Articles | Volume 13, issue 10
https://doi.org/10.5194/essd-13-4635-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-4635-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GIS dataset: geomorphological record of terrestrial-terminating ice streams, southern sector of the Baltic Ice Stream Complex, last Scandinavian Ice Sheet, Poland
Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, 61-680, Poland
Jakub Z. Kalita
Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, 61-680, Poland
Marek W. Ewertowski
Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, 61-680, Poland
Chris D. Clark
Department of Geography, University of Sheffield, Sheffield, S3 7ND, UK
Stephen J. Livingstone
Department of Geography, University of Sheffield, Sheffield, S3 7ND, UK
Leszek Kasprzak
Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, 61-680, Poland
Related authors
Izabela Szuman, Jakub Z. Kalita, Christiaan R. Diemont, Stephen J. Livingstone, Chris D. Clark, and Martin Margold
The Cryosphere, 18, 2407–2428, https://doi.org/10.5194/tc-18-2407-2024, https://doi.org/10.5194/tc-18-2407-2024, 2024
Short summary
Short summary
A Baltic-wide glacial landform-based map is presented, filling in a geographical gap in the record that has been speculated about by palaeoglaciologists for over a century. Here we used newly available bathymetric data and provide landform evidence of corridors of fast ice flow that we interpret as ice streams. Where previous ice-sheet-scale investigations inferred a single ice source, our mapping identifies flow and ice margin geometries from both Swedish and Bothnian sources.
Xi Lu, Liming Jiang, Daan Li, Yi Liu, Andrew Sole, and Stephen John Livingstone
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-304, https://doi.org/10.5194/essd-2025-304, 2025
Preprint under review for ESSD
Short summary
Short summary
To support generalized automated monitoring and modeling of Greenland’s outlet glaciers, this study presents a benchmark dataset of over 12,000 manually delineated calving front positions from 2002 to 2021. With high spatial accuracy and wide coverage, it enables evaluation of automated detection methods, improves model boundary conditions, and supports long-term studies of glacier change and sea-level rise.
Tancrède P. M. Leger, Jeremy C. Ely, Christopher D. Clark, Sarah L. Bradley, Rosie E. Archer, and Jiang Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1616, https://doi.org/10.5194/egusphere-2025-1616, 2025
Short summary
Short summary
This study uses state-of-the-art computer simulations to better understand how the Greenland ice sheet has changed over the past 24,000 years. By comparing model results with geological data, it reveals when and why the ice sheet grew and shrank, helping improve future predictions of sea level rise and climate change.
Benjamin J. Stoker, Helen E. Dulfer, Chris R. Stokes, Victoria H. Brown, Christopher D. Clark, Colm Ó Cofaigh, David J. A. Evans, Duane Froese, Sophie L. Norris, and Martin Margold
The Cryosphere, 19, 869–910, https://doi.org/10.5194/tc-19-869-2025, https://doi.org/10.5194/tc-19-869-2025, 2025
Short summary
Short summary
The retreat of the northwestern Laurentide Ice Sheet allows us to investigate how the ice drainage network evolves over millennial timescales and understand the influence of climate forcing, glacial lakes and the underlying geology on the rate of deglaciation. We reconstruct the changes in ice flow at 500-year intervals and identify rapid reorganisations of the drainage network, including variations in ice streaming that we link to climatically driven changes in the ice sheet surface slope.
Izabela Szuman, Jakub Z. Kalita, Christiaan R. Diemont, Stephen J. Livingstone, Chris D. Clark, and Martin Margold
The Cryosphere, 18, 2407–2428, https://doi.org/10.5194/tc-18-2407-2024, https://doi.org/10.5194/tc-18-2407-2024, 2024
Short summary
Short summary
A Baltic-wide glacial landform-based map is presented, filling in a geographical gap in the record that has been speculated about by palaeoglaciologists for over a century. Here we used newly available bathymetric data and provide landform evidence of corridors of fast ice flow that we interpret as ice streams. Where previous ice-sheet-scale investigations inferred a single ice source, our mapping identifies flow and ice margin geometries from both Swedish and Bothnian sources.
Tancrède P. M. Leger, Christopher D. Clark, Carla Huynh, Sharman Jones, Jeremy C. Ely, Sarah L. Bradley, Christiaan Diemont, and Anna L. C. Hughes
Clim. Past, 20, 701–755, https://doi.org/10.5194/cp-20-701-2024, https://doi.org/10.5194/cp-20-701-2024, 2024
Short summary
Short summary
Projecting the future evolution of the Greenland Ice Sheet is key. However, it is still under the influence of past climate changes that occurred over thousands of years. This makes calibrating projection models against current knowledge of its past evolution (not yet achieved) important. To help with this, we produced a new Greenland-wide reconstruction of ice sheet extent by gathering all published studies dating its former retreat and by mapping its past margins at the ice sheet scale.
Lauren D. Rawlins, David M. Rippin, Andrew J. Sole, Stephen J. Livingstone, and Kang Yang
The Cryosphere, 17, 4729–4750, https://doi.org/10.5194/tc-17-4729-2023, https://doi.org/10.5194/tc-17-4729-2023, 2023
Short summary
Short summary
We map and quantify surface rivers and lakes at Humboldt Glacier to examine seasonal evolution and provide new insights of network configuration and behaviour. A widespread supraglacial drainage network exists, expanding up the glacier as seasonal runoff increases. Large interannual variability affects the areal extent of this network, controlled by high- vs. low-melt years, with late summer network persistence likely preconditioning the surface for earlier drainage activity the following year.
Yubin Fan, Chang-Qing Ke, Xiaoyi Shen, Yao Xiao, Stephen J. Livingstone, and Andrew J. Sole
The Cryosphere, 17, 1775–1786, https://doi.org/10.5194/tc-17-1775-2023, https://doi.org/10.5194/tc-17-1775-2023, 2023
Short summary
Short summary
We used the new-generation ICESat-2 altimeter to detect and monitor active subglacial lakes in unprecedented spatiotemporal detail. We created a new inventory of 18 active subglacial lakes as well as their elevation and volume changes during 2019–2020, which provides an improved understanding of how the Greenland subglacial water system operates and how these lakes are fed by water from the ice surface.
Camilla M. Rootes and Christopher D. Clark
E&G Quaternary Sci. J., 71, 111–122, https://doi.org/10.5194/egqsj-71-111-2022, https://doi.org/10.5194/egqsj-71-111-2022, 2022
Short summary
Short summary
Glacial trimlines are visible breaks in vegetation or landforms that mark the former extent of glaciers. They are often observed as faint lines running across valley sides and are useful for mapping the three-dimensional shape of former glaciers or for assessing by how much present-day glaciers have thinned and retreated. Here we present the first application of a new trimline classification scheme to a case study location in central western Spitsbergen, Svalbard.
Peter A. Tuckett, Jeremy C. Ely, Andrew J. Sole, James M. Lea, Stephen J. Livingstone, Julie M. Jones, and J. Melchior van Wessem
The Cryosphere, 15, 5785–5804, https://doi.org/10.5194/tc-15-5785-2021, https://doi.org/10.5194/tc-15-5785-2021, 2021
Short summary
Short summary
Lakes form on the surface of the Antarctic Ice Sheet during the summer. These lakes can generate further melt, break up floating ice shelves and alter ice dynamics. Here, we describe a new automated method for mapping surface lakes and apply our technique to the Amery Ice Shelf between 2005 and 2020. Lake area is highly variable between years, driven by large-scale climate patterns. This technique will help us understand the role of Antarctic surface lakes in our warming world.
Aleksandra M. Tomczyk and Marek W. Ewertowski
Earth Syst. Sci. Data, 13, 5293–5309, https://doi.org/10.5194/essd-13-5293-2021, https://doi.org/10.5194/essd-13-5293-2021, 2021
Short summary
Short summary
We collected detailed (cm-scale) topographical data to illustrate how a single flood event can modify river landscape in the high-Arctic setting of Zackenberg Valley, NE Greenland. The studied flood was a result of an outburst from a glacier-dammed lake. We used drones to capture images immediately before, during, and after the flood for the 2 km long section of the river. Data can be used for monitoring and modelling of flood events and assessment of geohazards for Zackenberg Research Station.
Jean Vérité, Édouard Ravier, Olivier Bourgeois, Stéphane Pochat, Thomas Lelandais, Régis Mourgues, Christopher D. Clark, Paul Bessin, David Peigné, and Nigel Atkinson
The Cryosphere, 15, 2889–2916, https://doi.org/10.5194/tc-15-2889-2021, https://doi.org/10.5194/tc-15-2889-2021, 2021
Short summary
Short summary
Subglacial bedforms are commonly used to reconstruct past glacial dynamics and investigate processes occuring at the ice–bed interface. Using analogue modelling and geomorphological mapping, we demonstrate that ridges with undulating crests, known as subglacial ribbed bedforms, are ubiquitous features along ice stream corridors. These bedforms provide a tantalizing glimpse into (1) the former positions of ice stream margins, (2) the ice lobe dynamics and (3) the meltwater drainage efficiency.
Emma L. M. Lewington, Stephen J. Livingstone, Chris D. Clark, Andrew J. Sole, and Robert D. Storrar
The Cryosphere, 14, 2949–2976, https://doi.org/10.5194/tc-14-2949-2020, https://doi.org/10.5194/tc-14-2949-2020, 2020
Short summary
Short summary
We map visible traces of subglacial meltwater flow across Keewatin, Canada. Eskers are commonly observed to form within meltwater corridors up to a few kilometres wide, and we interpret different traces to have formed as part of the same integrated drainage system. In our proposed model, we suggest that eskers record the imprint of a central conduit while meltwater corridors represent the interaction with the surrounding distributed drainage system.
Cited articles
Alley, R. B., Cuffey, K. M., and Zoet, L. K.:
Glacial erosion: status and outlook,
Ann. Glaciol.,
60, 1–13, https://doi.org/10.1017/aog.2019.38, 2019.
Assmann, P. and Dammer, B.:
Geologische Karte von Preussen und benachbarten Bundesstaaten, Blatt Gross Gay, 1:25 000,
Königliche Preussische Geologische Landesanstalt, Berlin, 1916.
Bamber, J. L. and Dawson, G. J.:
Complex evolving patterns of mass loss from Antarctica's largest glacier,
Nat. Geosci.,
13, 127–131, https://doi.org/10.1038/s41561-019-0527-z, 2020.
Bamber, J. L., Vaughan, D. G., and Joughin, I.:
Widespread Complex Flow in the Interior of the Antarctic Ice Sheet,
Science,
287, 1248, https://doi.org/10.1126/science.287.5456.1248, 2000.
Barr, I. D. and Lovell, H.:
A review of topographic controls on moraine distribution,
Geomorphology,
226, 44–64, https://doi.org/10.1016/j.geomorph.2014.07.030, 2014.
Bartkowski, T.:
Próba kartograficznego ujęcia geomorfologii okolic Buka, Szamotułi Skoków,
Prace Komisji Geograficzno–Geologicznej,
3, 1–50, 1962 (in Polish).
Bartkowski, T.:
Deglacjacja arealna – zasadniczy typdeglacjacji na obszarach niżowych,
Prace Komisji Geograficzno-Geologicznej,
70, 338–347, 1963 (in Polish).
Bartkowski, T.:
O formach rozcięcia marginalnego i niektorych formach strefy marginalnej na Nizinie Wielkopolskiej (cz. II),
Badania Fizjograficzne nad Polską Zachodnią,
13, 7–76, 1964 (in Polish).
Bartkowski, T.:
O formach strefy marginalnej na Nizinie Wielkopolskiej,
Prace Komisji Geograficzno-Geologicznej,
7, 1–260, 1967 (in Polish).
Bartkowski, T.:
Kemy na obszarze Niziny Wielkopolskiej a deglacjacja,
Badania Fizjograficzne nad Polską Zachodnią,
21, 7–77, 1968 (in Polish).
Bartkowski, T.:
Deglacjacja strefowa deglacjacją normalną na obszarach niżowych, na wybranych przykładach z Polski Zachodniej,
Badania Fizjograficzne nad Polską Zachodnią,
23A, 7–34, 1969 (in Polish).
Bartkowski, T.:
Strefa marginalna stadiału pomorskiego w aspekcie deglacjacji strefowej (na wybranych przykładach z Pojezierzy Drawskiego i Miastkowskiego na Pomorzu),
Badania Fizjograficzne nad Polską Zachodnią,
26A, 7–60, 1972 (in Polish).
Benn, D. I. and Evans, D. J. A.:
Glaciers and glaciation,
Hodder Education, London, 2010.
Bennett, M. R., Hambrey, M. J., Huddart, D., and Ghienne, J. F.:
The formation of a geometrical ridge network by the surge-type glacier Kongsvegen, Svalbard,
J. Quaternary Sci.,
11, 437–449, https://doi.org/10.1002/(SICI)1099-1417(199611/12)11:6<437::AID-JQS269>3.0.CO;2-J, 1996.
Berendt, G. and Keilhack, K.:
Endmoränen in der Provinz Posen,
Jb. D. Kön. Preuss. Geol. Landesanst.,
13, 235–237, 1894 (in German).
Bluemle, J. P. and Clayton, L. E. E.:
Large-scale glacial thrusting and related processes in North Dakota,
Boreas,
13, 279–299, https://doi.org/10.1111/j.1502-3885.1984.tb01124.x, 1984.
Boulton, G. S., Dongelmans, P., Punkari, M., and Broadgate, M.:
Palaeoglaciology of an ice sheet through a glacial cycle:: the European ice sheet through the Weichselian,
Quaternary Sci. Rev.,
20, 591–625, https://doi.org/10.1016/S0277-3791(00)00160-8, 2001.
Boulton, G. S., Dongelmans, P., Punkari, M., and Broadgate, M.:
Evidence of European ice sheet fluctuation during the last glacial cycle,
in: Developments in Quaternary Sciences,
edited by: Ehlers, J. and Gibbard, P. L.,
Elsevier, Amsterdam, the Netherlands, 441–460, 2004.
Chandler, B. M. P., Lovell, H., Boston, C. M., Lukas, S., Barr, I. D., Benediktsson, Í. Ö., Benn, D. I., Clark, C. D., Darvill, C. M., Evans, D. J. A., Ewertowski, M. W., Loibl, D., Margold, M., Otto, J.-C., Roberts, D. H., Stokes, C. R., Storrar, R. D., and Stroeven, A. P.:
Glacial geomorphological mapping: A review of approaches and frameworks for best practice,
Earth-Sci. Rev.,
185, 806–846, https://doi.org/10.1016/j.earscirev.2018.07.015, 2018.
Clark, C. D.:
Mega-scale glacial lineations and cross-cutting ice-flow landforms,
Earth Surf. Proc. Land.,
18, 1–29, https://doi.org/10.1002/esp.3290180102, 1993.
Clark, C. D.:
Reconstructing the evolutionary dynamics of former ice sheets using multi-temporal evidence, remote sensing and GIS,
Quaternary Sci. Rev.,
16, 1067–1092, https://doi.org/10.1016/S0277-3791(97)00037-1, 1997.
Clark, C. D., Spagnolo, M., Hughs, A. L. C., Greenwood, S. L., Stokes, C. R., Dunlop, P., and Ng, F.:
A re-examination of drumlin morphology; width, length, height, elongation, and asymmetry,
INQUA VII International Drumlin Symposium, Westport, Ireland, 23–26 April 2009, 2009.
Dunlop, P. and Clark, C. D.:
The morphological characteristics of ribbed moraine,
Quaternary Sci. Rev.,
25, 1668–1691, https://doi.org/10.1016/j.quascirev.2006.01.002, 2006.
Ely, J. C., Clark, C. D., Spagnolo, M., Stokes, C. R., Greenwood, S. L., Hughes, A. L. C., Dunlop, P., and Hess, D.:
Do subglacial bedforms comprise a size and shape continuum?,
Geomorphology,
257, 108–119, https://doi.org/10.1016/j.geomorph.2016.01.001, 2016.
Ely, J. C., Clark, C. D., Hindmarsh, R. C. A., Hughes, A. L. C., Greenwood, S. L., Bradley, S. L., Gasson, E., Gregoire, L., Gandy, N., Stokes, C. R., and Small, D.:
Recent progress on combining geomorphological and geochronological data with ice sheet modelling, demonstrated using the last British–Irish Ice Sheet,
J. Quaternary Sci., 36, 946–960, https://doi.org/10.1002/jqs.3098, 2019a.
Ely, J. C., Clark, C. D., Small, D., and Hindmarsh, R. C. A.: ATAT 1.1, the Automated Timing Accordance Tool for comparing ice-sheet model output with geochronological data, Geosci. Model Dev., 12, 933–953, https://doi.org/10.5194/gmd-12-933-2019, 2019b.
Evans, D. J. A. and Rea, B. R.:
Geomorphology and sedimentology of surging glaciers: a land-systems approach,
Ann. Glaciol.,
28, 75–82, https://doi.org/10.3189/172756499781821823, 1999.
Evans, D. J. A., Clark, C. D., and Rea, B. R.:
Landform and sediment imprints of fast glacier flow in the southwest Laurentide Ice Sheet,
J. Quaternary Sci.,
23, 249–272, https://doi.org/10.1002/jqs.1141, 2008.
Evans, D. J. A., Young, N. J. P., and Ó Cofaigh, C.:
Glacial geomorphology of terrestrial-terminating fast flow lobes/ice stream margins in the southwest Laurentide Ice Sheet,
Geomorphology,
204, 86–113, https://doi.org/10.1016/j.geomorph.2013.07.031, 2014.
Evans, D. J. A., Storrar, R. D., and Rea, B. R.:
Crevasse-squeeze ridge corridors: Diagnostic features of late-stage palaeo-ice stream activity,
Geomorphology,
258, 40–50, https://doi.org/10.1016/j.geomorph.2016.01.017, 2016.
Ewertowski, M. and Rzeszewski, M.:
Using DEM to recognize possible minor stays of Vistulian (Weichselian) ice–sheet margin in the Wielkopolska Lowland,
Quaestiones Geographicae,
25A, 7–21, 2006.
Galon, R.:
Morphology of the Noteć–Warta (or Toruń–Everswalde) ice marginal streamway,
Wydawnictwa Geologiczne, Warsaw, 1961.
Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years, The Cryosphere, 12, 521–547, https://doi.org/10.5194/tc-12-521-2018, 2018.
Glasser, N. F., Hambrey, M. J., Crawford, K. R., Bennett, M. R., and Huddart, D.:
The structural glaciology of Kongsvegen, Svalbard, and its role in landform genesis,
J. Glaciol.,
44, 136–148, https://doi.org/10.3189/S0022143000002422, 1998.
Hättestrand, C. and Clark, C. D.:
The glacial geomorphology of Kola Peninsula and adjacent areas in the Murmansk Region, Russia,
J. Maps,
2, 30–42, https://doi.org/10.4113/jom.2006.41, 2006.
Hebrand, M. and Åmark, M.:
Esker formation and glacier dynamics in eastern Skane and adjacent areas, southern Sweden,
Boreas,
18, 67–81, https://doi.org/10.1111/j.1502-3885.1989.tb00372.x, 1989.
Hermanowski, P., Piotrowski, J. A., and Szuman, I.:
An erosional origin for drumlins of NW Poland,
Earth Surf. Proc. Land., 44, 2030–2050, https://doi.org/10.1002/esp.4630, 2019.
Houmark-Nielsen, M.:
Extent, age and dynamics of Marine Isotope Stage 3 glaciations in the southwestern Baltic Basin,
Boreas,
39, 343–359, https://doi.org/10.1111/j.1502-3885.2009.00136.x, 2010.
Hug, C., Krzystek, P., and Fuchs, W.:
Advanced LiDAR data orocessing with LasTools,
ISPRS Congress, Istanbul, 2004,.
Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J., and Svendsen, J. I.:
The last Eurasian ice sheets – a chronological database and time-slice reconstruction, DATED-1,
Boreas,
45, 1–45, https://doi.org/10.1111/bor.12142, 2016.
Hughes, T.:
Modeling ice sheets from the bottom up,
Quaternary Sci. Rev.,
28, 1831–1849, https://doi.org/10.1016/j.quascirev.2009.06.004, 2009.
Isenburg, M.:
LASzip: lossless compression of Lidar data,
Photogramm. Eng. Rem. S.,
79, 209–217, https://doi.org/10.14358/PERS.79.2.209, 2013.
Jamieson, S. S. R., Stokes, C. R., Livingstone, S. J., Vieli, A., Ó Cofaigh, C., Hillenbrand, C.-D., and Spagnolo, M.:
Subglacial processes on an Antarctic ice stream bed. 2: Can modelled ice dynamics explain the morphology of mega-scale glacial lineations?,
J. Glaciol.,
62, 285–298, https://doi.org/10.1017/jog.2016.19, 2016.
Jørgensen, F. and Sandersen, P. B. E.:
Buried and open tunnel valleys in Denmark – erosion beneath multiple ice sheets,
Quaternary Sci. Rev.,
25, 1339–1363, https://doi.org/10.1016/j.quascirev.2005.11.006, 2006.
Joughin, I. and Tulaczyk, S.:
Positive Mass Balance of the Ross Ice Streams, West Antarctica,
Science,
295, 476, https://doi.org/10.1126/science.1066875, 2002.
Kalm, V.:
Ice-flow pattern and extent of the last Scandinavian Ice Sheet southeast of the Baltic Sea,
Quaternary Sci. Rev.,
44, 51–59, https://doi.org/10.1016/j.quascirev.2010.01.019, 2012.
Karczewski, A.:
Morfologia, struktura i tekstura moreny dennej na obszarze Polski zachodniej,
Prace Komisji Geograficzno-Geologicznej,
4, 1–111, 1963 (in Polish).
Karczewski, A.:
Zmienność litologiczna i strukturalna kemow Pomorza Zachodniego a zagadnienie ich klasyfikacji,
Prace Komisji Geograficzno-Geologicznej,
11, 1–57, 1971 (in Polish).
Karczewski, A.:
Morphometric features of drumlins in western Pomerania,
Quaestiones Geographicae,
3, 35–42, 1976.
Karczewski, A., Kozarski, S., and Rotnicki, K.:
Przeglądowa Mapa Geomorfologiczna Polski, arkusz Poznań, 1:500 000,
Instytut Geografii i Przestrzennego Zagospodarowania PAN, Kraków, 1980 (in Polish).
Kehew, A. E., Piotrowski, J. A., and Jørgensen, F.:
Tunnel valleys: Concepts and controversies — A review,
Earth-Sci. Rev.,
113, 33–58, https://doi.org/10.1016/j.earscirev.2012.02.002, 2012.
Keilhack, K.:
Abhandlungen der Königlich Preussischen Geologischen Landesanstalt: neue Folge 1897 H. 26,
Im Vertrieb der Simon Schropp'schen Hof-Landkartenhandlung, Berlin, 1897 (in German).
King, E. C., Hindmarsh, R. C. A., and Stokes, C. R.:
Formation of mega-scale glacial lineations observed beneath a West Antarctic ice stream,
Nat. Geosci.,
2, 585, https://doi.org/10.1038/ngeo581, 2009.
Kjær, K. H., Houmark-Nielsen, M., and Richardt, N.:
Ice-flow patterns and dispersal of erratics at the southwestern margin of the last Scandinavian Ice Sheet: signature of palaeo-ice streams,
Boreas,
32, 130–148, https://doi.org/10.1111/j.1502-3885.2003.tb01434.x, 2003.
Kleman, J. and Borgström, I.:
Reconstruction of palaeo-ice sheets: the use of geomorphological data,
Earth Surf. Proc. Land.,
21, 893–909, https://doi.org/10.1002/(sici)1096-9837(199610)21:10<893::Aid-esp620>3.0.Co;2-u, 1996.
Kleman, J., Hättestrand, C., Borgström, I., and Stroeven, A.:
Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model,
J. Glaciol.,
43, 283–299, https://doi.org/10.3189/S0022143000003233, 1997.
Kleman, J., Stroeven, A. P., and Lundqvist, J.:
Patterns of Quaternary ice sheet erosion and deposition in Fennoscandia and a theoretical framework for explanation,
Geomorphology,
97, 73–90, https://doi.org/10.1016/j.geomorph.2007.02.049, 2008.
Kleman, J., Jansson, K., De Angelis, H., Stroeven, A. P., Hättestrand, C., Alm, G., and Glasser, N.:
North American Ice Sheet build-up during the last glacial cycle, 115–21 kyr,
Quaternary Sci. Rev.,
29, 2036–2051, https://doi.org/10.1016/j.quascirev.2010.04.021, 2010.
Korn, J.:
Die Mittel-Posensche Endmorane und die damit verbundenen Oser,
Jb. d. Kgl. Preuss. Geol. Landesanst.,
33, 478–518, 1912 (in German).
Kozarski, S.:
O genezie chodzieskiej moreny czołowej,
Badania Fizjograficzne nad Polską Zachodnią,
5, 45–72, 1959 (in Polish).
Kozarski, S.:
Recesja ostatniego la̧dolodu z północnej czȩści Wysoczyzny Gnieźnieńskiej a kształtowanie siȩ Pradoliny Noteci–Warty,
Państwowe Wydawnictwo Naukowe, Poznań, 154 pp., 1962 (in Polish).
Kozarski, S.:
Lithologie und Genese der Endmoränen im Gebiet der skandinavischen Vereisungen,
Schriftenrheie für Geologische Wissenschaften,
9, 179–200, 1978 (in German).
Kozarski, S.:
Deglacjacja polnocno-zachodniej Polski: warunki srodowiska i transformacja geosystemu [ok. 20 KA–10 KA BP],
Dokumentacja Geograficzna,
1, 1–82, 1995 (in Polish).
Krygowski, B.:
Przeglądowa mapa geologiczna Polski, arkusz C 2, 1:300 000,
Państwowy Instytut Geologiczny, Poznań, 1947 (in Polish).
Krygowski, B.:
Mapa Geomorfologiczna Niziny Wielkopolsko-Kujawskiej,
Adam Mickiewicz University, Poznań, 1963 (in Polish).
Liedtke, H.:
Die nordischen Vereisungen in Mitteleuropa,
Zentralausschuß für Dt. Landeskunde, Trier 1981 (in German).
Livingstone, S. J. and Clark, C. D.: Morphological properties of tunnel valleys of the southern sector of the Laurentide Ice Sheet and implications for their formation, Earth Surf. Dynam., 4, 567–589, https://doi.org/10.5194/esurf-4-567-2016, 2016.
Livingstone, S. J., Lewington, E. L. M., Clark, C. D., Storrar, R. D., Sole, A. J., McMartin, I., Dewald, N., and Ng, F.: A quasi-annual record of time-transgressive esker formation: implications for ice-sheet reconstruction and subglacial hydrology, The Cryosphere, 14, 1989–2004, https://doi.org/10.5194/tc-14-1989-2020, 2020.
Lukas, S.:
Morphostratigraphic principles in glacier reconstruction – a perspective from the British Younger Dryas,
Prog. Phys. Geog.,
30, 719–736, https://doi.org/10.1177/0309133306071955, 2006.
Marks, L.: Timing of the Late Vistulian (Weichselian) glacial phases in Poland, Quaternary Sci. Rev., 44, 81–88, https://doi.org/10.1016/j.quascirev.2010.08.008, 2012.
MacAyeal, D. R.:
Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic's Heinrich events,
Paleoceanography,
8, 775–784, https://doi.org/10.1029/93PA02200, 1993.
Moran, S. R., Clayton, L., Hooke, R. L., Fenton, M. M., and Andriashek, L. D.:
Glacier-Bed Landforms of The Prairie Region of North America,
J. Glaciol.,
25, 457–476, https://doi.org/10.3189/S0022143000015306, 1980.
Napieralski, J. and Nalepa, N.:
The application of control charts to determine the effect of grid cell size on landform morphometry,
Comput. Geosci.,
36, 222–230, https://doi.org/10.1016/j.cageo.2009.06.003, 2010.
Napieralski, J., Li, Y., and Harbor, J.:
Comparing predicted and observed spatial boundaries of geologic phenomena: Automated Proximity and Conformity Analysis applied to ice sheet reconstructions,
Comput. Geosci.,
32, 124–134, https://doi.org/10.1016/j.cageo.2005.05.011, 2006.
Napieralski, J., Harbor, J., and Li, Y.:
Glacial geomorphology and geographic information systems,
Earth-Sci. Rev.,
85, 1–22, https://doi.org/10.1016/j.earscirev.2007.06.003, 2007.
Ottesen, D., Stewart, M., Brönner, M., and Batchelor, C. L.:
Tunnel valleys of the central and northern North Sea (56∘ N to 62∘ N): Distribution and characteristics,
Mar. Geol.,
425, 106199, https://doi.org/10.1016/j.margeo.2020.106199, 2020.
Ó Cofaigh, C.:
Tunnel valley genesis,
Prog. Phys. Geog.,
20, 1–19, https://doi.org/10.1177/030913339602000101, 1996.
Ó Cofaigh, C., Dowdeswell, J. A., Evans, J., and Larter, R. D.:
Geological constraints on Antarctic palaeo-ice-stream retreat,
Earth Surf. Proc. Land.,
33, 513–525, https://doi.org/10.1002/esp.1669, 2008.
Patton, H., Hubbard, A., Andreassen, K., Winsborrow, M., and Stroeven, A. P.:
The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing,
Quaternary Sci. Rev.,
153, 97–121, https://doi.org/10.1016/j.quascirev.2016.10.009, 2016a.
Patton, H., Swift, D. A., Clark, C. D., Livingstone, S. J., and Cook, S. J.:
Distribution and characteristics of overdeepenings beneath the Greenland and Antarctic ice sheets: Implications for overdeepening origin and evolution,
Quaternary Sci. Rev.,
148, 128–145, https://doi.org/10.1016/j.quascirev.2016.07.012, 2016b.
Patton, H., Hubbard, A., Andreassen, K., Auriac, A., Whitehouse, P. L., Stroeven, A. P., Shackleton, C., Winsborrow, M., Heyman, J., and Hall, A. M.:
Deglaciation of the Eurasian ice sheet complex,
Quaternary Sci. Rev.,
169, 148–172, https://doi.org/10.1016/j.quascirev.2017.05.019, 2017.
PDAL Contributors:
PDAL Point Data Abstraction Library,
https://doi.org/10.5281/zenodo.2556738, 2018.
Perkins, A. J., Brennand, T. A., and Burke, M. J.:
Towards a morphogenetic classification of eskers: Implications for modelling ice sheet hydrology,
Quaternary Sci. Rev.,
134, 19–38, https://doi.org/10.1016/j.quascirev.2015.12.015, 2016.
Przybylski, B.:
Geomorphic traces of a Weichselian ice stream in the Wielkopolska Lowland, western Poland,
Boreas,
37, 286–296, https://doi.org/10.1111/j.1502-3885.2007.00023.x, 2008.
Punkari, M.:
Glacial and glaciofluvial deposits in the interlobate areas of the Scandinavian ice sheet,
Quaternary Sci. Rev.,
16, 741–753, https://doi.org/10.1016/S0277-3791(97)00020-6, 1997.
Rahmstorf, S.:
Ocean circulation and climate during the past 120,000 years,
Nature,
419, 207–214, https://doi.org/10.1038/nature01090, 2002.
Rea, B. R. and Evans, D. J. A.:
An assessment of surge-induced crevassing and the formation of crevasse squeeze ridges,
J. Geophys. Res.-Earth,
116, F04005, https://doi.org/10.1029/2011jf001970, 2011.
Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J., and Morlighem, M.:
Four decades of Antarctic Ice Sheet mass balance from 1979–2017,
P. Natl. Acad. Sci. USA,
116, 1095, https://doi.org/10.1073/pnas.1812883116, 2019.
Rise, L., Bellec, V. K., Ottesen, D., Bøe, R., and Thorsnes, T.:
Hill–hole pairs on the Norwegian continental shelf,
Geological Society, London, Memoirs,
46, 203, https://doi.org/10.1144/M46.42, 2016.
Rotnicki, K. and Borówka, R. K.:
Osady gornego plenivistulianu w dolinie dolnej Prosny pod Macewem a wiek maksymalnego zasięgu ostatniego zlodowacenia podczas fazy leszczyńskiej,
Badania Fizjograficzne nad Polską Zachodnią,
40A, 5–20, 1989 (in Polish).
Rotnicki, K. and Borówka, R. K.:
Stratigraphy, palaeogeography and dating of the North Polish Stage,
in: Changes of the Polish Coastal Zone,
edited by: Rotnicki, K.,
Adam Mickiewicz University, Poznań, 1994.
Shepard, D.:
A two-dimensional interpolation function for irregularly-spaced data,
Proceedings of the 1968 23rd ACM national conference, USA, 27–29 August 1968, 517–524, 1968.
Shreve, R. L.:
Movement of Water in Glaciers,
J. Glaciol.,
11, 205–214, https://doi.org/10.3189/S002214300002219X, 1972.
Smith, M. J. and Clark, C. D.:
Methods for the visualization of digital elevation models for landform mapping,
Earth Surf. Proc. Land.,
30, 885–900, https://doi.org/10.1002/esp.1210, 2005.
Spagnolo, M., Clark, C. D., Ely, J. C., Stokes, C. R., Anderson, J. B., Andreassen, K., Graham, A. G. C., and King, E. C.:
Size, shape and spatial arrangement of mega-scale glacial lineations from a large and diverse dataset,
Earth Surf. Proc. Land.,
39, 1432–1448, https://doi.org/10.1002/esp.3532, 2014.
Spagnolo, M., Phillips, E., Piotrowski, J. A., Rea, B. R., Clark, C. D., Stokes, C. R., Carr, S. J., Ely, J. C., Ribolini, A., Wysota, W., and Szuman, I.:
Ice stream motion facilitated by a shallow-deforming and accreting bed,
Nat. Commun.,
7, 10723, https://doi.org/10.1038/ncomms10723, 2016.
Stankowski, W.:
Geneza Wału Lwówecko–Rakoniewickiego oraz jego obrzeżenia w świetle badań geomorfologicznych i sedymentologicznych,
Polska Akademia Nauk, Poznań, Poland,
8, 1–94, 1968 (in Polish).
Stokes, C. R.:
Geomorphology under ice streams: Moving from form to process,
Earth Surf. Proc. Land.,
43, 85–123, https://doi.org/10.1002/esp.4259, 2018.
Stokes, C. R. and Clark, C. D.:
Geomorphological criteria for identifying Pleistocene ice streams,
Ann. Glaciol.,
28, 67–74, https://doi.org/10.3189/172756499781821625, 1999.
Stokes, C. R. and Clark, C. D.:
Palaeo-ice streams,
Quaternary Sci. Rev.,
20, 1437–1457, https://doi.org/10.1016/S0277-3791(01)00003-8, 2001.
Stokes, C. R. and Tarasov, L.:
Ice streaming in the Laurentide ice sheet: a first comparison between data-calibrated numerical model output and geological evidence,
Geophys. Res. Lett.,
37, L01501, https://doi.org/10.1029/2009GL040990, 2010.
Stokes, C. R., Lian, O. B., Tulaczyk, S., and Clark, C. D.:
Superimposition of ribbed moraines on a palaeo-ice-stream bed: implications for ice stream dynamics and shutdown,
Earth Surf. Proc. Land.,
33, 593–609, https://doi.org/10.1002/esp.1671, 2008.
Stokes, C. R., Spagnolo, M., Clark, C. D., Ó Cofaigh, C., Lian, O. B., and Dunstone, R. B.:
Formation of mega-scale glacial lineations on the Dubawnt Lake Ice Stream bed: 1. size, shape and spacing from a large remote sensing dataset,
Quaternary Sci. Rev.,
77, 190–209, https://doi.org/10.1016/j.quascirev.2013.06.003, 2013.
Stokes, C. R., Tarasov, L., Blomdin, R., Cronin, T. M., Fisher, T. G., Gyllencreutz, R., Hättestrand, C., Heyman, J., Hindmarsh, R. C. A., Hughes, A. L. C., Jakobsson, M., Kirchner, N., Livingstone, S. J., Margold, M., Murton, J. B., Noormets, R., Peltier, W. R., Peteet, D. M., Piper, D. J. W., Preusser, F., Renssen, H., Roberts, D. H., Roche, D. M., Saint-Ange, F., Stroeven, A. P., and Teller, J. T.:
On the reconstruction of palaeo-ice sheets: Recent advances and future challenges,
Quaternary Sci. Rev.,
125, 15–49, https://doi.org/10.1016/j.quascirev.2015.07.016, 2015.
Stokes, C. R., Margold, M., Clark, C. D., and Tarasov, L.:
Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation,
Nature,
530, 322–326, https://doi.org/10.1038/nature16947, 2016.
Storrar, R. D., Stokes, C. R., and Evans, D. J. A.:
Increased channelization of subglacial drainage during deglaciation of the Laurentide Ice Sheet,
Geology,
42, 239–242, https://doi.org/10.1130/G35092.1, 2014a.
Storrar, R. D., Stokes, C. R., and Evans, D. J. A.:
Morphometry and pattern of a large sample (> 20,000) of Canadian eskers and implications for subglacial drainage beneath ice sheets,
Quaternary Sci. Rev.,
105, 1–25, https://doi.org/10.1016/j.quascirev.2014.09.013, 2014b.
Stroeven, A. P., Hättestrand, C., Kleman, J., Heyman, J., Fabel, D., Fredin, O., Goodfellow, B. W., Harbor, J. M., Jansen, J. D., Olsen, L., Caffee, M. W., Fink, D., Lundqvist, J., Rosqvist, G. C., Strömberg, B., and Jansson, K. N.:
Deglaciation of Fennoscandia,
Quaternary Sci. Rev.,
147, 91–121, https://doi.org/10.1016/j.quascirev.2015.09.016, 2016.
Szuman, I., Kalita, J. Z., Ewertowski, M., Livingstone, S. J., Clark, C. D. and Kasprzak, L.:
LiDAR-based glacial geomorphological dataset, southern sector of Baltic Ice Stream Complex, last Scandinavian Ice Sheet, Poland,
Zenodo [data set],
https://doi.org/10.5281/zenodo.4570570, 2021a.
Szuman, I., Kalita, J. Z., Ewertowski, M. W., Clark, C. D., and Livingstone, S. J.:
Dynamics of the last Scandinavian Ice Sheet's southernmost sector revealed by the pattern of ice streams,
Boreas, 50, 764–780, https://doi.org/10.1111/bor.12512, 2021b.
Tylmann, K., Rinterknecht, V. R., Woźniak, P. P., Bourlès, D., Schimmelpfennig, I., Guillou, V., and Team, A.:
The Local Last Glacial Maximum of the southern Scandinavian Ice Sheet front: Cosmogenic nuclide dating of erratics in northern Poland,
Quaternary Sci. Rev.,
219, 36–46, https://doi.org/10.1016/j.quascirev.2019.07.004, 2019.
Vérité, J., Ravier, É., Bourgeois, O., Pochat, S., Lelandais, T., Mourgues, R., Clark, C. D., Bessin, P., Peigné, D., and Atkinson, N.: Formation of ribbed bedforms below shear margins and lobes of palaeo-ice streams, The Cryosphere, 15, 2889–2916, https://doi.org/10.5194/tc-15-2889-2021, 2021.
Warmerdam, F.:
The Geospatial Data Abstraction Library, in: Open Source Approaches in Spatial Data Handling,
edited by: Hall, G. B. and Leahy, M. G.,
Springer Berlin Heidelberg, Berlin, Heidelberg, 87–104, 2008.
Woldstedt, P.:
Geologisch-morphologische Ubersichtskarte des Norddeutschen Vereisungsgebietes 1:1 500 000,
Preuss. Geol. Landesanst., Berlin, 1935 (in German).
Wysota, W., Molewski, P., and Sokołowski, R. J.:
Record of the Vistula ice lobe advances in the Late Weichselian glacial sequence in north-central Poland,
Quatern. Int.,
207, 26–41, https://doi.org/10.1016/j.quaint.2008.12.015, 2009.
Short summary
The Baltic Ice Stream Complex was the most prominent ice stream of the last Scandinavian Ice Sheet, controlling ice sheet drainage and collapse. Our mapping effort, based on a lidar DEM, resulted in a dataset containing 5461 landforms over an area of 65 000 km2, which allows for reconstruction of the last Scandinavian Ice Sheet extent and dynamics from the Middle Weichselian ice sheet advance, 50–30 ka, through the Last Glacial Maximum, 25–21 ka, and Young Baltic advances, 18–15 ka.
The Baltic Ice Stream Complex was the most prominent ice stream of the last Scandinavian Ice...
Altmetrics
Final-revised paper
Preprint