Articles | Volume 13, issue 2
https://doi.org/10.5194/essd-13-827-2021
https://doi.org/10.5194/essd-13-827-2021
Data description paper
 | 
03 Mar 2021
Data description paper |  | 03 Mar 2021

A high-resolution unified observational data product of mesoscale convective systems and isolated deep convection in the United States for 2004–2017

Jianfeng Li, Zhe Feng, Yun Qian, and L. Ruby Leung

Related authors

WRF-ELM v1.0: a regional climate model to study land–atmosphere interactions over heterogeneous land use regions
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025,https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Tracking precipitation features and associated large-scale environments over southeastern Texas
Ye Liu, Yun Qian, Larry K. Berg, Zhe Feng, Jianfeng Li, Jingyi Chen, and Zhao Yang
Atmos. Chem. Phys., 24, 8165–8181, https://doi.org/10.5194/acp-24-8165-2024,https://doi.org/10.5194/acp-24-8165-2024, 2024
Short summary
A derecho climatology (2004–2021) in the United States based on machine learning identification of bow echoes
Jianfeng Li, Andrew Geiss, Zhe Feng, L. Ruby Leung, Yun Qian, and Wenjun Cui
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-112,https://doi.org/10.5194/essd-2024-112, 2024
Revised manuscript under review for ESSD
Short summary
Impacts of spatial heterogeneity of anthropogenic aerosol emissions in a regionally refined global aerosol–climate model
Taufiq Hassan, Kai Zhang, Jianfeng Li, Balwinder Singh, Shixuan Zhang, Hailong Wang, and Po-Lun Ma
Geosci. Model Dev., 17, 3507–3532, https://doi.org/10.5194/gmd-17-3507-2024,https://doi.org/10.5194/gmd-17-3507-2024, 2024
Short summary
Assessing the sensitivity of aerosol mass budget and effective radiative forcing to horizontal grid spacing in E3SMv1 using a regional refinement approach
Jianfeng Li, Kai Zhang, Taufiq Hassan, Shixuan Zhang, Po-Lun Ma, Balwinder Singh, Qiyang Yan, and Huilin Huang
Geosci. Model Dev., 17, 1327–1347, https://doi.org/10.5194/gmd-17-1327-2024,https://doi.org/10.5194/gmd-17-1327-2024, 2024
Short summary

Related subject area

Meteorology
Homogenized daily sunshine duration over China from 1961 to 2022
Yanyi He, Kaicun Wang, Kun Yang, Chunlüe Zhou, Changkun Shao, and Changjian Yin
Earth Syst. Sci. Data, 17, 1595–1611, https://doi.org/10.5194/essd-17-1595-2025,https://doi.org/10.5194/essd-17-1595-2025, 2025
Short summary
Observations of surface energy fluxes and meteorology in the seasonally snow-covered high-elevation East River watershed during SPLASH, 2021–2023
Christopher J. Cox, Janet M. Intrieri, Brian J. Butterworth, Gijs de Boer, Michael R. Gallagher, Jonathan Hamilton, Erik Hulm, Tilden Meyers, Sara M. Morris, Jackson Osborn, P. Ola G. Persson, Benjamin Schmatz, Matthew D. Shupe, and James M. Wilczak
Earth Syst. Sci. Data, 17, 1481–1499, https://doi.org/10.5194/essd-17-1481-2025,https://doi.org/10.5194/essd-17-1481-2025, 2025
Short summary
MDG625: a daily high-resolution meteorological dataset derived by a geopotential-guided attention network in Asia (1940–2023)
Zijiang Song, Zhixiang Cheng, Yuying Li, Shanshan Yu, Xiaowen Zhang, Lina Yuan, and Min Liu
Earth Syst. Sci. Data, 17, 1501–1514, https://doi.org/10.5194/essd-17-1501-2025,https://doi.org/10.5194/essd-17-1501-2025, 2025
Short summary
The SAIL dataset of marine atmospheric electric field observations over the Atlantic Ocean
Susana Barbosa, Nuno Dias, Carlos Almeida, Guilherme Amaral, António Ferreira, António Camilo, and Eduardo Silva
Earth Syst. Sci. Data, 17, 1393–1405, https://doi.org/10.5194/essd-17-1393-2025,https://doi.org/10.5194/essd-17-1393-2025, 2025
Short summary
Global projections of heat stress at high temporal resolution using machine learning
Pantelis Georgiades, Theo Economou, Yiannis Proestos, Jose Araya, Jos Lelieveld, and Marco Neira
Earth Syst. Sci. Data, 17, 1153–1171, https://doi.org/10.5194/essd-17-1153-2025,https://doi.org/10.5194/essd-17-1153-2025, 2025
Short summary

Cited articles

Anderson, J. G., Weisenstein, D. K., Bowman, K. P., Homeyer, C. R., Smith, J. B., Wilmouth, D. M., Sayres, D. S., Klobas, J. E., Leroy, S. S., and Dykema, J. A.: Stratospheric ozone over the United States in summer linked to observations of convection and temperature via chlorine and bromine catalysis, P. Natl. Acad. Sci. USA, 114, E4905–E4913, https://doi.org/10.1073/pnas.1619318114, 2017. 
Andreae, M. O., Artaxo, P., Fischer, H., Freitas, S., Grégoire, J. M., Hansel, A., Hoor, P., Kormann, R., Krejci, R., and Lange, L.: Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region, Geophys. Res. Lett., 28, 951–954, https://doi.org/10.1029/2000GL012391, 2001. 
Angel, J. R., Palecki, M. A., and Hollinger, S. E.: Storm precipitation in the United States. Part II: Soil erosion characteristics, J. Appl. Meteorol., 44, 947–959, https://doi.org/10.1175/JAM2242.1, 2005. 
Bigelbach, B., Mullendore, G., and Starzec, M.: Differences in deep convective transport characteristics between quasi-isolated strong convection and mesoscale convective systems using seasonal WRF simulations, J. Geophys. Res.-Atmos., 119, 11445–11455, https://doi.org/10.1002/2014JD021875, 2014. 
Bowman, K. P. and Homeyer, C. R.: GridRad – Three-Dimensional Gridded NEXRAD WSR-88D Radar Data, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, https://doi.org/10.5065/D6NK3CR7, available at: https://rda.ucar.edu/datasets/ds841.0/ (last access: 2 January 2020), 2017. 
Download
Short summary
Deep convection has different properties at different scales. We develop a 4 km h−1 observational data product of mesoscale convective systems and isolated deep convection in the United States from 2004–2017. We find that both types of convective systems contribute significantly to precipitation east of the Rocky Mountains but with distinct spatiotemporal characteristics. The data product will be useful for observational analyses and model evaluations of convection events at different scales.
Share
Altmetrics
Final-revised paper
Preprint