Articles | Volume 13, issue 3
https://doi.org/10.5194/essd-13-923-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-923-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A solar optical hyperspectral library of rare-earth-bearing minerals, rare-earth oxide powders, copper-bearing minerals and Apliki mine surface samples
Friederike Koerting
GFZ German Research Centre for Geosciences, Potsdam, 14473, Germany
Nicole Koellner
CORRESPONDING AUTHOR
GFZ German Research Centre for Geosciences, Potsdam, 14473, Germany
Agnieszka Kuras
GFZ German Research Centre for Geosciences, Potsdam, 14473, Germany
Nina Kristin Boesche
GFZ German Research Centre for Geosciences, Potsdam, 14473, Germany
Christian Rogass
GFZ German Research Centre for Geosciences, Potsdam, 14473, Germany
Christian Mielke
GFZ German Research Centre for Geosciences, Potsdam, 14473, Germany
Kirsten Elger
GFZ German Research Centre for Geosciences, Potsdam, 14473, Germany
Uwe Altenberger
University of Potsdam, Institute of Geosciences, Potsdam, 14476, Germany
Related authors
Evlampia Kouzeli, Konstantinos Nikolakopoulos, Olga Sykioti, Saeid Asadzadeh, Friederike Koerting, and Daniel Schläpfer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-7-2025, 113–120, https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-113-2025, https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-113-2025, 2025
Florian Neumann, Ben Norden, Elif Balkan-Pazvantoğlu, Samah Elbarbary, Alexey G. Petrunin, Kirsten Elger, Samuel Jennings, Simone Frenzel, and Sven Fuchs
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-341, https://doi.org/10.5194/essd-2025-341, 2025
Preprint under review for ESSD
Short summary
Short summary
The Global Heat Flow Database grew from 58,302 data points in 2012 to 91,182 in 2024, with enhanced quality assessments. Despite this, gaps in data and methodological details persist, especially in underrepresented regions. The database is crucial for geophysical, geothermal, and environmental research, offering valuable insights into Earth's thermal processes.
Evlampia Kouzeli, Konstantinos Nikolakopoulos, Olga Sykioti, Saeid Asadzadeh, Friederike Koerting, and Daniel Schläpfer
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-7-2025, 113–120, https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-113-2025, https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-113-2025, 2025
Helge L. C. Daempfling, Christian Mielke, Nicole Koellner, Melanie Lorenz, Christian Rogass, Uwe Altenberger, Daniel E. Harlov, and Michael Knoper
Eur. J. Mineral., 34, 275–284, https://doi.org/10.5194/ejm-34-275-2022, https://doi.org/10.5194/ejm-34-275-2022, 2022
Short summary
Short summary
In this study we present a novel method for the automatic detection of minerals and elements using hyperspectral transmittance imaging microscopy measurements of complete thin sections (HyperTIM).
Mirko Reguzzoni, Daniela Carrion, Carlo Iapige De Gaetani, Alberta Albertella, Lorenzo Rossi, Giovanna Sona, Khulan Batsukh, Juan Fernando Toro Herrera, Kirsten Elger, Riccardo Barzaghi, and Fernando Sansó
Earth Syst. Sci. Data, 13, 1653–1666, https://doi.org/10.5194/essd-13-1653-2021, https://doi.org/10.5194/essd-13-1653-2021, 2021
Short summary
Short summary
The International Service for the Geoid provides free access to a repository of geoid models. The most important ones are freely available to perform analyses on the evolution of the geoid computation research field. Furthermore, the ISG performs research taking advantage of its archive and organizes specific training courses on geoid determination. This paper aims at describing the service and showing the added value of the archive of geoid models for the scientific community and technicians.
Cited articles
Baldridge, A. M., Hook, S. J., Grove, C. I., and Rivera, G.:
The ASTER spectral library version 2.0,
Remote Sens. Environ.,
113, 711–715, https://doi.org/10.1016/j.rse.2008.11.007, 2009.
Boesche, N., Rogass, C., Lubitz, C., Brell, M., Herrmann, S., Mielke, C., Tonn, S., Appelt, O., Altenberger, U., and Kaufmann, H.:
Hyperspectral REE (Rare Earth Element) Mapping of Outcrops – Applications for Neodymium Detection,
Remote Sens.-Basel,
7, 5160–5186, https://doi.org/10.3390/rs70505160, 2015.
Boesche, N. K., Rogass, C., Mielke, C., Herrmann, S., Körting, F., Papenfuß, A., Lubitz, C., Brell, M., Tonn, S., and Altenberger, U.:
Hyperspectral Rare Earth Element Mapping of Three Outcrops at the Fen Complex, Norway: Calcitic, Dolomitic, and Ankeritic Carbonatites, chap. 16,
in: Rare Earths Industry – Technological, Economic, and Environmental Implications,
Elsevier Inc., 235–265, https://doi.org/10.1016/B978-0-12-802328-0.00016-4, 2016.
Bösche, N. K.:
Detection of Rare Earth Elements and Rare Earth Oxides with Hyperspectral Spectroscopy,
University of Potsdam,
available at: http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85363 (last access: 2 March 2021), 2015.
Bureau Veritas:
Bureau Veritas Metals, Minerals & Environmental Schedule of Services & Fees 2020,
available at: http://acmelab.com/wp-content/uploads/2020/02/BV_Fees-Schedule-2020_USD_v3_07Feb2020.pdf (last access: 2 March 2021), 2020.
Clark, R. N.:
Spectroscopy of rocks and minerals, and principles of spectroscopy,
in: Remote sensing for the earth sciences: Manual of remote sensing, Vol. 3,
3–58, https://doi.org/10.1111/j.1945-5100.2004.tb00079.x, 1999.
Clark, R. N.: Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems, J. Geophys. Res., 108, 1–2, https://doi.org/10.1029/2002JE001847, 2003.
Clark, R. N., Swayze, G. A., Wise, R. A., Livo, K. E., Hoefen, T. M., Kokaly, R. F., and Sutley, S. J.:
USGS Spectral Library splib06a: U.S. Geological Survey, Digital Data Series 231,
available at: http://speclab.cr.usgs.gov/spectral.lib06 (last access: 23 June 2009), 2007.
Fisher Scientific:. Thermo Scientific NITON ™ XL3t NITON XL3t Specifications, Analysis, available at: https://www.thermofisher.com/content/dam/LifeTech/Documents/PDFs/china/Niton-XL3t-GOLDD-Spec-Sheet-2013Jan15.pdf
(last access: 18 June 2019), 2002.
Guanter, L., Kaufmann, H., Segl, K., Foerster, S., Rogass, C., Chabrillat, S., Kuester, T., Hollstein, A., Rossner, G., Chlebek, C., Straif, C., Fischer, S., Schrader, S., Storch, T., Heiden, U., Mueller, A., Bachmann, M., Mühle, H., Müller, R., Habermeyer, M., Ohndorf, A., Hill, J., Buddenbaum, H., Hostert, P., Van Der Linden, S., Leitão, P. J., Rabe, A., Doerffer, R., Krasemann, H., Xi, H., Mauser, W., Hank, T., Locherer, M., Rast, M., Staenz, K., and Sang, B.:
The EnMAP spaceborne imaging spectroscopy mission for earth observation,
Remote Sens.-Basel,
7, 8830–8857, https://doi.org/10.3390/rs70708830, 2015.
Heinrich, K. F. J. and Newbury, D. E. (Eds.):
Electron probe quantitation,
in: Microscopy Microanalysis Microstructures,
Plenum Press, New York,
https://doi.org/10.1051/mmm:0199200302-3029500, 1991.
Herrmann, S.:
Capacity of Imaging Spectroscopy for the characterisation of REO, REE bearing minerals & primary REE-deposits,
MS thesis,
Scientific Technical Report; 19/08,
GFZ German Research Centre for Geosciences, Potsdam, vii, 161 pp., https://doi.org/10.2312/GFZ.b103-19089, 2019.
Hunt, G. R.:
Spectral signatures of particulate minerals in the visible and near infrared,
Geophysics,
42, 501–513, https://doi.org/10.1190/1.1440721, 1977.
Hunt, G. R.:
Spectroscopic Properties of Rocks and Minerals,
in: Practical Handbook of Physical Properties of Rocks and Minerals,
edited by: Carmichael, R. S.,
CRC Press, Cleveland, Ohio, 599–669, 1989.
Hunt, G. R. and Ashley, R. P.:
Spectra of altered rocks in the visible and near infrared,
Econ. Geol.,
74, 1613–1629, https://doi.org/10.2113/gsecongeo.74.7.1613, 1979.
hyspex.no/products/disc.php:
Norsk Elektro Optikk AS HySpex VNIR1600 and SWIR320 m-e:,
available at: https://www.hyspex.no/products/disc/vnir-1600.php (last access: 18 June 2019), 2019.
Iwasaki, A., Ohgi, N., Tanii, J., Kawashima, T., and Inada, H.:
Hyperspectral Imager Suite (HISUI)-Japanese hyper-multi spectral radiometer,
in: International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 1025–1028,
2011.
Jensen, J. R.:
Remote Sensing of the Environment An Earth Resource Perspective, 2nd Edn.,
Pearson Education, Darling Kindersley, South Asia, New Delhi, 2010.
Koellner, N., Koerting, F., Horning, M., Mielke, C., and Altenberger, U.:
Technical Report: Mineral reflectance spectra and chemistry of 20 copper-bearing minerals, V. 2.0 GFZ Data Services,
https://doi.org/10.5880/GFZ.1.4.2019.003,
2019.
Koerting, F., Herrmann, S., Boesche, N. K., Mielke, C., Koellner, N., and Altenberger, U.:
Technical Report: Mineral reflectance spectra and chemistry of 29 rare-earth minerals and rare-earth oxide powders including niobium- and tantalum-oxid powder, V. 2.0 GFZ Data Services,
https://doi.org/10.5880/GFZ.1.4.2019.004,
2019a.
Koerting, F., Rogass, C., Koellner, N., Horning, M., and Altenberger, U.:
Technical Report: Mineral reflectance spectra and chemistry of 37 copper-bearing surface samples from Apliki copper-gold-pyrite mine in the Republic of Cyprus, V. 2.0 GFZ Data Services,
https://doi.org/10.5880/GFZ.1.4.2019.005,
2019b.
Koerting, F., Koellner, N., Mielke, C., Rogass, C., Kuras, A., Altenberger, U., Klos, F., and Hildebrand, C.:
Hyperspectral mine face scan of the northern open cut and laboratory scan of surface from the Apliki copper-gold-pyrite mine in the Republic of Cyprus, GFZ Data Services, in preparation,
2021.
Koerting, F. M.:
Hybrid imaging spectroscopy approaches for open pit mining – Applications for virtual mine face geology,
PhD thesis,
University of Potsdam, 2021.
Körting, F.:
Development of a 360∘ hyperspectral drill core scanner Test of technical conditions and validation of high-resolution near-field analysis of crystalline basement rocks using COSC-1 core samples,
MS thesis, Scientific Technical Report, 19/07,
GFZ German Research Centre for Geosciences, Potsdam, 97, xxi pp., https://doi.org/10.2312/GFZ.b103-19071, 2019.
Kokaly, R. F., Clark, R. N., Swayze, G. A., Livo, K. E., Hoefen, T. M., Pearson, N. C., Wise, R. A., Benzel, W. M., Lowers, H. A., Driscoll, R. L., and Klein, A. J.:
USGS Spectral Library Version 7,
available at: https://pubs.er.usgs.gov/publication/ds1035 (last access: 2 March 2021), 2017.
Lorenz, M., Altenberger, U., Trumbull, R. B., Lira, R., Luchi, M. L. De, Günter, C., and Eidner, S.:
Chemical and textural relations of britholite- and apatite-group minerals from hydrothermal REE mineralization at the Rodeo de los Molles deposit, Central Argentina, Am. Mineral., 104,1840–1850, https://doi.org/https://doi.org/10.2138/am-2019-6969, 2019.
Meerdink, S. K., Hook, S. J., Roberts, D. A., and Abbott, E. A.:
The ECOSTRESS spectral library version 1.0,
Remote Sens. Environ.,
230, 111196, https://doi.org/10.1016/j.rse.2019.05.015, 2019.
Mielke, C., Rogass, C., Boesche, N., Segl, K., and Altenberger, U.:
EnGeoMAP 2.0—Automated Hyperspectral Mineral Identification for the German EnMAP Space Mission,
Remote Sens-Basel,
8, 127, https://doi.org/10.3390/rs8020127, 2016.
Percival, J. B., Olejarz, A. D., English, M. L. R., Belley, P. M., Flynn, T., Laudadio, A. B., Stirling, J. A., and Stirling, J. A. R.:
The National Mineral Reference Collection (NMC) Digital Spectral (VIS-NIR-SWIR) Library. Part I: The Kodama clay mineral collection, Geological Survey of Canada, Open File 7923, 24 pp., https://doi.org/10.4095/297564, 2016.
Rogass, C., Koerting, F. M., Mielke, C., Brell, M., Boesche, N. K., Bade, M., and Hohmann, C.:
Translational imaging spectroscopy for proximal sensing,
Sensors (Switzerland),
17, 1857, https://doi.org/10.3390/s17081857, 2017.
Swayze, G. A., Clark, R. N., Goetz, A. F. H., Livo, K. E., Breit, G. N., Kruse, F. A., Sutley, S. J., Snee, L. W., Lowers, H. A., Post, J. L., Stoffregen, R. E., and Ashley, R. P.:
Mapping advanced argillic alteration at Cuprite, Nevada, using imaging spectroscopy,
Econ. Geol.,
109, 1179–1221, https://doi.org/10.2113/econgeo.109.5.1179, 2014.
Tong, Q., Xue, Y., and Zhang, L.:
Progress in hyperspectral remote sensing science and technology in China over the past three decades,
IEEE J. Sel. Top. Appl.,
7, 70–91, https://doi.org/10.1109/JSTARS.2013.2267204, 2014.
Turner, D., Rivard, B., and Groat, L.:
Rare earth element ore grade estimation of mineralized drill core from hyperspectral imaging spectroscopy,
in: 2014 IEEE Geoscience and Remote Sensing Symposium, 4612–4615, 2014a.
Turner, D. J.:
Reflectance spectroscopy and imaging spectroscopy of rare earth element-bearing mineral and rock samples, Doctor of Philosophy
Thesis,
University of British Columbia, Vancouver,
April
2015.
Turner, D. J., Rivard, B., and Groat, L. A.:
Visible and short-wave infrared reflectance spectroscopy of REE fluorocarbonates,
Am. Mineral.,
99, 1335–1346, https://doi.org/10.2138/am.2014.4674, 2014b.
van der Meer, F. D., van der Werff, H. M. A., van Ruitenbeek, F. J. A., Hecker, C. A., Bakker, W. H., Noomen, M. F., van der Meijde, M., Carranza, E. J. M., de Smeth, J. B., and Woldai, T.:
Multi- and hyperspectral geologic remote sensing: A review,
Int. J. Appl. Earth Obs.,
14, 112–128, https://doi.org/10.1016/j.jag.2011.08.002, 2012.
Short summary
Mineral resource exploration and mining is an essential part of today's high-tech industry. Modern remote-sensing exploration techniques from multiple platforms (e.g., satellite) to detect the spectral characteristics of the surface require spectral libraries as an essential reference. To enable remote mapping, the spectral libraries for rare-earth-bearing minerals, copper-bearing minerals and surface samples from a copper mine are presented here with their corresponding geochemical validation.
Mineral resource exploration and mining is an essential part of today's high-tech industry....
Altmetrics
Final-revised paper
Preprint