Articles | Volume 14, issue 5
https://doi.org/10.5194/essd-14-2343-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-14-2343-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
First SMOS Sea Surface Salinity dedicated products over the Baltic Sea
Verónica González-Gambau
CORRESPONDING AUTHOR
Barcelona Expert Center (BEC) and Institute of Marine Sciences (ICM), CSIC,
P. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
Estrella Olmedo
Barcelona Expert Center (BEC) and Institute of Marine Sciences (ICM), CSIC,
P. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
Antonio Turiel
Barcelona Expert Center (BEC) and Institute of Marine Sciences (ICM), CSIC,
P. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
Cristina González-Haro
Barcelona Expert Center (BEC) and Institute of Marine Sciences (ICM), CSIC,
P. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
Aina García-Espriu
Barcelona Expert Center (BEC) and Institute of Marine Sciences (ICM), CSIC,
P. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
Justino Martínez
Barcelona Expert Center (BEC) and Institute of Marine Sciences (ICM), CSIC,
P. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
Pekka Alenius
Finnish Meteorological Institute, Erik Palménin aukio 1, 00560 Helsinki, Finland
Laura Tuomi
Finnish Meteorological Institute, Erik Palménin aukio 1, 00560 Helsinki, Finland
Rafael Catany
ARGANS Ltd, Davy Road, Plymouth Science Park, Derriford, Plymouth, PL6 8BX, United Kingdom
Manuel Arias
ARGANS Ltd, Davy Road, Plymouth Science Park, Derriford, Plymouth, PL6 8BX, United Kingdom
Carolina Gabarró
Barcelona Expert Center (BEC) and Institute of Marine Sciences (ICM), CSIC,
P. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
Nina Hoareau
Barcelona Expert Center (BEC) and Institute of Marine Sciences (ICM), CSIC,
P. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
Marta Umbert
Barcelona Expert Center (BEC) and Institute of Marine Sciences (ICM), CSIC,
P. Marítim de la Barceloneta, 37-49, 08003 Barcelona, Spain
Roberto Sabia
European Space Agency, ESA-ESRIN, Largo Galileo Galilei 1 Casella Postale 64 00044, Frascati, Italy
Diego Fernández
European Space Agency, ESA-ESRIN, Largo Galileo Galilei 1 Casella Postale 64 00044, Frascati, Italy
Related authors
Verónica González-Gambau, Estrella Olmedo, Aina García-Espriu, Cristina González-Haro, Antonio Turiel, Carolina Gabarró, Alessandro Silvano, Aditya Narayanan, Alberto Naveira-Garabato, Rafael Catany, Nina Hoareau, Marta Umbert, Giuseppe Aulicino, Yuri Cotroneo, Roberto Sabia, and Diego Fernández-Prieto
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-212, https://doi.org/10.5194/essd-2025-212, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper introduces a new Sea Surface Salinity product for the Southern Ocean, based on SMOS data and developed by the Barcelona Expert Center. It offers 9-day maps on a 25 km EASE-SL grid, from 2011 to 2023, covering areas south of 30° S. The product is accurate beyond 150 km from sea ice, with nearly zero bias and a ~0.22 STD. It tracks well seasonal and interannual changes and will contribute to the understanding of processes influenced by upper-ocean salinity, including ice formation/melt.
Marta Umbert, Eva De Andrés, Maria Sánchez, Carolina Gabarró, Nina Hoareau, Veronica González-Gambau, Aina García-Espriu, Estrella Olmedo, Roshin P. Raj, Jiping Xie, and Rafael Catany
Ocean Sci., 20, 279–291, https://doi.org/10.5194/os-20-279-2024, https://doi.org/10.5194/os-20-279-2024, 2024
Short summary
Short summary
Satellite retrievals of sea surface salinity (SSS) offer insights into freshwater changes in the Arctic Ocean. This study evaluates freshwater content in the Beaufort Gyre using SMOS and reanalysis data, revealing underestimation with reanalysis alone. Incorporating satellite SSS measurements improves freshwater content estimation, especially near ice-melting areas. Adding remotely sensed salinity aids in monitoring Arctic freshwater content and in understanding its impact on global climate.
Justino Martínez, Carolina Gabarró, Antonio Turiel, Verónica González-Gambau, Marta Umbert, Nina Hoareau, Cristina González-Haro, Estrella Olmedo, Manuel Arias, Rafael Catany, Laurent Bertino, Roshin P. Raj, Jiping Xie, Roberto Sabia, and Diego Fernández
Earth Syst. Sci. Data, 14, 307–323, https://doi.org/10.5194/essd-14-307-2022, https://doi.org/10.5194/essd-14-307-2022, 2022
Short summary
Short summary
Measuring salinity from space is challenging since the sensitivity of the brightness temperature to sea surface salinity is low, but the retrieval of SSS in cold waters is even more challenging. In 2019, the ESA launched a specific initiative called Arctic+Salinity to produce an enhanced Arctic SSS product with better quality and resolution than the available products. This paper presents the methodologies used to produce the new enhanced Arctic SMOS SSS product.
Estrella Olmedo, Verónica González-Gambau, Antonio Turiel, Cristina González-Haro, Aina García-Espriu, Marilaure Gregoire, Aida Álvera-Azcárate, Luminita Buga, and Marie-Hélène Rio
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-364, https://doi.org/10.5194/essd-2021-364, 2021
Revised manuscript not accepted
Short summary
Short summary
We present the first dedicated satellite salinity product in the Black Sea. We use the measurements provided by the European Soil Moisture and Ocean Salinity mission. We introduce enhanced algorithms for dealing with the contamination produced by the Radio Frequency Interferences that strongly affect this basin. We also provide a complete quality assessment of the new product and give an estimated accuracy of it.
Estrella Olmedo, Cristina González-Haro, Nina Hoareau, Marta Umbert, Verónica González-Gambau, Justino Martínez, Carolina Gabarró, and Antonio Turiel
Earth Syst. Sci. Data, 13, 857–888, https://doi.org/10.5194/essd-13-857-2021, https://doi.org/10.5194/essd-13-857-2021, 2021
Short summary
Short summary
After more than 10 years in orbit, the Soil Moisture and Ocean Salinity (SMOS) European mission is still a unique, high-quality instrument for providing soil moisture over land and sea surface salinity (SSS) over the oceans. At the Barcelona
Expert Center (BEC), a new reprocessing of 9 years (2011–2019) of global SMOS SSS maps has been generated. This work presents the algorithms used in the generation of the BEC global SMOS SSS product v2.0, as well as an extensive quality assessment.
Aqeel Piracha, Estrella Olmedo, Marcos Portabella, and Antonio Turiel
EGUsphere, https://doi.org/10.5194/egusphere-2025-2973, https://doi.org/10.5194/egusphere-2025-2973, 2025
Short summary
Short summary
We used satellite observations to study how density changes modify the ocean surface in the North Atlantic, especially in areas important for deep ocean currents that affect climate. We found that freshwater plays a bigger role than expected in disrupting ocean circulation. By tracking these changes from space over time, our research helps scientists better understand climate risks and improve future climate predictions.
Verónica González-Gambau, Estrella Olmedo, Aina García-Espriu, Cristina González-Haro, Antonio Turiel, Carolina Gabarró, Alessandro Silvano, Aditya Narayanan, Alberto Naveira-Garabato, Rafael Catany, Nina Hoareau, Marta Umbert, Giuseppe Aulicino, Yuri Cotroneo, Roberto Sabia, and Diego Fernández-Prieto
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-212, https://doi.org/10.5194/essd-2025-212, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
This paper introduces a new Sea Surface Salinity product for the Southern Ocean, based on SMOS data and developed by the Barcelona Expert Center. It offers 9-day maps on a 25 km EASE-SL grid, from 2011 to 2023, covering areas south of 30° S. The product is accurate beyond 150 km from sea ice, with nearly zero bias and a ~0.22 STD. It tracks well seasonal and interannual changes and will contribute to the understanding of processes influenced by upper-ocean salinity, including ice formation/melt.
Hedi Kanarik, Laura Tuomi, Pekka Alenius, Elina Miettunen, Milla Johansson, Tuomo Roine, Antti Westerlund, and Kimmo K. Kahma
EGUsphere, https://doi.org/10.5194/egusphere-2025-1101, https://doi.org/10.5194/egusphere-2025-1101, 2025
Short summary
Short summary
The Archipelago Sea (AS), part of the Baltic Sea off the northwest coast of Finland, is a fragmented area with intense human activity. This study presents an overview of the observed currents and their main drivers in the area. While local winds primarily drive the AS currents, simultaneous sea level variations in the Bay of Bothnia and Gulf of Finland also significantly impact the area's dynamics.
Aina García-Espriu, Cristina González-Haro, and Fernando Aguilar-Gómez
EGUsphere, https://doi.org/10.5194/egusphere-2025-705, https://doi.org/10.5194/egusphere-2025-705, 2025
Short summary
Short summary
Ocean measurements currently rely on buoys for depth data and satellites for surface observations. We investigated combining these using data-driven approaches to reconstruct full 4D ocean profiles. Using an ocean model as ground truth, we simulated satellite surface data and ARGO profiles and then applied machine learning to predict complete temperature and salinity profiles. Results showed accurate predictions that matched simulation data and captured seasonal patterns.
Jan-Victor Björkqvist, Hedi Kanarik, Laura Tuomi, Lauri Niskanen, and Markus Kankainen
State Planet, 4-osr8, 10, https://doi.org/10.5194/sp-4-osr8-10-2024, https://doi.org/10.5194/sp-4-osr8-10-2024, 2024
Short summary
Short summary
Typical wave statistics do not provide information on how often certain wave heights are exceeded and the length of such events. Our study found a strong seasonal dependence for 2.5 and 4 m wave events in the Baltic Sea. Wave heights of over 7 m occurred less than once per year. The number of 1 m wave events can double within 20 km in nearshore areas. Our results are important for all operations at sea, including ship traffic and fish farming.
Taavi Liblik, Daniel Rak, Enriko Siht, Germo Väli, Johannes Karstensen, Laura Tuomi, Louise C. Biddle, Madis-Jaak Lilover, Māris Skudra, Michael Naumann, Urmas Lips, and Volker Mohrholz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2272, https://doi.org/10.5194/egusphere-2024-2272, 2024
Preprint archived
Short summary
Short summary
Eight current meters were deployed to the seafloor across the Baltic to enhance knowledge about circulation and currents. The experiment was complemented by autonomous vehicles. Stable circulation patterns were observed at the sea when weather was steady. Strong and quite persistent currents were observed at the key passage for the deep-water renewal of the Northern Baltic Sea. Deep water renewal mostly occurs during spring and summer periods in the northern Baltic Sea.
Marta Umbert, Eva De Andrés, Maria Sánchez, Carolina Gabarró, Nina Hoareau, Veronica González-Gambau, Aina García-Espriu, Estrella Olmedo, Roshin P. Raj, Jiping Xie, and Rafael Catany
Ocean Sci., 20, 279–291, https://doi.org/10.5194/os-20-279-2024, https://doi.org/10.5194/os-20-279-2024, 2024
Short summary
Short summary
Satellite retrievals of sea surface salinity (SSS) offer insights into freshwater changes in the Arctic Ocean. This study evaluates freshwater content in the Beaufort Gyre using SMOS and reanalysis data, revealing underestimation with reanalysis alone. Incorporating satellite SSS measurements improves freshwater content estimation, especially near ice-melting areas. Adding remotely sensed salinity aids in monitoring Arctic freshwater content and in understanding its impact on global climate.
Elina Miettunen, Laura Tuomi, Antti Westerlund, Hedi Kanarik, and Kai Myrberg
Ocean Sci., 20, 69–83, https://doi.org/10.5194/os-20-69-2024, https://doi.org/10.5194/os-20-69-2024, 2024
Short summary
Short summary
We studied circulation and transports in the Archipelago Sea (in the Baltic Sea) with a high-resolution hydrodynamic model. Transport dynamics show different variabilities in the north and south, so no single transect can represent transport through the whole area in all cases. The net transport in the surface layer is southward and follows the alignment of the deeper channels. In the lower layer, the net transport is southward in the northern part of the area and northward in the southern part.
Jiping Xie, Roshin P. Raj, Laurent Bertino, Justino Martínez, Carolina Gabarró, and Rafael Catany
Ocean Sci., 19, 269–287, https://doi.org/10.5194/os-19-269-2023, https://doi.org/10.5194/os-19-269-2023, 2023
Short summary
Short summary
Sea ice melt, together with other freshwater sources, has effects on the Arctic environment. Sea surface salinity (SSS) plays a key role in representing water mixing. Recently the satellite SSS from SMOS was developed in the Arctic region. In this study, we first evaluate the impact of assimilating these satellite data in an Arctic reanalysis system. It shows that SSS errors are reduced by 10–50 % depending on areas, encouraging its use in a long-time reanalysis to monitor the Arctic water cycle.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
Justino Martínez, Carolina Gabarró, Antonio Turiel, Verónica González-Gambau, Marta Umbert, Nina Hoareau, Cristina González-Haro, Estrella Olmedo, Manuel Arias, Rafael Catany, Laurent Bertino, Roshin P. Raj, Jiping Xie, Roberto Sabia, and Diego Fernández
Earth Syst. Sci. Data, 14, 307–323, https://doi.org/10.5194/essd-14-307-2022, https://doi.org/10.5194/essd-14-307-2022, 2022
Short summary
Short summary
Measuring salinity from space is challenging since the sensitivity of the brightness temperature to sea surface salinity is low, but the retrieval of SSS in cold waters is even more challenging. In 2019, the ESA launched a specific initiative called Arctic+Salinity to produce an enhanced Arctic SSS product with better quality and resolution than the available products. This paper presents the methodologies used to produce the new enhanced Arctic SMOS SSS product.
Antti Westerlund, Elina Miettunen, Laura Tuomi, and Pekka Alenius
Ocean Sci., 18, 89–108, https://doi.org/10.5194/os-18-89-2022, https://doi.org/10.5194/os-18-89-2022, 2022
Short summary
Short summary
Water exchange through the Åland Sea (in the Baltic Sea) affects the conditions in the neighbouring Gulf of Bothnia. Pathways and variability of flows were studied with a high-resolution hydrodynamic model. Our analysis showed a northward transport in the deep layer and net transport towards the south in the surface layer. While on the southern edge of the Åland Sea the primary route of deep-water exchange is through Lågskär Deep, some deep water still bypasses it to the Åland Sea.
Jan-Victor Björkqvist, Siim Pärt, Victor Alari, Sander Rikka, Elisa Lindgren, and Laura Tuomi
Ocean Sci., 17, 1815–1829, https://doi.org/10.5194/os-17-1815-2021, https://doi.org/10.5194/os-17-1815-2021, 2021
Short summary
Short summary
Waves that travel faster than the wind are called swell. Our study presents wave model statistics of swell waves in the Baltic Sea, since such statistics have not yet been reliably compiled. Our results confirm that long, high, and persistent swell is absent in the Baltic Sea. We found that the dependency between swell and wind waves differs in the open sea compared to nearshore areas. These distinctions are important for studies on how waves interact with the atmosphere and the sea floor.
Estrella Olmedo, Verónica González-Gambau, Antonio Turiel, Cristina González-Haro, Aina García-Espriu, Marilaure Gregoire, Aida Álvera-Azcárate, Luminita Buga, and Marie-Hélène Rio
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-364, https://doi.org/10.5194/essd-2021-364, 2021
Revised manuscript not accepted
Short summary
Short summary
We present the first dedicated satellite salinity product in the Black Sea. We use the measurements provided by the European Soil Moisture and Ocean Salinity mission. We introduce enhanced algorithms for dealing with the contamination produced by the Radio Frequency Interferences that strongly affect this basin. We also provide a complete quality assessment of the new product and give an estimated accuracy of it.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Tuomas Kärnä, Patrik Ljungemyr, Saeed Falahat, Ida Ringgaard, Lars Axell, Vasily Korabel, Jens Murawski, Ilja Maljutenko, Anja Lindenthal, Simon Jandt-Scheelke, Svetlana Verjovkina, Ina Lorkowski, Priidik Lagemaa, Jun She, Laura Tuomi, Adam Nord, and Vibeke Huess
Geosci. Model Dev., 14, 5731–5749, https://doi.org/10.5194/gmd-14-5731-2021, https://doi.org/10.5194/gmd-14-5731-2021, 2021
Short summary
Short summary
We present Nemo-Nordic 2.0, a novel operational marine model for the Baltic Sea. The model covers the Baltic Sea and the North Sea with approximately 1 nmi resolution. We validate the model's performance against sea level, water temperature, and salinity observations, as well as sea ice charts. The skill analysis demonstrates that Nemo-Nordic 2.0 can reproduce the hydrographic features of the Baltic Sea.
Estrella Olmedo, Cristina González-Haro, Nina Hoareau, Marta Umbert, Verónica González-Gambau, Justino Martínez, Carolina Gabarró, and Antonio Turiel
Earth Syst. Sci. Data, 13, 857–888, https://doi.org/10.5194/essd-13-857-2021, https://doi.org/10.5194/essd-13-857-2021, 2021
Short summary
Short summary
After more than 10 years in orbit, the Soil Moisture and Ocean Salinity (SMOS) European mission is still a unique, high-quality instrument for providing soil moisture over land and sea surface salinity (SSS) over the oceans. At the Barcelona
Expert Center (BEC), a new reprocessing of 9 years (2011–2019) of global SMOS SSS maps has been generated. This work presents the algorithms used in the generation of the BEC global SMOS SSS product v2.0, as well as an extensive quality assessment.
Jan-Victor Björkqvist, Sander Rikka, Victor Alari, Aarne Männik, Laura Tuomi, and Heidi Pettersson
Nat. Hazards Earth Syst. Sci., 20, 3593–3609, https://doi.org/10.5194/nhess-20-3593-2020, https://doi.org/10.5194/nhess-20-3593-2020, 2020
Short summary
Short summary
Wave observations have a fundamental uncertainty due to the randomness of the sea state. Such scatter is absent in model data, and we tried two methods to best account for this difference when combining measured and modelled wave heights. The results were used to estimate how rare a 2019 storm in the Bothnian Sea was. Both methods were found to have strengths and weaknesses, but our best estimate was that, in the current climate, such a storm might on average repeat about once a century.
Cited articles
Axell, L.: Product User Manual of Baltic Sea Physical Reanalysis Product
BALTICSEA_REANALYSIS_PHY_003_011, issue 2.0, Tech. Rep., Copernicus
Marine Environment Monitoring Service,
https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-BAL-PUM-003-011.pdf (last access: 30 October 2019),
2019. a, b, c, d
BEC team: BEC Products Description, BEC-PD-SSS-Baltic-L3-L4.pdf, version1.0, July 2021, http://bec.icm.csic.es/doc/BEC_PD_SSS_Baltic_L3_L4.pdf (last access: 10 April 2022), 2021a. a
BEC team: Baltic+ L4 seasonal SSS product, Helcom catalogue [data set] https://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/9d979033-1136-4dd1-a09b-7ee9e512ad14 (last access: 10 April 2022), 2021b. a
Boutin, J., Vergely, J. L., Marchand, S., D'Amico, F., Hasson, A.,
Kolodziejczyk, N., Reul, N., Reverdin, G., and Vialard, J.: New SMOS Sea
Surface Salinity with reduced systematic errors and improved variability,
Remote Sens. Environ., 214, 115–134,
https://doi.org/10.1016/j.rse.2018.05.022, 2018. a
Boutin, J., Vergely, J.-L., and Koehler, J.and Rouffi, F. R. N.: ESA Sea
Surface Salinity Climate Change Initiative (Sea_Surface_Salinity_CCI):
Version 1.8 data collection, CEDA Archive [data set],
https://doi.org/10.5285/9ef0ebf847564c2eabe62cac4899ec41, 2019. a
Boutin, J., Vergely, J. L., and Khvorostyanov, D.: SMOS SSS L3 maps generated
by CATDS CEC LOCEAN, debias V5.0, SEANOE [data set],
https://doi.org/10.17882/52804#79565, 2020. a
Brown, M. A., Torres, F., Corbella, I., and Colliander, A.: SMOS
Calibration, IEEE T. Geosci. Remote, 46,
646–658, https://doi.org/10.1109/TGRS.2007.914810, 2008. a
Canada Meteorological Center: CMC 0.2 deg global sea surface temperature
analysis. Ver. 2.0., PO.DAAC, CA, USA [data set],
https://doi.org/10.5067/GHCMC-4FM02, 2012. a
Corbella, I., Torres, F., Camps, A., Colliander, A., Martin-Neira,
M., Ribo, S., Rautiainen, K., Duffo, N., and Vall-llossera, M.:
MIRAS end-to-end calibration: application to SMOS L1 processor, IEEE
T. Geosci. Remote, 43, 1126–1134,
https://doi.org/10.1109/TGRS.2004.840458, 2005. a
Corbella, I., Torres, F., Duffo, N., Gonzalez, V., Camps, A., and
Vall-llossera, M.: Fast Processing Tool for SMOS Data, in: IGARSS 2008 –
2008 IEEE International Geoscience and Remote Sensing Symposium, vol. 2,
II-1152–II-1155, https://doi.org/10.1109/IGARSS.2008.4779204, 2008. a
Corbella, I., Torres, F., Camps, A., Duffo, N., and Vall-llossera,
M.: Brightness-Temperature Retrieval Methods in Synthetic Aperture
Radiometers, IEEE T. Geosci. Remote, 47,
285–294, https://doi.org/10.1109/TGRS.2008.2002911, 2009. a
Corbella, I., Durán, I., Wu, L., Torres, F., Duffo, N., Khazâal,
A., and Martín-Neira, M.: Impact of Correlator Efficiency Errors on SMOS
Land–Sea Contamination, IEEE Geosci. Remote S., 12,
1813–1817, https://doi.org/10.1109/LGRS.2015.2428653, 2015. a, b, c
Corbella, I., González-Gambau, V., Torres, F., Duffo, N., Durán,
I., and Martín-Neira, M.: The MIRAS “ALL-LICEF” calibration mode,
in: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
2013–2016, https://doi.org/10.1109/IGARSS.2016.7729519, 2016. a
Corbella, I., Torres, F., Duffo, N., Durán, I., González-Gambau,
V., and Martín-Neira, M.: Wide Field of View Microwave Interferometric
Radiometer Imaging, Remote Sensing, 11, 682, https://doi.org/10.3390/rs11060682, 2019. a
Donlon, C. J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E., and
Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice Analysis
(OSTIA) system, Remote Sens. Environ., 116, 140–158,
https://doi.org/10.1016/j.rse.2010.10.017, 2012. a, b, c
Fischer, H. and Matthäus, W.: The importance of the Drogden Sill in the Sound
for Major Baltic Inflows, J. Marine Syst., 9, 137–157,
https://doi.org/10.1016/S0924-7963(96)00046-2, 1996. a
Fore, A., Yueh, S., Tang, W., Stiles, B., and Hayashi, A.: Combined
Active/Passive Retrievals of Ocean Vector Wind and Sea Surface Salinity With
SMAP, IEEE T. Geosci. Remote, 54, 7396–7404,
https://doi.org/10.1109/TGRS.2016.2601486, 2016. a
González-Gambau, V., Turiel, A., Olmedo, E., Martínez, J.,
Corbella, I., and Camps, A.: Nodal Sampling: A New Image Reconstruction
Algorithm for SMOS, IEEE T. Geosci. Remote, 54,
2314–2328, https://doi.org/10.1109/TGRS.2015.2499324, 2015. a
González-Gambau, V., Olmedo, E., Turiel, A., Martínez, J., Ballabrera-Poy,
J., Portabella, M., and Piles, M.: Enhancing SMOS brightness temperatures
over the ocean using the nodal sampling image reconstruction technique,
Remote Sens. Environ., 180, 205–220,
https://doi.org/10.1016/j.rse.2015.12.032, 2016. a
González-Gambau, V., Olmedo, E., Martínez, J., Turiel, A., and
Durán, I.: Improvements on Calibration and Image Reconstruction of SMOS
for Salinity Retrievals in Coastal Regions, IEEE J. Sel. Top.
Appl., 10, 3064–3078,
https://doi.org/10.1109/JSTARS.2017.2685690, 2017. a, b, c
González-Gambau, V., Turiel, A., González-Haro, C., Martínez, J., Olmedo,
E., Oliva, R., and Martín-Neira, M.: Triple Collocation Analysis for Two
Error-Correlated Datasets: Application to L-Band Brightness Temperatures over
Land, Remote Sensing, 12, 2281, https://doi.org/10.3390/rs12203381, 2020. a
González-Gambau, V., Olmedo, E., González-Haro, C., García-Espriu, A., and
Turiel, A.: Baltic Sea Surface Salinity L3 maps, DIGITAL.CSIC [data set],
https://doi.org/10.20350/digitalCSIC/13859, 2021a. a, b
González-Gambau, V., Olmedo, E., González-Haro, C., García-Espriu, A., and
Turiel, A.: Baltic Sea Surface Salinity L4 maps, DIGITAL.CSIC [data set],
https://doi.org/10.20350/digitalCSIC/13860, 2021b. a, b
Hordoir, R., Axell, L., Höglund, A., Dieterich, C., Fransner, F., Gröger, M., Liu, Y., Pemberton, P., Schimanke, S., Andersson, H., Ljungemyr, P., Nygren, P., Falahat, S., Nord, A., Jönsson, A., Lake, I., Döös, K., Hieronymus, M., Dietze, H., Löptien, U., Kuznetsov, I., Westerlund, A., Tuomi, L., and Haapala, J.: Nemo-Nordic 1.0: a NEMO-based ocean model for the Baltic and North seas – research and operational applications, Geosci. Model Dev., 12, 363–386, https://doi.org/10.5194/gmd-12-363-2019, 2019. a
IOC, SCOR, and IAPSO: The international thermodynamic equation of
seawater – 2010: Calculation and use of thermodynamic properties,
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO
(English), 196 pp., https://www.teos-10.org/pubs/TEOS.10_Manual.pdf (last access: 1 April 2022), 2010. a
JPL Climate Oceans and Solid Earth group: JPL SMAP Level 3 CAP Sea Surface
Salinity Standard Mapped Image 8-Day Running Mean V4.2 Validated Dataset.
Ver. 4.2., Physical Oceanography Distributed Active Archive
Center, CA, USA [data set], https://doi.org/10.5067/SMP42-3TPCS, 2019. a
Klein, L. and Swift, C.: An improved model for the dielectric constant of sea
water at microwave frequencies, IEEE J. Oceanic Eng., 2,
104–111, https://doi.org/10.1109/JOE.1977.1145319, 1977. a
Lehmann, A., Hinrichsen, H.-H., Getzlaff, K., and Myrberg, K.: Quantifying the
heterogeneity of hypoxic and anoxic areas in the Baltic Sea by a simplified
coupled hydrodynamic-oxygen consumption model approach, J. Marine
Syst., 134, 20–28, https://doi.org/10.1016/j.jmarsys.2014.02.012,
2014. a
Lehmann, A., Myrberg, K., Post, P., Chubarenko, I., Dailidiene, I., Hinrichsen, H.-H., Hüssy, K., Liblik, T., Meier, H. E. M., Lips, U., and Bukanova, T.: Salinity dynamics of the Baltic Sea, Earth Syst. Dynam., 13, 373–392, https://doi.org/10.5194/esd-13-373-2022, 2022. a, b, c
Martín-Neira, M., Oliva, R., Corbella, I., Torres, F., Duffo, N., Durán,
I., Kainulainen, J., Closa, J., Zurita, A., Cabot, F., Khazaal, A.,
Anterrieu, E., Barbosa, J., Lopes, G., Tenerelli, J., Díez-García, R.,
Fauste, J., Martín-Porqueras, F., González-Gambau, V., Turiel, A.,
Delwart, S., Crapolicchio, R., and Suess, M.: SMOS instrument performance
and calibration after six years in orbit, Remote Sens. Environ., 180,
19–39, https://doi.org/10.1016/j.rse.2016.02.036, 2016. a, b
Matthäus, W. and Franck, H.: Characteristics of major Baltic inflows – a
statistical analysis, Cont. Shelf Res., 12, 1375–1400,
https://doi.org/10.1016/0278-4343(92)90060-W, 1992. a
Meier, H. E. M., Kjellström, E., and Graham, L. P.: Estimating uncertainties
of projected Baltic Sea salinity in the late 21st century, Geophys.
Res. Lett., 33, L15705, https://doi.org/10.1029/2006GL026488, 2006. a
Meissner, T. and Wentz, F. J.: The complex dielectric constant of pure and sea
water from microwave satellite observations, IEEE T. Geosci.
Remote, 42, 1836–1849, https://doi.org/10.1109/TGRS.2004.831888, 2004. a, b
Meissner, T., Wentz, F. J., and Manaster, A.: Remote Sensing Systems SMAP
Ocean Surface Salinities [Level 2C, Level 3 Running 8-day, Level 3 Monthly],
Version 3.0 validated release, Tech. Rep., Remote Sensing Systems, Santa
Rosa, CA, USA, https://doi.org/10.5067/SSSSS-TTTTT, 2018. a, b
Merchant, C. J., Embury, O., Bulgin, C. E., Block, T., Corlett, G. K., Fiedler,
E., Good, S. A., Mittaz, J., Rayner, N. A., Berry, D., Eastwood, S., Taylor, M., Tsushima, Y., Waterfall, A., Wilson, R., and Donlon, C.:
Satellite-based time-series of sea-surface temperature since 1981 for climate
applications, Scientific Data, 6, 223, https://doi.org/10.1038/s41597-019-0236-x, 2019. a, b
Mohrholz, V.: Major Baltic Inflow Statistics – Revised, Frontiers in Marine
Science, 5, https://doi.org/10.3389/fmars.2018.00384, 2018. a
Oliva, R., Daganzo, E., Richaume, P., Kerr, Y., Cabot, F., Soldo, Y.,
Anterrieu, E., Reul, N., Gutierrez, A., Barbosa, J., and Lopes, G.: Status of
Radio Frequency Interference (RFI) in the 1400–1427 MHz passive
band based on six years of SMOS mission, Remote Sens. Environ.,
180, 64–75, https://doi.org/10.1016/j.rse.2016.01.013, 2016. a, b, c
Olmedo, E., Martínez, J., Umbert, M., Hoareau, N., Portabella, M.,
Ballabrera-Poy, J., and Turiel, A.: Improving time and space resolution of
SMOS salinity maps using multifractal fusion, Remote Sens.
Environ., 180, 246–263,
https://doi.org/10.1016/j.rse.2016.02.038, 2016. a, b
Olmedo, E., Martínez, J., Turiel, A., Ballabrera-Poy, J., and Portabella, M.:
Debiased non-Bayesian retrieval: A novel approach to SMOS Sea Surface
Salinity, Remote Sens. Environ., 193, 103–126,
https://doi.org/10.1016/j.rse.2017.02.023, 2017. a, b, c, d
Olmedo, E., Gabarró, C., González-Gambau, V., Martínez, J., Ballabrera-Poy,
J., Turiel, A., Portabella, M., Fournier, S., and Lee, T.: Seven Years of
SMOS Sea Surface Salinity at High Latitudes: Variability in Arctic and
Sub-Arctic Regions, Remote Sensing, 10, 1772, https://doi.org/10.3390/rs10111772,
2018a. a
Olmedo, E., Taupier-Letage, I., Turiel, A., and Alvera-Azcárate, A.: Improving
SMOS Sea Surface Salinity in the Western Mediterranean Sea through
Multivariate and Multifractal Analysis, Remote Sensing, 10, 485,
https://doi.org/10.3390/rs10030485, 2018b. a
Olmedo, E., González-Gambau, V., Turiel, A., Guimbard, S., González-Haro,
C., Martínez, J., Gabarró, C., Portabella, M., Arias, M., Sabia, R.,
Oliva, R., and Corbella, I.: Towards an enhanced SMOS Level-2 Ocean
Salinity product, IEEE J. Sel. Top. Appl., 13, 6434–6453, 2020. a
Olmedo, E., González-Gambau, V., Turiel, A., González-Haro, C., García-Espriu, A., Gregoire, M., Álvera-Azcárate, A., Buga, L., and Rio, M.-H.: New SMOS SSS maps in the framework of the Earth Observation data For Science and Innovation in the Black Sea, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2021-364, 2021a. a, b
Olmedo, E., González-Haro, C., Hoareau, N., Umbert, M., González-Gambau, V., Martínez, J., Gabarró, C., and Turiel, A.: Nine years of SMOS sea surface salinity global maps at the Barcelona Expert Center, Earth Syst. Sci. Data, 13, 857–888, https://doi.org/10.5194/essd-13-857-2021, 2021b. a, b, c, d, e
Omstedt, A., Elken, J., Lehmann, A., Leppäranta, M., Meier, H., Myrberg, K.,
and Rutgersson, A.: Progress in physical oceanography of the Baltic Sea
during the 2003–2014 period, Prog. Oceanogr., 128, 139–171,
https://doi.org/10.1016/j.pocean.2014.08.010, 2014. a
Örjan, B., Coatanoan, C., and Myroshnychenko, V.: SeaDataCloud Temperature and Salinity Historical Data Collection for the Baltic Sea (Version 2), Product Information Document (PIDoc), https://doi.org/10.13155/78589, 2020. a
Remote Sensing Systems (RSS): MWIR optimum interpolated SST data set, Ver. 5.0.,
PO.DAAC, CA, USA [data set], https://doi.org/10.5067/GHMWI-4FR05,
2017. a
Remote Sensing Systems (RSS): SMAP Sea Surface Salinity Products, Ver. 4.0,
Physical Oceanography Distributed Active Archive Center, CA, USA [data set],
https://doi.org/10.5067/SMP40-2SOCS, 2019. a
Sabater, J. and De Rosnay, P.: Milestone 2 Tech Note – Parts 1/2/3: Operational
Pre-processing chain, Collocation software development and Offline monitoring
suite, Tech. Rep., ECMWF,
http://www.ecmwf.int/en/elibrary/11316-milestone-2-tech-note-parts-1/2/3-operational-pre-processing-chain-collocation (last access: 20 June 2021),
2010. a, b
SeaDataNet Baltic Climatology: Baltic Sea – Temperature and Salinity Climatology V1.1, SeaDataNet [data set],
https://doi.org/10.12770/bf35a7c5-c843-4a23-8040-07ddcf3d8e71, 2015. a
Tanguy, S., Jerome, G., Sylvie, P., and Gilles, R.: CORA, Coriolis Ocean Dataset for Reanalysis, SEANOE [data set], https://doi.org/10.17882/46219, 2019. a
Turiel, A., Isern-Fontanet, J., and Umbert, M.: Sensibility to noise of new multifractal fusion methods for ocean variables, Nonlin. Processes Geophys., 21, 291–301, https://doi.org/10.5194/npg-21-291-2014, 2014. a, b
Umbert, M., Hoareau, N., Turiel, A., and Ballabrera-Poy, J.: New blending
algorithm to synergize ocean variables: The case of SMOS Sea Surface
Salinity maps, Remote Sensing of Environment, 146, 172–187,
https://doi.org/10.1016/j.rse.2013.09.018, 2014. a
Westerlund, A., Tuomi, L., Alenius, P., Miettunen, E., and Vankevich, R. E.:
Attributing mean circulation patterns to physical phenomena in the Gulf of
Finland, Oceanologia, 60, 16–31,
https://doi.org/10.1016/j.oceano.2017.05.003, 2018. a
Yueh, S., West, R., Wilson, W., Li, F., Njoku, E., and Rahmat-Samii, Y.: Error
sources and feasibility for microwave remote sensing of ocean surface
salinity, IEEE T. Geosci. Remote, 39, 1049–1060,
https://doi.org/10.1109/36.921423, 2001. a, b
Zhou, Y., Lang, R. H., Dinnat, E. P., and Vine, D. M. L.: L-Band Model Function
of the Dielectric Constant of Seawater, IEEE T. Geosci.
Remote, 55, 6964–6974, https://doi.org/10.1109/TGRS.2017.2737419, 2017.
a
Zine, S., Boutin, J., Font, J., Reul, N., Waldteufel, P., Gabarró, C.,
Tenerelli, J., Petitcolin, F., Vergely, J., Talone, M., and Delwart, S.:
Overview of the SMOS Sea Surface Salinity Prototype Processor, IEEE
T. Geosci. Remote, 46, 621–645,
https://doi.org/10.1109/TGRS.2008.915543, 2008. a
Short summary
We present the first Soil Moisture and Ocean Salinity Sea Surface Salinity (SSS) dedicated products over the Baltic Sea (ESA Baltic+ Salinity Dynamics). The Baltic+ L3 product covers 9 days in a 0.25° grid. The Baltic+ L4 is derived by merging L3 SSS with sea surface temperature information, giving a daily product in a 0.05° grid. The accuracy of L3 is 0.7–0.8 and 0.4 psu for the L4. Baltic+ products have shown to be useful, covering spatiotemporal data gaps and for validating numerical models.
We present the first Soil Moisture and Ocean Salinity Sea Surface Salinity (SSS) dedicated...
Altmetrics
Final-revised paper
Preprint