volcanic eruptions are found to be larger than any eruption in the last 2500 years, and we identify more eruptions than obtained from geological evidence. Towards the end of the glacial period, there is a notable increase in volcanic activity observed for Greenland.
Gill Plunkett, Michael Sigl, Hans F. Schwaiger, Emma L. Tomlinson, Matthew Toohey, Joseph R. McConnell, Jonathan R. Pilcher, Takeshi Hasegawa, and Claus Siebe
Clim. Past, 18, 45–65, https://doi.org/10.5194/cp-18-45-2022, https://doi.org/10.5194/cp-18-45-2022, 2022
Short summary
Short summary
We report the identification of volcanic ash associated with a sulfate layer in Greenland ice cores previously thought to have been from the Vesuvius 79 CE eruption and which had been used to confirm the precise dating of the Greenland ice-core chronology. We find that the tephra was probably produced by an eruption in Alaska. We show the importance of verifying sources of volcanic signals in ice cores through ash analysis to avoid errors in dating ice cores and interpreting volcanic impacts.
Anne Dallmeyer, Martin Claussen, Stephan J. Lorenz, Michael Sigl, Matthew Toohey, and Ulrike Herzschuh
Clim. Past, 17, 2481–2513, https://doi.org/10.5194/cp-17-2481-2021, https://doi.org/10.5194/cp-17-2481-2021, 2021
Short summary
Short summary
Using the comprehensive Earth system model, MPI-ESM1.2, we explore the global Holocene vegetation changes and interpret them in terms of the Holocene climate change. The model results reveal that most of the Holocene vegetation transitions seen outside the high northern latitudes can be attributed to modifications in the intensity of the global summer monsoons.
Raffaello Nardin, Mirko Severi, Alessandra Amore, Silvia Becagli, Francois Burgay, Laura Caiazzo, Virginia Ciardini, Giuliano Dreossi, Massimo Frezzotti, Sang-Bum Hong, Ishaq Khan, Bianca Maria Narcisi, Marco Proposito, Claudio Scarchilli, Enricomaria Selmo, Andrea Spolaor, Barbara Stenni, and Rita Traversi
Clim. Past, 17, 2073–2089, https://doi.org/10.5194/cp-17-2073-2021, https://doi.org/10.5194/cp-17-2073-2021, 2021
Short summary
Short summary
The first step to exploit all the potential information buried in ice cores is to produce a reliable age scale. Based on chemical and isotopic records from the 197 m Antarctic GV7(B) ice core, accurate dating was achieved and showed that the archive spans roughly the last 830 years. The relatively high accumulation rate allowed us to use the non-sea-salt sulfate seasonal pattern to count annual layers. The accumulation rate reconstruction exhibited a slight increase since the 18th century.
Woon Mi Kim, Richard Blender, Michael Sigl, Martina Messmer, and Christoph C. Raible
Clim. Past, 17, 2031–2053, https://doi.org/10.5194/cp-17-2031-2021, https://doi.org/10.5194/cp-17-2031-2021, 2021
Short summary
Short summary
To understand the natural characteristics and future changes of the global extreme daily precipitation, it is necessary to explore the long-term characteristics of extreme daily precipitation. Here, we used climate simulations to analyze the characteristics and long-term changes of extreme precipitation during the past 3351 years. Our findings indicate that extreme precipitation in the past is associated with internal climate variability and regional surface temperatures.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Peter M. Abbott, Gill Plunkett, Christophe Corona, Nathan J. Chellman, Joseph R. McConnell, John R. Pilcher, Markus Stoffel, and Michael Sigl
Clim. Past, 17, 565–585, https://doi.org/10.5194/cp-17-565-2021, https://doi.org/10.5194/cp-17-565-2021, 2021
Short summary
Short summary
Volcanic eruptions are a key source of climatic variability, and greater understanding of their past influence will increase the accuracy of future projections. We use volcanic ash from a 1477 CE Icelandic eruption in a Greenlandic ice core as a temporal fix point to constrain the timing of two eruptions in the 1450s CE and their climatic impact. Despite being the most explosive Icelandic eruption in the last 1200 years, the 1477 CE event had a limited impact on Northern Hemisphere climate.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
James W. Kirchner, Sarah E. Godsey, Madeline Solomon, Randall Osterhuber, Joseph R. McConnell, and Daniele Penna
Hydrol. Earth Syst. Sci., 24, 5095–5123, https://doi.org/10.5194/hess-24-5095-2020, https://doi.org/10.5194/hess-24-5095-2020, 2020
Short summary
Short summary
Streams and groundwaters often show daily cycles in response to snowmelt and evapotranspiration. These typically have a roughly 6 h time lag, which is often interpreted as a travel-time lag. Here we show that it is instead primarily a phase lag that arises because aquifers integrate their inputs over time. We further show how these cycles shift seasonally, mirroring the springtime retreat of snow cover to higher elevations and the seasonal advance and retreat of photosynthetic activity.
Dimitri Osmont, Sandra Brugger, Anina Gilgen, Helga Weber, Michael Sigl, Robin L. Modini, Christoph Schwörer, Willy Tinner, Stefan Wunderle, and Margit Schwikowski
The Cryosphere, 14, 3731–3745, https://doi.org/10.5194/tc-14-3731-2020, https://doi.org/10.5194/tc-14-3731-2020, 2020
Short summary
Short summary
In this interdisciplinary case study, we were able to link biomass burning emissions from the June 2017 wildfires in Portugal to their deposition in the snowpack at Jungfraujoch, Swiss Alps. We analysed black carbon and charcoal in the snowpack, calculated backward trajectories, and monitored the fire evolution by remote sensing. Such case studies help to understand the representativity of biomass burning records in ice cores and how biomass burning tracers are archived in the snowpack.
Cited articles
Abbott, P. M. and Davies, S. M.: Volcanism and the Greenland ice-cores: the
tephra record, Earth-Sci. Rev., 115, 173–191, 2012.
Abbott, P. M., Niemeier, U., Timmreck, C., Riede, F., McConnell, J. R.,
Severi, M., Fischer, H., Svensson, A., Toohey, M., Reinig, F., and Sigl, M.:
Volcanic climate forcing preceding the inception of the Younger Dryas:
Implications for tracing the Laacher See eruption, Quaternary Sci. Rev., 274, 107260, https://doi.org/10.1016/j.quascirev.2021.107260,
2021a.
Abbott, P. M., Plunkett, G., Corona, C., Chellman, N. J., McConnell, J. R., Pilcher, J. R., Stoffel, M., and Sigl, M.: Cryptotephra from the Icelandic Veiðivötn 1477 CE eruption in a Greenland ice core: confirming the dating of volcanic events in the 1450s CE and assessing the eruption's climatic impact, Clim. Past, 17, 565–585, https://doi.org/10.5194/cp-17-565-2021, 2021b.
Adolphi, F. and Muscheler, R.: Synchronizing the Greenland ice core and radiocarbon timescales over the Holocene – Bayesian wiggle-matching of cosmogenic radionuclide records, Clim. Past, 12, 15–30, https://doi.org/10.5194/cp-12-15-2016, 2016.
Anchukaitis, K. J., Breitenmoser, P., Briffa, K. R., Buchwal, A., Buntgen,
U., Cook, E. R., D'Arrigo, R. D., Esper, J., Evans, M. N., Frank, D., Grudd,
H., Gunnarson, B. E., Hughes, M. K., Kirdyanov, A. V., Korner, C., Krusic,
P. J., Luckman, B., Melvin, T. M., Salzer, M. W., Shashkin, A. V., Timmreck,
C., Vaganov, E. A., and Wilson, R. J. S.: Tree rings and volcanic cooling,
Nat. Geosci., 5, 836–837, 2012.
Aubry, T. J., Toohey, M., Marshall, L., Schmidt, A., and Jellinek, A. M.: A
New Volcanic Stratospheric Sulfate Aerosol Forcing Emulator
(EVA_H): Comparison With Interactive Stratospheric Aerosol
Models, J. Geophys. Res.-Atmos., 125, 23, https://doi.org/10.1029/2019JD031303, 2020.
Bader, J., Jungclaus, J., Krivova, N., Lorenz, S., Maycock, A., Raddatz, T.,
Schmidt, H., Toohey, M., Wu, C.-J., and Claussen, M.: Global temperature
modes shed light on the Holocene temperature conundrum, Nat. Commun., 11,
4726, https://doi.org/10.1038/s41467-020-18478-6, 2020.
Baillie, M. G. L.: Proposed re-dating of the European ice core chronology by
seven years prior to the 7th century AD, Geophys. Res. Lett., 35, L15813, https://doi.org/10.1029/2008GL034755, 2008.
Baillie, M. G. L.: Volcanoes, ice-cores and tree-rings: one story or two?,
Antiquity, 84, 202–215, 2010.
Baroni, M., Thiemens, M. H., Delmas, R. J., and Savarino, J.:
Mass-independent sulfur isotopic compositions in stratospheric volcanic
eruptions, Science, 315, 84–87, 2007.
Baroni, M., Savarino, J., Cole-Dai, J. H., Rai, V. K., and Thiemens, M. H.:
Anomalous sulfur isotope compositions of volcanic sulfate over the last
millennium in Antarctic ice cores, J. Geophys. Res.-Atmos., 113, D20112, https://doi.org/10.1029/2008JD010185, 2008.
Bethke, I., Outten, S., Otterå, O. H., Hawkins, E., Wagner, S., Sigl,
M., and Thorne, P.: Potential volcanic impacts on future climate
variability, Nat. Clim. Change, 7, 799–805, 2017.
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P.,
Priore, P., Cullen, H., Hajdas, I., and Bonani, G.: A pervasive
millennial-scale cycle in North Atlantic Holocene and glacial climates,
Science, 278, 1257–1266, 1997.
Bonny, E., Thordarson, T., Wright, R., Höskuldsson, A., and
Jónsdóttir, I.: The Volume of Lava Erupted During the 2014 to 2015
Eruption at Holuhraun, Iceland: A Comparison Between Satellite- and
Ground-Based Measurements, J. Geophys. Res.-Sol. Earth,
123, 5412–5426, 2018.
Braconnot, P., Harrison, S. P., Kageyama, M., Bartlein, P. J.,
Masson-Delmotte, V., Abe-Ouchi, A., Otto-Bliesner, B., and Zhao, Y.:
Evaluation of climate models using palaeoclimatic data, Nat. Clim. Change, 2,
417–424, 2012.
Brovkin, V., Lorenz, S., Raddatz, T., Ilyina, T., Stemmler, I., Toohey, M., and Claussen, M.: What was the source of the atmospheric CO2 increase during the Holocene?, Biogeosciences, 16, 2543–2555, https://doi.org/10.5194/bg-16-2543-2019, 2019.
Brown, S. K., Crosweller, H. S., Sparks, R. S. J., Cottrell, E., Deligne, N.
I., Guerrero, N. O., Hobbs, L., Kiyosugi, K., Loughlin, S. C., Siebert, L.,
and Takarada, S.: Characterisation of the Quaternary eruption record:
analysis of the Large Magnitude Explosive Volcanic Eruptions (LaMEVE)
database, J. Appl. Volcanol., 3, 5, https://doi.org/10.1186/2191-5040-3-5, 2014.
Buizert, C., Cuffey, K. M., Severinghaus, J. P., Baggenstos, D., Fudge, T. J., Steig, E. J., Markle, B. R., Winstrup, M., Rhodes, R. H., Brook, E. J., Sowers, T. A., Clow, G. D., Cheng, H., Edwards, R. L., Sigl, M., McConnell, J. R., and Taylor, K. C.: The WAIS Divide deep ice core WD2014 chronology – Part 1: Methane synchronization (68–31 ka BP) and the gas age–ice age difference, Clim. Past, 11, 153–173, https://doi.org/10.5194/cp-11-153-2015, 2015.
Buizert, C., Sigl, M., Severi, M., Markle, B. R., Wettstein, J. J.,
McConnell, J. R., Pedro, J. B., Sodemann, H., Goto-Azuma, K., Kawamura, K.,
Fujita, S., Motoyama, H., Hirabayashi, M., Uemura, R., Stenni, B., Parrenin,
F., He, F., Fudge, T. J., and Steig, E. J.: Abrupt ice-age shifts in
southern westerly winds and Antarctic climate forced from the north, Nature,
563, 681–685, 2018.
Buizert, C., Fudge, T. J., Roberts, W. H. G., Steig, E. J., Sherriff-Tadano,
S., Ritz, C., Lefebvre, E., Edwards, J., Kawamura, K., Oyabu, I., Motoyama,
H., Kahle, E. C., Jones, T. R., Abe-Ouchi, A., Obase, T., Martin, C., Corr,
H., Severinghaus, J. P., Beaudette, R., Epifanio, J. A., Brook, E. J.,
Martin, K., Chappellaz, J., Aoki, S., Nakazawa, T., Sowers, T. A., Alley, R.
B., Ahn, J., Sigl, M., Severi, M., Dunbar, N. W., Svensson, A., Fegyveresi,
J. M., He, C., Liu, Z., Zhu, J., Otto-Bliesner, B. L., Lipenkov, V. Y.,
Kageyama, M., and Schwander, J.: Antarctic surface temperature and elevation
during the Last Glacial Maximum, Science, 372, 1097–1101, 2021.
Büntgen, U., Myglan, V. S., Ljungqvist, F. C., McCormick, M., Di Cosmo,
N., Sigl, M., Jungclaus, J., Wagner, S., Krusic, P. J., Esper, J., Kaplan,
J. O., de Vaan, M. A. C., Luterbacher, J., Wacker, L., Tegel, W., and
Kirdyanov, A. V.: Cooling and societal change during the Late Antique Little
Ice Age from 536 to around 660 AD, Nat. Geosci., 9, 231–236, 2016.
Büntgen, U., Eggertsson, O., Wacker, L., Sigl, M., Ljungqvist, F. C., Di
Cosmo, N., Plunkett, G., Krusic, P. J., Newfield, T. P., Esper, J., Lane,
C., Reinig, F., and Oppenheimer, C.: Multi-proxy dating of Iceland's major
pre-settlement Katla eruption to 822–823 CE, Geology, 45, 783–786, 2017.
Büntgen, U., Wacker, L., Galván, J. D., Arnold, S., Arseneault, D.,
Baillie, M., Beer, J., Bernabei, M., Bleicher, N., Boswijk, G.,
Bräuning, A., Carrer, M., Ljungqvist, F. C., Cherubini, P., Christl, M.,
Christie, D. A., Clark, P. W., Cook, E. R., D'Arrigo, R., Davi, N.,
Eggertsson, Ó., Esper, J., Fowler, A. M., Gedalof, Z. E., Gennaretti,
F., Grießinger, J., Grissino-Mayer, H., Grudd, H., Gunnarson, B. E.,
Hantemirov, R., Herzig, F., Hessl, A., Heussner, K.-U., Jull, A. J. T.,
Kukarskih, V., Kirdyanov, A., Kolář, T., Krusic, P. J., Kyncl, T.,
Lara, A., LeQuesne, C., Linderholm, H. W., Loader, N. J., Luckman, B.,
Miyake, F., Myglan, V. S., Nicolussi, K., Oppenheimer, C., Palmer, J.,
Panyushkina, I., Pederson, N., Rybníček, M., Schweingruber, F. H.,
Seim, A., Sigl, M., Churakova, O., Speer, J. H., Synal, H.-A., Tegel, W.,
Treydte, K., Villalba, R., Wiles, G., Wilson, R., Winship, L. J., Wunder,
J., Yang, B., and Young, G. H. F.: Tree rings reveal globally coherent
signature of cosmogenic radiocarbon events in 774 and 993 CE, Nat. Commun., 9,
3605, https://doi.org/10.1038/s41467-018-06036-0, 2018.
Büntgen, U., Arseneault, D., Boucher, É., Churakova, O. V.,
Gennaretti, F., Crivellaro, A., Hughes, M. K., Kirdyanov, A. V., Klippel,
L., Krusic, P. J., Linderholm, H. W., Ljungqvist, F. C., Ludescher, J.,
McCormick, M., Myglan, V. S., Nicolussi, K., Piermattei, A., Oppenheimer,
C., Reinig, F., Sigl, M., Vaganov, E. A., and Esper, J.: Prominent role of
volcanism in Common Era climate variability and human history,
Dendrochronologia, 64, 125757, https://doi.org/10.1016/j.dendro.2020.125757, 2020.
Burgisser, A.: Physical volcanology of the 2,050 BP caldera-forming eruption
of Okmok volcano, Alaska, B. Volcanol., 67, 497–525, 2005.
Burke, A., Moore, K. A., Sigl, M., Nita, D. C., McConnell, J. R., and
Adkins, J. F.: Stratospheric eruptions from tropical and extra-tropical
volcanoes constrained using high-resolution sulfur isotopes in ice cores,
Earth Planet. Sc. Lett., 521, 113–119, 2019.
Carlson, A. E. and Clark, P. U.: Ice Sheet Sources of Sea Level Rise and
Freshwater Discharge during the Last Deglaciation, Rev. Geophys., 50, RG4007, https://doi.org/10.1029/2011RG000371, 2012.
Carn, S. A., Clarisse, L., and Prata, A. J.: Multi-decadal satellite
measurements of global volcanic degassing, J. Volcanol. Geoth. Res., 311,
99–134, 2016.
Castellano, E., Becagli, S., Jouzel, J., Migliori, A., Severi, M.,
Steffensen, J. P., Traversi, R., and Udisti, R.: Volcanic eruption frequency
over the last 45 ky as recorded in Epica-Dome C ice core (East Antarctica)
and its relationship with climatic changes, Global Planet, Change, 42,
195–205, 2004.
Clark, P. U., Shakun, J. D., Baker, P. A., Bartlein, P. J., Brewer, S.,
Brook, E., Carlson, A. E., Cheng, H., Kaufman, D. S., Liu, Z. Y., Marchitto,
T. M., Mix, A. C., Morrill, C., Otto-Bliesner, B. L., Pahnke, K., Russell,
J. M., Whitlock, C., Adkins, J. F., Blois, J. L., Clark, J., Colman, S. M.,
Curry, W. B., Flower, B. P., He, F., Johnson, T. C., Lynch-Stieglitz, J.,
Markgraf, V., McManus, J., Mitrovica, J. X., Moreno, P. I., and Williams, J.
W.: Global climate evolution during the last deglaciation, P. Natl. Acad. Sci.
USA, 109, E1134–E1142, 2012.
Clausen, H. B., Hammer, C. U., Hvidberg, C. S., DahlJensen, D., Steffensen,
J. P., Kipfstuhl, J., and Legrand, M.: A comparison of the volcanic records
over the past 4000 years from the Greenland Ice Core Project and Dye 3
Greenland Ice Cores, J. Geophys. Res.-Oceans, 102, 26707–26723, 1997.
Cole-Dai, J.: Volcanoes and climate, Wires Clim. Change, 1, 824–839, 2010.
Cole-Dai, J. H., Budner, D. M., and Ferris, D. G.: High speed, high
resolution, and continuous chemical analysis of ice cores using a melter and
ion chromatography, Environ. Sci. Technol., 40, 6764–6769, 2006.
Cole-Dai, J., Ferris, D. G., Lanciki, A. L., Savarino, J., Thiemens, M. H.,
and McConnell, J. R.: Two likely stratospheric volcanic eruptions in the
1450s CE found in a bipolar, subannually dated 800 year ice core record, J.
Geophys. Res.-Atmos., 118, 7459–7466, 2013.
Cole-Dai, J., Ferris, D. G., Kennedy, J. A., Sigl, M., McConnell, J. R.,
Fudge, T. J., Geng, L., Maselli, O., Taylor, K. C., and Souney, J.:
Comprehensive Record of Volcanic Eruptions in the Holocene (11,000 years)
from the WAIS Divide, Antarctica ice core, J. Geophys. Res.-Atmos., 126,
e2020JD032855, https://doi.org/10.1029/2020JD032855, 2021.
Cook, E., Portnyagin, M., Ponomareva, V., Bazanova, L., Svensson, A., and
Garbe-Schönberg, D.: First identification of cryptotephra from the
Kamchatka Peninsula in a Greenland ice core: Implications of a widespread
marker deposit that links Greenland to the Pacific northwest, Quaternary Sci.
Rev., 181, 200–206, 2018.
Coulter, S. E., Pilcher, J. R., Plunkett, G., Baillie, M., Hall, V. A.,
Steffensen, J. P., Vinther, B. M., Clausen, H. B., and Johnsen, S. J.:
Holocene tephras highlight complexity of volcanic signals in Greenland ice
cores, J. Geophys. Res.-Atmos., 117, D21303, https://doi.org/10.1029/2012JD017698, 2012.
Crosweller, H. S., Arora, B., Brown, S. K., Cottrell, E., Deligne, N. I.,
Guerrero, N. O., Hobbs, L., Kiyosugi, K., Loughlin, S. C., Lowndes, J.,
Nayembil, M., Siebert, L., Sparks, R. S. J., Takarada, S., and Venzke, E.:
Global database on large magnitude explosive volcanic eruptions (LaMEVE),
J. Appl. Volcanol., 1, 4, https://doi.org/10.1186/2191-5040-1-4, 2012.
Crowley, T. J. and Unterman, M. B.: Technical details concerning development of a 1200 yr proxy index for global volcanism, Earth Syst. Sci. Data, 5, 187–197, https://doi.org/10.5194/essd-5-187-2013, 2013.
Dallmeyer, A., Claussen, M., Lorenz, S. J., Sigl, M., Toohey, M., and Herzschuh, U.: Holocene vegetation transitions and their climatic drivers in MPI-ESM1.2, Clim. Past, 17, 2481–2513, https://doi.org/10.5194/cp-17-2481-2021, 2021.
Donges, J. F., Donner, R. V., Marwan, N., Breitenbach, S. F. M., Rehfeld, K., and Kurths, J.: Non-linear regime shifts in Holocene Asian monsoon variability: potential impacts on cultural change and migratory patterns, Clim. Past, 11, 709–741, https://doi.org/10.5194/cp-11-709-2015, 2015.
Douglass, D. H. and Knox, R. S.: Climate forcing by the volcanic eruption of
Mount Pinatubo, Geophys. Res. Lett., 32, L05710, https://doi.org/10.1029/2004GL022119, 2005.
Du, Z. H., Xiao, C. D., Zhang, Q., Li, C. J., Wang, F. T., Liu, K., and Ma,
X. Y.: Climatic and environmental signals recorded in the EGRIP snowpit,
Greenland, Environ. Earth Sci., 78, 10, https://doi.org/10.1007/s12665-019-8177-4, 2019.
EPICA-Community-Members: Eight glacial cycles from an Antarctic ice core,
Nature, 429, 623–628, 2004.
EPICA-Community-Members: One-to-one coupling of glacial climate variability
in Greenland and Antarctica, Nature, 444, 195–198, 2006.
Fischer, T. P., Arellano, S., Carn, S., Aiuppa, A., Galle, B., Allard, P.,
Lopez, T., Shinohara, H., Kelly, P., Werner, C., Cardellini, C., and
Chiodini, G.: The emissions of CO2 and other volatiles from the world's
subaerial volcanoes, Sci. Rep.-UK, 9, 18716, https://doi.org/10.1038/s41598-019-54682-1, 2019.
Gao, C., Ludlow, F., Matthews, J. A., Stine, A. R., Robock, A., Pan, Y.,
Breen, R., Nolan, B., and Sigl, M.: Volcanic climate impacts can act as
ultimate and proximate causes of Chinese dynastic collapse, Commun.
Earth Environ., 2, 234, https://doi.org/10.1038/s43247-021-00284-7, 2021.
Gao, C. C., Oman, L., Robock, A., and Stenchikov, G. L.: Atmospheric
volcanic loading derived from bipolar ice cores: Accounting for the spatial
distribution of volcanic deposition, J. Geophys. Res.-Atmos., 112, D09109, https://doi.org/10.1029/2006JD007461, 2007.
Gao, C. C., Robock, A., and Ammann, C.: Volcanic forcing of climate over the
past 1500 years: An improved ice core-based index for climate models, J.
Geophys. Res.-Atmos., 113, D23111, https://doi.org/10.1029/2008JD010239, 2008.
Gautier, E., Savarino, J., Erbland, J., Lanciki, A., and Possenti, P.: Variability of sulfate signal in ice core records based on five replicate cores, Clim. Past, 12, 103–113, https://doi.org/10.5194/cp-12-103-2016, 2016.
Gautier, E., Savarino, J., Hoek, J., Erbland, J., Caillon, N., Hattori, S.,
Yoshida, N., Albalat, E., Albarede, F., and Farquhar, J.: 2600-years of
stratospheric volcanism through sulfate isotopes, Nat. Commun., 10, 466, https://doi.org/10.1038/s41467-019-08357-0, 2019.
Geirsdottir, A., Miller, G. H., Axford, Y., and Olafsdottir, S.: Holocene
and latest Pleistocene climate and glacier fluctuations in Iceland,
Quaternary Sci. Rev., 28, 2107–2118, 2009.
Global Volcanism Program: Volcanoes of the World, v. 4.10.6, edited by: Venzke, E, Smithsonian Institution, downloaded 3 June 2022,
https://doi.org/10.5479/si.GVP.VOTW4-2013, 2013.
Graf, H. F., Kirchner, I., Robock, A., and Schult, I.: Pinatubo Eruption
Winter Climate Effects - Model Versus Observations, Clim. Dynam., 9, 81–93,
1993.
Gronvold, K., Oskarsson, N., Johnsen, S. J., Clausen, H. B., Hammer, C. U.,
Bond, G., and Bard, E.: Ash Layers from Iceland in the Greenland Grip Ice
Core Correlated with Oceanic and Land Sediments, Earth Planet. Sc. Lett., 135,
149–155, 1995.
Guillet, S., Corona, C., Stoffel, M., Khodri, M., Lavigne, F., Ortega, P.,
Eckert, N., Sielenou, P. D., Daux, V., Churakova, O. V., Davi, N.,
Edouard, J.-L., Zhang, Y., Luckman, B. H., Myglan, V. S., Guiot, J.,
Beniston, M., Masson-Delmotte, V., and Oppenheimer, C.: Climate response to
the Samalas volcanic eruption in 1257 revealed by proxy records, Nat. Geosci.,
10, 123–128, 2017.
Hammer, C. U., Clausen, H. B., and Dansgaard, W.: Greenland Ice-Sheet
Evidence of Post-Glacial Volcanism and Its Climatic Impact, Nature, 288,
230–235, 1980.
Hammer, C. U., Clausen, H. B., and Langway, C. C.: 50,000 years of recorded
global volcanism, Clim. Change, 35, 1–15, 1997.
Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A.,
Russell, G., Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B.,
Canuto, V., Chandler, M., Cheng, Y., Del Genio, A., Faluvegi, G., Fleming,
E., Friend, A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch, D.,
Lean, J., Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov,
T., Oinas, V., Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Shindell,
D., Stone, P., Sun, S., Tausnev, N., Thresher, D., Wielicki, B., Wong, T.,
Yao, M., and Zhang, S.: Efficacy of climate forcings, J. Geophys.
Res.-Atmos., 110, D18104, https://doi.org/10.1029/2005JD005776, 2005.
Hardarson, B. S. and Fitton, J. G.: Increased Mantle Melting beneath
Snaefellsjokull Volcano during Late Pleistocene Deglaciation, Nature, 353,
62–64, 1991.
Harrison, S. P., Bartlein, P. J., Brewer, S., Prentice, I. C., Boyd, M.,
Hessler, I., Holmgren, K., Izumi, K., and Willis, K.: Climate model
benchmarking with glacial and mid-Holocene climates, Clim. Dynam., 43,
671–688, 2014.
Helama, S., Arppe, L., Uusitalo, J., Holopainen, J., Makela, H. M., Makinen,
H., Mielikainen, K., Nojd, P., Sutinen, R., Taavitsainen, J. P., Timonen,
M., and Oinonen, M.: Volcanic dust veils from sixth century tree-ring
isotopes linked to reduced irradiance, primary production and human health,
Sci. Rep.-UK, 8, 1339, https://doi.org/10.1038/s41598-018-19760-w, 2018.
Hjartarson, Á., Postglacial lava production in Iceland, pp. 95–108, in: Skagafjörður unconformity: North Iceland and its
geological history, edited by:
Hjartarson, Á., Geological Museum, University of Copenhagen, PhD thesis,
248 pp., 2003.
Huhtamaa, H. and Helama, S.: Distant impact: tropical volcanic eruptions and
climate-driven agricultural crises in seventeenth-century Ostrobothnia,
Finland, J. Hist. Geogr., 57, 40–51, 2017.
Huybers, P. and Langmuir, C.: Feedback between deglaciation, volcanism, and
atmospheric CO2, Earth Planet. Sc. Lett., 286, 479–491, 2009.
Ilyinskaya, E., Mobbs, S., Burton, R., Burton, M., Pardini, F., Pfeffer, M.
A., Purvis, R., Lee, J., Bauguitte, S., Brooks, B., Colfescu, I., Petersen,
G. N., Wellpott, A., and Bergsson, B.: Globally Significant CO2
Emissions From Katla, a Subglacial Volcano in Iceland, Geophys. Res. Lett., 45,
10332–10341, https://doi.org/10.1029/2018GL079096, 2018.
Jensen, B. J. L., Pyne-O'Donnell, S., Plunkett, G., Froese, D. G., Hughes,
P. D. M., Sigl, M., McConnell, J. R., Amesbury, M. J., Blackwell, P. G., van
den Bogaard, C., Buck, C. E., Charman, D. J., Clague, J. J., Hall, V. A.,
Koch, J., Mackay, H., Mallon, G., McColl, L., and Pilcher, J. R.:
Transatlantic distribution of the Alaskan White River Ash, Geology, 42,
875–878, 2014.
Jull, M. and McKenzie, D.: The effect of deglaciation on mantle melting
beneath Iceland, J. Geophys. Res.-Sol. Ea., 101, 21815–21828, 1996.
Jungclaus, J. H., Bard, E., Baroni, M., Braconnot, P., Cao, J., Chini, L. P., Egorova, T., Evans, M., González-Rouco, J. F., Goosse, H., Hurtt, G. C., Joos, F., Kaplan, J. O., Khodri, M., Klein Goldewijk, K., Krivova, N., LeGrande, A. N., Lorenz, S. J., Luterbacher, J., Man, W., Maycock, A. C., Meinshausen, M., Moberg, A., Muscheler, R., Nehrbass-Ahles, C., Otto-Bliesner, B. I., Phipps, S. J., Pongratz, J., Rozanov, E., Schmidt, G. A., Schmidt, H., Schmutz, W., Schurer, A., Shapiro, A. I., Sigl, M., Smerdon, J. E., Solanki, S. K., Timmreck, C., Toohey, M., Usoskin, I. G., Wagner, S., Wu, C.-J., Yeo, K. L., Zanchettin, D., Zhang, Q., and Zorita, E.: The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations, Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, 2017.
Kellerhals, T., Tobler, L., Brutsch, S., Sigl, M., Wacker, L., Gaggeler, H.
W., and Schwikowski, M.: Thallium as a Tracer for Preindustrial Volcanic
Eruptions in an Ice Core Record from Illimani, Bolivia, Environ. Sci. Technol.,
44, 888–893, 2010.
Kobashi, T., Menviel, L., Jeltsch-Thommes, A., Vinther, B. M., Box, J. E.,
Muscheler, R., Nakaegawa, T., Pfister, P. L., Doring, M., Leuenberger, M.,
Wanner, H., and Ohmura, A.: Volcanic influence on centennial to millennial
Holocene Greenland temperature change, Sci. Rep.-UK, 7, 1441, https://doi.org/10.1038/s41598-017-01451, 2017.
Kremser, S., Thomason, L. W., von Hobe, M., Hermann, M., Deshler, T.,
Timmreck, C., Toohey, M., Stenke, A., Schwarz, J. P., Weigel, R.,
Fueglistaler, S., Prata, F. J., Vernier, J. P., Schlager, H., Barnes, J. E.,
Antuna-Marrero, J. C., Fairlie, D., Palm, M., Mahieu, E., Notholt, J., Rex,
M., Bingen, C., Vanhellemont, F., Bourassa, A., Plane, J. M. C., Klocke, D.,
Carn, S. A., Clarisse, L., Trickl, T., Neely, R., James, A. D., Rieger, L.,
Wilson, J. C., and Meland, B.: Stratospheric aerosol-Observations,
processes, and impact on climate, Rev. Geophys., 54, 278–335, 2016.
Kutterolf, S., Jegen, M., Mitrovica, J. X., Kwasnitschka, T., Freundt, A.,
and Huybers, P. J.: A detection of Milankovitch frequencies in global
volcanic activity, Geology, 41, 227–230, 2013.
Lamarche, V. C. and Hirschboeck, K. K.: Frost Rings in Trees as Records of
Major Volcanic-Eruptions, Nature, 307, 121–126, 1984.
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010.
Lanciki, A., Cole-Dai, J., Thiemens, M. H., and Savarino, J.: Sulfur isotope
evidence of little or no stratospheric impact by the 1783 Laki volcanic
eruption, Geophys. Res. Lett., 39, L01806, https://doi.org/10.1029/2011GL050075, 2012.
Langway, C. C., Osada, K., Clausen, H. B., Hammer, C. U., and Shoji, H.: A
10-Century Comparison of Prominent Bipolar Volcanic Events in Ice Cores, J.
Geophys. Res.-Atmos., 100, 16241–16247, 1995.
Lavigne, F., Degeai, J. P., Komorowski, J. C., Guillet, S., Robert, V.,
Lahitte, P., Oppenheimer, C., Stoffel, M., Vidal, C. M., Surono, Pratomo,
I., Wassmer, P., Hajdas, I., Hadmoko, D. S., and De Belizal, E.: Source of
the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani
Volcanic Complex, Indonesia, P. Natl. Acad. Sci. USA, 110, 16742–16747, 2013.
Lin, J., Svensson, A., Hvidberg, C. S., Lohmann, J., Kristiansen, S., Dahl-Jensen, D., Steffensen, J. P., Rasmussen, S. O., Cook, E., Kjær, H. A., Vinther, B. M., Fischer, H., Stocker, T., Sigl, M., Bigler, M., Severi, M., Traversi, R., and Mulvaney, R.: Magnitude, frequency and climate forcing of global volcanism during the last glacial period as seen in Greenland and Antarctic ice cores (60–9 ka), Clim. Past, 18, 485–506, https://doi.org/10.5194/cp-18-485-2022, 2022.
Liu, Z. Y., Zhu, J., Rosenthal, Y., Zhang, X., Otto-Bliesner, B. L.,
Timmermann, A., Smith, R. S., Lohmann, G., Zheng, W. P., and Timm, O. E.:
The Holocene temperature conundrum, P. Natl. Acad. Sci. USA, 111, E3501–E3505,
2014.
Luterbacher, J. and Pfister, C.: The year without a summer, Nat. Geosci., 8,
246–248, 2015.
Luterbacher, J., Werner, J. P., Smerdon, J. E., Fernandez-Donado, L.,
Gonzalez-Rouco, F. J., Barriopedro, D., Ljungqvist, F. C., Büntgen, U.,
Zorita, E., Wagner, S., Esper, J., McCarroll, D., Toreti, A., Frank, D.,
Jungclaus, J. H., Barriendos, M., Bertolin, C., Bothe, O., Brazdil, R.,
Camuffo, D., Dobrovolny, P., Gagen, M., Garica-Bustamante, E., Ge, Q.,
Gomez-Navarro, J. J., Guiot, J., Hao, Z., Hegerl, G. C., Holmgren, K.,
Klimenko, V. V., Martin-Chivelet, J., Pfister, C., Roberts, N., Schindler,
A., Schurer, A., Solomina, O., von Gunten, L., Wahl, E., Wanner, H., Wetter,
O., Xoplaki, E., Yuan, N., Zanchettin, D., Zhang, H., and Zerefos, C.:
European summer temperatures since Roman times, Environ. Res. Lett., 11, 024001, https://doi.org/10.1088/1748-9326/11/2/024001, 2016.
Maclennan, J., Jull, M., McKenzie, D., Slater, L., and Gronvold, K.: The
link between volcanism and deglaciation in Iceland, Geochem. Geophy. Geosy., 3, 1062, https://doi.org/10.1029/2001GC000282,
2002.
Man, W. M., Zuo, M., Zhou, T. J., Fasullo, J. T., Bethke, I., Chen, X. L.,
Zou, L. W., and Wu, B.: Potential Influences of Volcanic Eruptions on Future
Global Land Monsoon Precipitation Changes, Earths Future, 9, e2020EF001803, https://doi.org/10.1029/2020EF001803, 2021.
Marshall, L., Schmidt, A., Toohey, M., Carslaw, K. S., Mann, G. W., Sigl, M., Khodri, M., Timmreck, C., Zanchettin, D., Ball, W. T., Bekki, S., Brooke, J. S. A., Dhomse, S., Johnson, C., Lamarque, J.-F., LeGrande, A. N., Mills, M. J., Niemeier, U., Pope, J. O., Poulain, V., Robock, A., Rozanov, E., Stenke, A., Sukhodolov, T., Tilmes, S., Tsigaridis, K., and Tummon, F.: Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora, Atmos. Chem. Phys., 18, 2307–2328, https://doi.org/10.5194/acp-18-2307-2018, 2018.
Marshall, L., Johnson, J. S., Mann, G. W., Lee, L., Dhomse, S. S., Regayre,
L., Yoshioka, M., Carslaw, K. S., and Schmidt, A.: Exploring How Eruption
Source Parameters Affect Volcanic Radiative Forcing Using Statistical
Emulation, J. Geophys. Res.-Atmos., 124, 964–985, 2019.
Marshall, L. R., Smith, C. J., Forster, P. M., Aubry, T. J., Andrews, T.,
and Schmidt, A.: Large Variations in Volcanic Aerosol Forcing Efficiency Due
to Eruption Source Parameters and Rapid Adjustments, Geophys. Res. Lett., 47,
e2020GL090241, https://doi.org/10.1029/2020GL090241, 2020.
Marshall, L. R., Schmidt, A., Johnson, J. S., Mann, G. W., Lee, L. A.,
Rigby, R., and Carslaw, K. S.: Unknown Eruption Source Parameters Cause
Large Uncertainty in Historical Volcanic Radiative Forcing Reconstructions,
J. Geophys. Res.-Atmos., 126, e2020JD033578, https://doi.org/10.1029/2020JD033578, 2021.
Mason, B. G., Pyle, D. M., and Oppenheimer, C.: The size and frequency of
the largest explosive eruptions on Earth, B. Volcanol., 66, 735–748, 2004.
Mayewski, P. A., Meeker, L. D., Twickler, M. S., Whitlow, S., Yang, Q. Z.,
Lyons, W. B., and Prentice, M.: Major features and forcing of high-latitude
northern hemisphere atmospheric circulation using a 110,000-year-long
glaciochemical series, J. Geophys. Res.-Oceans, 102, 26345–26366, 1997.
Mayewski, P. A., Rohling, E. E., Stager, J. C., Karlen, W., Maasch, K. A.,
Meeker, L. D., Meyerson, E. A., Gasse, F., van Kreveld, S., Holmgren, K.,
Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R. R.,
and Steig, E. J.: Holocene climate variability, Quaternary Res., 62, 243–255,
2004.
McAneney, J. and Baillie, M.: Absolute tree-ring dates for the Late Bronze
Age eruptions of Aniakchak and Thera in light of a proposed revision of
ice-core chronologies, Antiquity, 93, 99–112, 2019.
McConnell, J. R.: Continuous ice-core chemical analyses using inductively
Coupled Plasma Mass Spectrometry, Environ. Sci. Technol., 36, 7–11, 2002.
McConnell, J. R., Burke, A., Dunbar, N. W., Kohler, P., Thomas, J. L.,
Arienzo, M. M., Chellman, N. J., Maselli, O. J., Sigl, M., Adkins, J. F.,
Baggenstos, D., Burkhart, J. F., Brook, E. J., Buizert, C., Cole-Dai, J.,
Fudge, T. J., Knorr, G., Graf, H. F., Grieman, M. M., Iverson, N., McGwire,
K. C., Mulvaney, R., Paris, G., Rhodes, R. H., Saltzman, E. S.,
Severinghaus, J. P., Steffensen, J. P., Taylor, K. C., and Winckler, G.:
Synchronous volcanic eruptions and abrupt climate change similar to 17.7 ka
plausibly linked by stratospheric ozone depletion, P. Natl. Acad. Sci. USA, 114,
10035–10040, 2017.
McConnell, J. R., Wilson, A. I., Stohl, A., Arienzo, M. M., Chellman, N. J.,
Eckhardt, S., Thompson, E. M., Pollard, A. M., and Steffensen, J. P.: Lead
pollution recorded in Greenland ice indicates European emissions tracked
plagues, wars, and imperial expansion during antiquity, P.
Natl. Acad. Sci. USA, 115, 5726–5731, https://doi.org/10.1073/pnas.1721818115, 2018.
McConnell, J. R., Sigl, M., Plunkett, G., Burke, A., Kim, W., Raible, C. C.,
Wilson, A. I., Manning, J. G., Ludlow, F. M., Chellman, N. J., Innes, H. M.,
Yang, Z., Larsen, J. F., Schaefer, J. R., Kipfstuhl, S., Mojtabavi, S.,
Wilhelms, F., Opel, T., Meyer, H., and Steffensen, J. P.: Extreme climate
after massive eruption of Alaska's Okmok volcano in 43 BCE and effects on
the late Roman Republic and Ptolemaic Kingdom, P. Natl. Acad. Sci. USA, 117,
15443–15449, 2020a.
McConnell, J. R., Sigl, M., Plunkett, G., Wilson, A. I., Manning, J. G.,
Ludlow, F., and Chellman, N. J.: REPLY TO STRUNZ AND BRAECKEL: Agricultural
failures logically link historical events to extreme climate following the
43 BCE Okmok eruption, P. Natl. Acad. Sci. USA, 117, 32209–32210, 2020b.
Meese, D. A., Gow, A. J., Alley, R. B., Zielinski, G. A., Grootes, P. M.,
Ram, M., Taylor, K. C., Mayewski, P. A., and Bolzan, J. F.: The Greenland
Ice Sheet Project 2 depth-age scale: Methods and results, J. Geophys.
Res.-Oceans, 102, 26411–26423, 1997.
Mekhaldi, F., Muscheler, R., Adolphi, F., Aldahan, A., Beer, J., McConnell,
J. R., Possnert, G., Sigl, M., Svensson, A., Synal, H. A., Welten, K. C.,
and Woodruff, T. E.: Multiradionuclide evidence for the solar origin of the
cosmic-ray events of AD 774/5 and 993/4, Nat. Commun., 6, 8611, https://doi.org/10.1038/ncomms9611, 2015.
Metzner, D., Kutterolf, S., Toohey, M., Timmreck, C., Niemeier, U., Freundt,
A., and Krüger, K.: Radiative forcing and climate impact resulting from
SO2 injections based on a 200,000-year record of Plinian eruptions
along the Central American Volcanic Arc, Int. J. Earth Sci., 103, 2063–2079,
2014.
Miyake, F., Nagaya, K., Masuda, K., and Nakamura, T.: A signature of
cosmic-ray increase in AD 774–775 from tree rings in Japan, Nature, 486,
240–242, 2012.
Muscheler, R., Adolphi, F., and Knudsen, M. F.: Assessing the differences
between the IntCal and Greenland ice-core time scales for the last 14,000
years via the common cosmogenic radionuclide variations, Quaternary Sci. Rev.,
106, 81–87, 2014.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J.S., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G. T. T., and Zhang, H.: Anthropogenic and Natural Radiative Forcing, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Doschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 659–740, https://doi.org/10.1017/CBO9781107415324.0182013, 2013.
Neff, P. D.: A review of the brittle ice zone in polar ice cores, J. Glaciol.,
55, 72–82, 2014.
Oladottir, B. A., Thordarson, T., Geirsdottir, A., Johannsdottir, G. E., and
Mangerud, J.: The Saksunarvatn Ash and the G10ka series tephra. Review and
current state of knowledge, Quat. Geochronol., 56, 101041, https://doi.org/10.1016/j.quageo.2019.101041, 2020.
Oppenheimer, C., Wacker, L., Xu, J., Galvan, J. D., Stoffel, M., Guillet,
S., Corona, C., Sigl, M., Di Cosmo, N., Hajdas, I., Pan, B., Breuker, R.,
Schneider, L., Esper, J., Fei, J., Hammond, J. O. S., and Büntgen, U.:
Multi-proxy dating the `Millennium Eruption' of Changbaishan to late 946 CE,
Quaternary Sci. Rev., 158, 164–171, 2017.
Oppenheimer, C., Orchard, A., Stoffel, M., Newfield, T. P., Guillet, S.,
Corona, C., Sigl, M., Di Cosmo, N., and Buntgen, U.: The Eldgja eruption:
timing, long-range impacts and influence on the Christianisation of Iceland,
Clim. Change, 147, 369–381, 2018.
Owens, M. J., Lockwood, M., Hawkins, E., Usoskin, I., Jones, G. S., Barnard,
L., Schurer, A., and Fasullo, J.: The Maunder minimum and the Little Ice
Age: an update from recent reconstructions and climate simulations, J. Space
Weather Space Clim., 7, A33, https://doi.org/10.1051/swsc/2017034, 2017.
Parrenin, F., Barnola, J.-M., Beer, J., Blunier, T., Castellano, E., Chappellaz, J., Dreyfus, G., Fischer, H., Fujita, S., Jouzel, J., Kawamura, K., Lemieux-Dudon, B., Loulergue, L., Masson-Delmotte, V., Narcisi, B., Petit, J.-R., Raisbeck, G., Raynaud, D., Ruth, U., Schwander, J., Severi, M., Spahni, R., Steffensen, J. P., Svensson, A., Udisti, R., Waelbroeck, C., and Wolff, E.: The EDC3 chronology for the EPICA Dome C ice core, Clim. Past, 3, 485–497, https://doi.org/10.5194/cp-3-485-2007, 2007.
Parrenin, F., Petit, J.-R., Masson-Delmotte, V., Wolff, E., Basile-Doelsch, I., Jouzel, J., Lipenkov, V., Rasmussen, S. O., Schwander, J., Severi, M., Udisti, R., Veres, D., and Vinther, B. M.: Volcanic synchronisation between the EPICA Dome C and Vostok ice cores (Antarctica) 0–145 kyr BP, Clim. Past, 8, 1031–1045, https://doi.org/10.5194/cp-8-1031-2012, 2012.
Pearce, N. J. G., Westgate, J. A., Preece, S. J., Eastwood, W. J., and
Perkins, W. T.: Identification of Aniakchak (Alaska) tephra in Greenland ice
core challenges the 1645 BC date for Minoan eruption of Santorini, Geochem.
Geophy. Geosy., 5, Q03005, https://doi.org/10.1029/2003GC000672, 2004.
Pearson, C., Sigl, M., Burke, A., Davies, S., Kurbatov, A., Severi, M.,
Cole-Dai, J., Innes, H., Albert, P. G., and Helmick, M.: Geochemical
ice-core constraints on the timing and climatic impact of Aniakchak II (1628
BCE) and Thera (Minoan) volcanic eruptions, PNAS Nexus, https://doi.org/10.1093/pnasnexus/pgac048, 2022. 2022.
Pinto, J. P., Turco, R. P., and Toon, O. B.: Self-Limiting Physical and
Chemical Effects in Volcanic-Eruption Clouds, J. Geophys. Res.-Atmos., 94,
11165–11174, 1989.
Plummer, C. T., Curran, M. A. J., van Ommen, T. D., Rasmussen, S. O., Moy, A. D., Vance, T. R., Clausen, H. B., Vinther, B. M., and Mayewski, P. A.: An independently dated 2000-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the 1450s CE eruption of Kuwae, Vanuatu, Clim. Past, 8, 1929–1940, https://doi.org/10.5194/cp-8-1929-2012, 2012.
Plunkett, G. and Pilcher, J. R.: Defining the potential source region of
volcanic ash in northwest Europe during the Mid- to Late Holocene, Earth-Sci.
Rev., 179, 20–37, 2018.
Plunkett, G., Sigl, M., Pilcher, J. R., McConnell, J. R., Chellman, N.,
Steffensen, J. P., and Büntgen, U.: Smoking guns and volcanic ash: the
importance of sparse tephras in Greenland ice cores, Polar Res., 39, 3511, https://doi.org/10.33265/polar.v39.3511, 2020.
Plunkett, G., Sigl, M., Schwaiger, H. F., Tomlinson, E. L., Toohey, M., McConnell, J. R., Pilcher, J. R., Hasegawa, T., and Siebe, C.: No evidence for tephra in Greenland from the historic eruption of Vesuvius in 79 CE: implications for geochronology and paleoclimatology, Clim. Past, 18, 45–65, https://doi.org/10.5194/cp-18-45-2022, 2022.
Raible, C. C., Brönnimann, S., Auchmann, R., Brohan, P., Frolicher, T.
L., Graf, H. F., Jones, P., Luterbacher, J., Muthers, S., Neukom, R.,
Robock, A., Self, S., Sudrajat, A., Timmreck, C., and Wegmann, M.: Tambora
1815 as a test case for high impact volcanic eruptions: Earth system
effects, Wires Clim. Change, 7, 569–589, 2016.
Rasmussen, S. O., Andersen, K. K., Svensson, A. M., Steffensen, J. P.,
Vinther, B. M., Clausen, H. B., Siggaard-Andersen, M. L., Johnsen, S. J.,
Larsen, L. B., Dahl-Jensen, D., Bigler, M., Rothlisberger, R., Fischer, H.,
Goto-Azuma, K., Hansson, M. E., and Ruth, U.: A new Greenland ice core
chronology for the last glacial termination, J. Geophys. Res.-Atmos., 111, D06102, https://doi.org/10.1029/2005JD006079, 2006.
Rasmussen, S. O., Abbott, P. M., Blunier, T., Bourne, A. J., Brook, E., Buchardt, S. L., Buizert, C., Chappellaz, J., Clausen, H. B., Cook, E., Dahl-Jensen, D., Davies, S. M., Guillevic, M., Kipfstuhl, S., Laepple, T., Seierstad, I. K., Severinghaus, J. P., Steffensen, J. P., Stowasser, C., Svensson, A., Vallelonga, P., Vinther, B. M., Wilhelms, F., and Winstrup, M.: A first chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core, Clim. Past, 9, 2713–2730, https://doi.org/10.5194/cp-9-2713-2013, 2013.
Ridley, D. A., Solomon, S., Barnes, J. E., Burlakov, V. D., Deshler, T.,
Dolgii, S. I., Herber, A. B., Nagai, T., Neely, R. R., Nevzorov, A. V.,
Ritter, C., Sakai, T., Santer, B. D., Sato, M., Schmidt, A., Uchino, O., and
Vernier, J. P.: Total volcanic stratospheric aerosol optical depths and
implications for global climate change, Geophys. Res. Lett., 41, 7763–7769,
2014.
Robock, A.: Volcanic eruptions and climate, Rev. Geophys., 38, 191–219, 2000.
Salzer, M. W. and Hughes, M. K.: Bristlecone pine tree rings and volcanic
eruptions over the last 5000 yr, Quaternary Res., 67, 57–68, 2007.
Salzer, M. W., Bunn, A. G., Graham, N. E., and Hughes, M. K.: Five millennia
of paleotemperature from tree-rings in the Great Basin, USA, Clim. Dynam., 42,
1517–1526, 2014.
Santer, B. D., Bonfils, C., Painter, J. F., Zelinka, M. D., Mears, C.,
Solomon, S., Schmidt, G. A., Fyfe, J. C., Cole, J. N. S., Nazarenko, L.,
Taylor, K. E., and Wentz, F. J.: Volcanic contribution to decadal changes in
tropospheric temperature, Nat. Geosci., 7, 185–189, 2014.
Schmidt, A., Carslaw, K. S., Mann, G. W., Wilson, M., Breider, T. J., Pickering, S. J., and Thordarson, T.: The impact of the 1783–1784 AD Laki eruption on global aerosol formation processes and cloud condensation nuclei, Atmos. Chem. Phys., 10, 6025–6041, https://doi.org/10.5194/acp-10-6025-2010, 2010.
Schmidt, A., Thordarson, T., Oman, L. D., Robock, A., and Self, S.: Climatic
impact of the long-lasting 1783 Laki eruption: Inapplicability of
mass-independent sulfur isotopic composition measurements, J. Geophys.
Res.-Atmos., 117, D23116, https://doi.org/10.1029/2012JD018414, 2012.
Schmidt, A., Leadbetter, S., Theys, N., Carboni, E., Witham, C. S.,
Stevenson, J. A., Birch, C. E., Thordarson, T., Turnock, S., Barsotti, S.,
Delaney, L., Feng, W. H., Grainger, R. G., Hort, M. C., Hoskuldsson, A.,
Ialongo, I., Ilyinskaya, E., Johannsson, T., Kenny, P., Mather, T. A.,
Richards, N. A. D., and Shepherd, J.: Satellite detection, long-range
transport, and air quality impacts of volcanic sulfur dioxide from the
2014-2015 flood lava eruption at Baroarbunga (Iceland), J. Geophys. Res.-Atmos.,
120, 9739–9757, 2015.
Schmidt, A., Mills, M. J., Ghan, S., Gregory, J. M., Allan, R. P., Andrews,
T., Bardeen, C. G., Conley, A., Forster, P. M., Gettelman, A., Portmann, R.
W., Solomon, S., and Toon, O. B.: Volcanic Radiative Forcing From 1979 to
2015, J. Geophys. Res.-Atmos., 123, 12491–12508, 2018.
Schmidt, P., Lund, B., Hieronymus, C., Maclennan, J., Arnadottir, T., and
Pagli, C.: Effects of present-day deglaciation in Iceland on mantle melt
production rates, J. Geophys. Res.-Sol. Ea., 118, 3366–3379, 2013.
Schurer, A. P., Tett, S. F. B., and Hegerl, G. C.: Small influence of solar
variability on climate over the past millennium, Nat. Geosci., 7, 104–108,
2014.
Seierstad, I. K., Abbott, P. M., Bigler, M., Blunier, T., Bourne, A. J.,
Brook, E., Buchardt, S. L., Buizert, C., Clausen, H. B., Cook, E.,
Dahl-Jensen, D., Davies, S. M., Guillevic, M., Johnsen, S. J., Pedersen, D.
S., Popp, T. J., Rasmussen, S. O., Severinghaus, J. P., Svensson, A., and
Vinther, B. M.: Consistently dated records from the Greenland GRIP, GISP2
and NGRIP ice cores for the past 104 ka reveal regional millennial-scale
delta O-18 gradients with possible Heinrich event imprint, Quaternary Sci.
Rev., 106, 29–46, 2014.
Severi, M., Becagli, S., Castellano, E., Morganti, A., Traversi, R., Udisti, R., Ruth, U., Fischer, H., Huybrechts, P., Wolff, E., Parrenin, F., Kaufmann, P., Lambert, F., and Steffensen, J. P.: Synchronisation of the EDML and EDC ice cores for the last 52 kyr by volcanic signature matching, Clim. Past, 3, 367–374, https://doi.org/10.5194/cp-3-367-2007, 2007.
Sigl, M., McConnell, J. R., Layman, L., Maselli, O., McGwire, K., Pasteris,
D., Dahl-Jensen, D., Steffensen, J. P., Vinther, B., Edwards, R., Mulvaney,
R., and Kipfstuhl, S.: A new bipolar ice core record of volcanism from WAIS
Divide and NEEM and implications for climate forcing of the last 2000 years,
J. Geophys. Res.-Atmos., 118, 1151–1169, 2013.
Sigl, M., McConnell, J. R., Toohey, M., Curran, M., Das, S. B., Edwards, R.,
Isaksson, E., Kawamura, K., Kipfstuhl, S., Krüger, K., Layman, L.,
Maselli, O. J., Motizuki, Y., Motoyama, H., Pasteris, D. R., and Severi, M.:
Insights from Antarctica on volcanic forcing during the Common Era, Nat. Clim.
Change, 4, 693–697, 2014.
Sigl, M., Winstrup, M., McConnell, J. R., Welten, K. C., Plunkett, G.,
Ludlow, F., Büntgen, U., Caffee, M., Chellman, N., Dahl-Jensen, D.,
Fischer, H., Kipfstuhl, S., Kostick, C., Maselli, O. J., Mekhaldi, F.,
Mulvaney, R., Muscheler, R., Pasteris, D. R., Pilcher, J. R., Salzer, M.,
Schüpbach, S., Steffensen, J. P., Vinther, B. M., and Woodruff, T. E.:
Timing and climate forcing of volcanic eruptions for the past 2,500 years,
Nature, 523, 543–549, 2015.
Sigl, M., Fudge, T. J., Winstrup, M., Cole-Dai, J., Ferris, D., McConnell, J. R., Taylor, K. C., Welten, K. C., Woodruff, T. E., Adolphi, F., Bisiaux, M., Brook, E. J., Buizert, C., Caffee, M. W., Dunbar, N. W., Edwards, R., Geng, L., Iverson, N., Koffman, B., Layman, L., Maselli, O. J., McGwire, K., Muscheler, R., Nishiizumi, K., Pasteris, D. R., Rhodes, R. H., and Sowers, T. A.: The WAIS Divide deep ice core WD2014 chronology – Part 2: Annual-layer counting (0–31 ka BP), Clim. Past, 12, 769–786, https://doi.org/10.5194/cp-12-769-2016, 2016.
Sigl, M., Toohey, M., McConnell, J. R., Cole-Dai, J., and Severi, M.:
HolVol: Reconstructed volcanic stratospheric sulfur injections and aerosol
optical depth for the Holocene (9500 BCE to 1900 CE), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.928646, 2021.
Sigmundsson, F., Pinel, V., Lund, B., Albino, F., Pagli, C., Geirsson, H.,
and Sturkell, E.: Climate effects on volcanism: influence on magmatic
systems of loading and unloading from ice mass variations, with examples
from Iceland, Philos. T. R. Soc. A, 368, 2519–2534, 2010.
Sinton, J., Grönvold, K., and Sæmundsson, K.: Postglacial eruptive
history of the Western Volcanic Zone, Iceland, Geochem. Geophys.
Geosyst., 6, Q12009, https://doi.org/10.1029/2005GC001021, 2005.
Smith, V. C., Costa, A., Aguirre-Diaz, G., Pedrazzi, D., Scifo, A.,
Plunkett, G., Poret, M., Tournigand, P. Y., Miles, D., Dee, M. W.,
McConnell, J. R., Sunye-Puchol, I., Harris, P. D., Sigl, M., Pilcher, J. R.,
Chellman, N., and Gutierrez, E.: The magnitude and impact of the 431 CE
Tierra Blanca Joven eruption of Ilopango, El Salvador, P. Natl. Acad. Sci. USA,
117, 26061–26068, 2020.
Stoffel, M., Khodri, M., Corona, C., Guillet, S., Poulain, V., Bekki, S.,
Guiot, J., Luckman, B. H., Oppenheimer, C., Beniston, M., and
Masson-Delmotte, V.: Estimates of volcanic-induced cooling in the Northern
Hemisphere over the past 1,500 years, Nat. Geosci., 8, 784–788, https://doi.org/10.1038/ngeo2526,
2015.
Sun, C. Q., Plunkett, G., Liu, J. Q., Zhao, H. L., Sigl, M., McConnell, J.
R., Pilcher, J. R., Vinther, B., Steffensen, J. P., and Hall, V.: Ash from
Changbaishan Millennium eruption recorded in Greenland ice: Implications for
determining the eruption's timing and impact, Geophys. Res. Lett., 41, 694–701,
2014.
Svensson, A., Andersen, K. K., Bigler, M., Clausen, H. B., Dahl-Jensen, D., Davies, S. M., Johnsen, S. J., Muscheler, R., Parrenin, F., Rasmussen, S. O., Röthlisberger, R., Seierstad, I., Steffensen, J. P., and Vinther, B. M.: A 60 000 year Greenland stratigraphic ice core chronology, Clim. Past, 4, 47–57, https://doi.org/10.5194/cp-4-47-2008, 2008.
Svensson, A., Dahl-Jensen, D., Steffensen, J. P., Blunier, T., Rasmussen, S. O., Vinther, B. M., Vallelonga, P., Capron, E., Gkinis, V., Cook, E., Kjær, H. A., Muscheler, R., Kipfstuhl, S., Wilhelms, F., Stocker, T. F., Fischer, H., Adolphi, F., Erhardt, T., Sigl, M., Landais, A., Parrenin, F., Buizert, C., McConnell, J. R., Severi, M., Mulvaney, R., and Bigler, M.: Bipolar volcanic synchronization of abrupt climate change in Greenland and Antarctic ice cores during the last glacial period, Clim. Past, 16, 1565–1580, https://doi.org/10.5194/cp-16-1565-2020, 2020.
Tejedor, E., Steiger, N. J., Smerdon, J. E., Serrano-Notivoli, R., and
Vuille, M.: Global hydroclimatic response to tropical volcanic eruptions
over the last millennium, P. Natl. Acad. Sci. USA, 118, e2019145118, https://doi.org/10.1073/pnas.2019145118, 2021.
Thordarson, T. and Hoskuldsson, A.: Postglacial volcanism in Iceland,
Jökull, 58, 197–228, 2008.
Thordarson, T. and Larsen, G.: Volcanism in Iceland in historical time:
Volcano types, eruption styles and eruptive history, J. Geodyn., 43, 118–152,
2007.
Thordarson, T. and Self, S.: Atmospheric and environmental effects of the
1783–1784 Laki eruption: A review and reassessment, J. Geophys. Res.-Atmos.,
108, 4011, https://doi.org/10.1029/2001JD002042, 2003.
Thordarson, T., Miller, D. J., Larsen, G., Self, S., and Sigurdsson, H.: New
estimates of sulfur degassing and atmospheric mass-loading by the 934 AD
Eldgja eruption, Iceland, J. Volcanol. Geoth. Res., 108, 33–54, 2001.
Thordarson, T., Self, S., Miller, D. J., Larsen, G., and Vilmundardottir, E.
G.: Sulphur release from flood lava eruptions in the Veidivotn, Grimsvotn
and Katla volcanic systems, Iceland, Geol. Soc. Spec. Publ., 213, 103–121, 2003.
Timmreck, C., Lorenz, S. J., Crowley, T. J., Kinne, S., Raddatz, T. J.,
Thomas, M. A., and Jungclaus, J. H.: Limited temperature response to the
very large AD 1258 volcanic eruption, Geophys. Res. Lett., 36, L21708, https://doi.org/10.1029/2009GL040083, 2009.
Toohey, M. and Sigl, M.: Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE, Earth Syst. Sci. Data, 9, 809–831, https://doi.org/10.5194/essd-9-809-2017, 2017.
Toohey, M., Krüger, K., and Timmreck, C.: Volcanic sulfate deposition to
Greenland and Antarctica: A modeling sensitivity study, J. Geophys. Res.-Atmos.,
118, 4788–4800, 2013.
Toohey, M., Krüger, K., Sigl, M., Stordal, F., and Svensen, H.: Climatic
and societal impacts of a volcanic double event at the dawn of the Middle
Ages, Clim. Change, 136, 401–412, 2016a.
Toohey, M., Stevens, B., Schmidt, H., and Timmreck, C.: Easy Volcanic Aerosol (EVA v1.0): an idealized forcing generator for climate simulations, Geosci. Model Dev., 9, 4049–4070, https://doi.org/10.5194/gmd-9-4049-2016, 2016b.
Toohey, M., Krüger, K., Schmidt, H., Timmreck, C., Sigl, M., Stoffel,
M., and Wilson, R.: Disproportionately strong climate forcing from
extratropical explosive volcanic eruptions, Nat. Geosci., 12, 100–107, 2019.
Torbenson, M. C. A., Plunkett, G., Brown, D. M., Pilcher, J. R., and
Leuschner, H. H.: Asynchrony in key Holocene chronologies: Evidence from
Irish bog pines, Geology, 43, 799–802, 2015.
Traufetter, F., Oerter, H., Fischer, H., Weller, R., and Miller, H.:
Spatio-temporal variability in volcanic sulphate deposition over the past 2
kyr in snow pits and firn cores from Amundsenisen, Antarctica, J. Glaciol.,
50, 137–146, 2004.
Tuel, A., Naveau, P., and Ammann, C. M.: Skillful prediction of multidecadal
variations in volcanic forcing, Geophys. Res. Lett., 44, 2868–2874, 2017.
Tuffen, H.: How will melting of ice affect volcanic hazards in the
twenty-first century?, Philos. T. R. Soc. A, 368, 2535–2558, 2010.
Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon, B., Parrenin, F., Martinerie, P., Blayo, E., Blunier, T., Capron, E., Chappellaz, J., Rasmussen, S. O., Severi, M., Svensson, A., Vinther, B., and Wolff, E. W.: The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years, Clim. Past, 9, 1733–1748, https://doi.org/10.5194/cp-9-1733-2013, 2013.
Vidal, C. M., Métrich, N., Komorowski, J.-C., Pratomo, I., Michel, A.,
Kartadinata, N., Robert, V., and Lavigne, F.: The 1257 Samalas eruption
(Lombok, Indonesia): the single greatest stratospheric gas release of the
Common Era, Sci. Rep.-UK, 6, 34868, https://doi.org/10.1038/srep34868, 2016.
Vinther, B. M., Clausen, H. B., Johnsen, S. J., Rasmussen, S. O., Andersen,
K. K., Buchardt, S. L., Dahl-Jensen, D., Seierstad, I. K.,
Siggaard-Andersen, M. L., Steffensen, J. P., Svensson, A., Olsen, J., and
Heinemeier, J.: A synchronized dating of three Greenland ice cores
throughout the Holocene, J. Geophys. Res.-Atmos., 111, D13102, https://doi.org/10.1029/2005JD006921, 2006.
WAIS Divide Project Members: Onset of deglacial warming in West Antarctica
driven by local orbital forcing, Nature, 500, 440–444, https://doi.org/10.1038/nature12376, 2013.
WAIS Divide Project Members: Precise inter-polar phasing of abrupt climate
change during the last ice age, Nature, 520, 661–665, 2015.
Wanner, H., Beer, J., Butikofer, J., Crowley, T. J., Cubasch, U., Fluckiger,
J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J. O., Kuttel, M., Muller,
S. A., Prentice, I. C., Solomina, O., Stocker, T. F., Tarasov, P., Wagner,
M., and Widmann, M.: Mid- to Late Holocene climate change: an overview,
Quaternary Sci. Rev., 27, 1791–1828, 2008.
Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P., and Jetel, M.:
Structure and origin of Holocene cold events, Quaternary Sci. Rev., 30,
3109–3123, 2011.
Watt, S. F. L., Pyle, D. M., and Mather, T. A.: The volcanic response to
deglaciation: Evidence from glaciated arcs and a reassessment of global
eruption records, Earth-Sci. Rev., 122, 77–102, 2013.
Werner, C., Fischer, T. P., Aiuppa, A., Edmonds, M., Cardellini, C., Carn,
S., Chiodini, G., Cottrell, E., Burton, M., Shinohara, H., and Allard, P.:
Carbon Dioxide Emissions from Subaerial Volcanic Regions: Two Decades in
Review, in: Deep Carbon: Past to Present, edited by: Orcutt, B. N., Daniel, I., and
Dasgupta, R., Cambridge University Press, Cambridge, 2019.
Wild, M.: Global dimming and brightening: A review, J. Geophys. Res.-Atmos.,
114, D00D16, https://doi.org/10.1029/2008JD011470, 2009.
Winski, D. A., Fudge, T. J., Ferris, D. G., Osterberg, E. C., Fegyveresi, J. M., Cole-Dai, J., Thundercloud, Z., Cox, T. S., Kreutz, K. J., Ortman, N., Buizert, C., Epifanio, J., Brook, E. J., Beaudette, R., Severinghaus, J., Sowers, T., Steig, E. J., Kahle, E. C., Jones, T. R., Morris, V., Aydin, M., Nicewonger, M. R., Casey, K. A., Alley, R. B., Waddington, E. D., Iverson, N. A., Dunbar, N. W., Bay, R. C., Souney, J. M., Sigl, M., and McConnell, J. R.: The SP19 chronology for the South Pole Ice Core – Part 1: volcanic matching and annual layer counting, Clim. Past, 15, 1793–1808, https://doi.org/10.5194/cp-15-1793-2019, 2019.
Wolff, E. W., Moore, J. C., Clausen, H. B., and Hammer, C. U.: Climatic
implications of background acidity and other chemistry derived from
electrical studies of the Greenland Ice Core Project ice core, J. Geophys.
Res.-Oceans, 102, 26325–26332, 1997.
Wu, X., Griessbach, S., and Hoffmann, L.: Equatorward dispersion of a high-latitude volcanic plume and its relation to the Asian summer monsoon: a case study of the Sarychev eruption in 2009, Atmos. Chem. Phys., 17, 13439–13455, https://doi.org/10.5194/acp-17-13439-2017, 2017.
Zambri, B., Robock, A., Mills, M. J., and Schmidt, A.: Modeling the
1783-1784 Laki Eruption in Iceland: 2. Climate Impacts, J. Geophys. Res.-Atmos.,
124, 6770–6790, 2019.
Zdanowicz, C. M., Zielinski, G. A., and Germani, M. S.: Mount Mazama
eruption: Calendrical age verified and atmospheric impact assessed, Geology,
27, 621–624, 1999.
Zielinski, G. A.: Stratospheric Loading and Optical Depth Estimates of
Explosive Volcanism over the Last 2100 Years Derived from the
Greenland-Ice-Sheet-Project-2 Ice Core, J. Geophys. Res.-Atmos., 100,
20937–20955, 1995.
Zielinski, G. A., Mayewski, P. A., Meeker, L. D., Whitlow, S., Twickler, M.
S., Morrison, M., Meese, D. A., Gow, A. J., and Alley, R. B.: Record of
Volcanism since 7000-Bc from the Gisp2 Greenland Ice Core and Implications
for the Volcano-Climate System, Science, 264, 948–952, 1994.
Zielinski, G. A., Mayewski, P. A., Meeker, L. D., Whitlow, S., and Twickler,
M. S.: A 110,000-yr record of explosive volcanism from the GISP2 (Greenland)
ice core, Quaternary Res., 45, 109–118, 1996.
Short summary
Volcanism is a key driver of climate. Based on ice cores from Greenland and Antarctica, we reconstruct its climate impact potential over the Holocene. By aligning records on a well-dated chronology from Antarctica, we resolve long-standing inconsistencies in the dating of past volcanic eruptions. We reconstruct 850 eruptions (which, in total, injected 7410 Tg of sulfur in the stratosphere) and estimate how they changed the opacity of the atmosphere, a prerequisite for climate model simulations.
Volcanism is a key driver of climate. Based on ice cores from Greenland and Antarctica, we...
Altmetrics
Final-revised paper
Preprint