Data description paper 19 Aug 2021
Data description paper | 19 Aug 2021
Rosalia: an experimental research site to study hydrological processes in a forest catchment
Josef Fürst et al.
Related authors
No articles found.
Christian Voigt, Karsten Schulz, Franziska Koch, Karl-Friedrich Wetzel, Ludger Timmen, Till Rehm, Hartmut Pflug, Nico Stolarczuk, Christoph Förste, and Frank Flechtner
Hydrol. Earth Syst. Sci., 25, 5047–5064, https://doi.org/10.5194/hess-25-5047-2021, https://doi.org/10.5194/hess-25-5047-2021, 2021
Short summary
Short summary
A continuously operating superconducting gravimeter at the Zugspitze summit is introduced to support hydrological studies of the Partnach spring catchment known as the Zugspitze research catchment. The observed gravity residuals reflect total water storage variations at the observation site. Hydro-gravimetric analysis show a high correlation between gravity and the snow water equivalent, with a gravimetric footprint of up to 4 km radius enabling integral insights into this high alpine catchment.
Christoph Klingler, Karsten Schulz, and Mathew Herrnegger
Earth Syst. Sci. Data, 13, 4529–4565, https://doi.org/10.5194/essd-13-4529-2021, https://doi.org/10.5194/essd-13-4529-2021, 2021
Short summary
Short summary
LamaH-CE is a large-sample catchment hydrology dataset for Central Europe. The dataset contains hydrometeorological time series (daily and hourly resolution) and various attributes for 859 gauged basins. Sticking closely to the CAMELS datasets, LamaH includes additional basin delineations and attributes for describing a large interconnected river network. LamaH further contains outputs of a conceptual hydrological baseline model for plausibility checking of the inputs and for benchmarking.
Markus Hrachowitz, Michael Stockinger, Miriam Coenders-Gerrits, Ruud van der Ent, Heye Bogena, Andreas Lücke, and Christine Stumpp
Hydrol. Earth Syst. Sci., 25, 4887–4915, https://doi.org/10.5194/hess-25-4887-2021, https://doi.org/10.5194/hess-25-4887-2021, 2021
Short summary
Short summary
Deforestation affects how catchments store and release water. Here we found that deforestation in the study catchment led to a 20 % increase in mean runoff, while reducing the vegetation-accessible water storage from about 258 to 101 mm. As a consequence, fractions of young water in the stream increased by up to 25 % during wet periods. This implies that water and solutes are more rapidly routed to the stream, which can, after contamination, lead to increased contaminant peak concentrations.
Moritz Feigl, Katharina Lebiedzinski, Mathew Herrnegger, and Karsten Schulz
Hydrol. Earth Syst. Sci., 25, 2951–2977, https://doi.org/10.5194/hess-25-2951-2021, https://doi.org/10.5194/hess-25-2951-2021, 2021
Short summary
Short summary
In this study we developed machine learning approaches for daily river water temperature prediction, using different data preprocessing methods, six model types, a range of different data inputs and 10 study catchments. By comparing to current state-of-the-art models, we could show a significant improvement of prediction performance of the tested approaches. Furthermore, we could gain insight into the relationships between model types, input data and predicted stream water temperature.
Michael Weber, Franziska Koch, Matthias Bernhardt, and Karsten Schulz
Hydrol. Earth Syst. Sci., 25, 2869–2894, https://doi.org/10.5194/hess-25-2869-2021, https://doi.org/10.5194/hess-25-2869-2021, 2021
Short summary
Short summary
We compared a suite of globally available meteorological and DEM data with in situ data for physically based snow hydrological modelling in a small high-alpine catchment. Although global meteorological data were less suited to describe the snowpack properly, transferred station data from a similar location in the vicinity and substituting single variables with global products performed well. In addition, using 30 m global DEM products as model input was useful in such complex terrain.
Christoph Schürz, Bano Mehdi, Jens Kiesel, Karsten Schulz, and Mathew Herrnegger
Hydrol. Earth Syst. Sci., 24, 4463–4489, https://doi.org/10.5194/hess-24-4463-2020, https://doi.org/10.5194/hess-24-4463-2020, 2020
Short summary
Short summary
The USLE is a commonly used model to estimate soil erosion by water. It quantifies soil loss as a product of six inputs representing rainfall erosivity, soil erodibility, slope length and steepness, plant cover, and support practices. Many methods exist to derive these inputs, which can, however, lead to substantial differences in the estimated soil loss. Here, we analyze the effect of different input representations on the estimated soil loss in a large-scale study in Kenya and Uganda.
Benjamin Müller, Matthias Bernhardt, and Karsten Schulz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-563, https://doi.org/10.5194/hess-2019-563, 2019
Manuscript not accepted for further review
Short summary
Short summary
Time series of thermal remote sensing images include more information than usually used. Land surface related processes are combined into a single image. Activity of these processes change from image to image. Thus, information on land surface characteristics is to be found
somewhere in betweenthe images. We provide an algorithm to test the presence of such characteristics within a set of images. The algorithm can be used for process understanding, model evaluation, data assimilation, etc.
Michael Paul Stockinger, Heye Reemt Bogena, Andreas Lücke, Christine Stumpp, and Harry Vereecken
Hydrol. Earth Syst. Sci., 23, 4333–4347, https://doi.org/10.5194/hess-23-4333-2019, https://doi.org/10.5194/hess-23-4333-2019, 2019
Short summary
Short summary
Precipitation moves through the soil to become stream water. The fraction of precipitation that becomes stream water after 3 months (Fyw) can be calculated with the stable isotopes of water. Previously, this was done for all the isotope data available, e.g., for several years. We used 1 year of data to calculate Fyw and moved this calculation time window over the time series. Results highlight that Fyw varies in time. Comparison studies of different regions should take this into account.
Christoph Schürz, Brigitta Hollosi, Christoph Matulla, Alexander Pressl, Thomas Ertl, Karsten Schulz, and Bano Mehdi
Hydrol. Earth Syst. Sci., 23, 1211–1244, https://doi.org/10.5194/hess-23-1211-2019, https://doi.org/10.5194/hess-23-1211-2019, 2019
Short summary
Short summary
For two Austrian catchments we simulated discharge and nitrate-nitrogen (NO3-N) considering future changes of climate, land use, and point source emissions together with the impact of different setups and parametrizations of the implemented eco-hydrological model. In a comprehensive analysis we identified the dominant sources of uncertainty for the simulation of discharge and NO3-N and further examined how specific properties of the model inputs control the future simulation results.
Abolanle E. Odusanya, Bano Mehdi, Christoph Schürz, Adebayo O. Oke, Olufiropo S. Awokola, Julius A. Awomeso, Joseph O. Adejuwon, and Karsten Schulz
Hydrol. Earth Syst. Sci., 23, 1113–1144, https://doi.org/10.5194/hess-23-1113-2019, https://doi.org/10.5194/hess-23-1113-2019, 2019
Short summary
Short summary
The main objective was to calibrate and validate the eco-hydrological model Soil and Water Assessment Tool (SWAT) with satellite-based actual evapotranspiration (AET) data for the data-sparse Ogun River Basin (20 292 km2) located in southwestern Nigeria. The SWAT model, composed of the Hargreaves PET equation and calibrated using the GLEAM_v3.0a data (GS1), performed well for the simulation of AET and provided a good level of confidence for using the SWAT model as a decision support tool.
Maik Renner, Claire Brenner, Kaniska Mallick, Hans-Dieter Wizemann, Luigi Conte, Ivonne Trebs, Jianhui Wei, Volker Wulfmeyer, Karsten Schulz, and Axel Kleidon
Hydrol. Earth Syst. Sci., 23, 515–535, https://doi.org/10.5194/hess-23-515-2019, https://doi.org/10.5194/hess-23-515-2019, 2019
Short summary
Short summary
We estimate the phase lag of surface states and heat fluxes to incoming solar radiation at the sub-daily timescale. While evapotranspiration reveals a minor phase lag, the vapor pressure deficit used as input by Penman–Monteith approaches shows a large phase lag. The surface-to-air temperature gradient used by energy balance residual approaches shows a small phase shift in agreement with the sensible heat flux and thus explains the better correlation of these models at the sub-daily timescale.
Lu Gao, Jianhui Wei, Lingxiao Wang, Matthias Bernhardt, Karsten Schulz, and Xingwei Chen
Earth Syst. Sci. Data, 10, 2097–2114, https://doi.org/10.5194/essd-10-2097-2018, https://doi.org/10.5194/essd-10-2097-2018, 2018
Short summary
Short summary
High-resolution temperature data sets are important for the Chinese Tian Shan, which has a complex ecological environment system. This study presents a unique high-resolution (1 km, 6-hourly) air temperature data set for this area from 1979 to 2016 based on a robust statistical downscaling framework. The strongest advantage of this method is its independence of local meteorological stations due to a model internal, vertical lapse rate scheme. This method was validated for other mountains.
Frederik Kratzert, Daniel Klotz, Claire Brenner, Karsten Schulz, and Mathew Herrnegger
Hydrol. Earth Syst. Sci., 22, 6005–6022, https://doi.org/10.5194/hess-22-6005-2018, https://doi.org/10.5194/hess-22-6005-2018, 2018
Short summary
Short summary
In this paper, we propose a novel data-driven approach for
rainfall–runoff modelling, using the long short-term memory (LSTM) network, a special type of recurrent neural network. We show in three different experiments that this network is able to learn to predict the discharge purely from meteorological input parameters (such as precipitation or temperature) as accurately as (or better than) the well-established Sacramento Soil Moisture Accounting model, coupled with the Snow-17 snow model.
Natalie Orlowski, Lutz Breuer, Nicolas Angeli, Pascal Boeckx, Christophe Brumbt, Craig S. Cook, Maren Dubbert, Jens Dyckmans, Barbora Gallagher, Benjamin Gralher, Barbara Herbstritt, Pedro Hervé-Fernández, Christophe Hissler, Paul Koeniger, Arnaud Legout, Chandelle Joan Macdonald, Carlos Oyarzún, Regine Redelstein, Christof Seidler, Rolf Siegwolf, Christine Stumpp, Simon Thomsen, Markus Weiler, Christiane Werner, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 22, 3619–3637, https://doi.org/10.5194/hess-22-3619-2018, https://doi.org/10.5194/hess-22-3619-2018, 2018
Short summary
Short summary
To extract water from soils for isotopic analysis, cryogenic water extraction is the most widely used removal technique. This work presents results from a worldwide laboratory intercomparison test of cryogenic extraction systems. Our results showed large differences in retrieved isotopic signatures among participating laboratories linked to interactions between soil type and properties, system setup, extraction efficiency, extraction system leaks, and each lab’s internal accuracy.
Stefan Härer, Matthias Bernhardt, Matthias Siebers, and Karsten Schulz
The Cryosphere, 12, 1629–1642, https://doi.org/10.5194/tc-12-1629-2018, https://doi.org/10.5194/tc-12-1629-2018, 2018
Short summary
Short summary
The paper presents an approach which can be used to process satellite-based snow cover maps with a higher-than-today accuracy at the local scale. Many of the current satellite-based snow maps are using the NDSI with a threshold as a tool for deciding if there is snow on the ground or not. The presented study has shown that, firstly, using the standard threshold of 0.4 can result in significant derivations at the local scale and that, secondly, the deviations become smaller for coarser scales.
Karsten Schulz, Reinhard Burgholzer, Daniel Klotz, Johannes Wesemann, and Mathew Herrnegger
Hydrol. Earth Syst. Sci., 22, 2607–2613, https://doi.org/10.5194/hess-22-2607-2018, https://doi.org/10.5194/hess-22-2607-2018, 2018
Short summary
Short summary
The unit hydrograph has been one of the most widely employed modelling techniques to predict rainfall-runoff behaviour of hydrological catchments. We developed a lecture theatre experiment including some student involvement to illustrate the principles behind this modelling technique. The experiment only uses very simple and cheap material including a set of plastic balls (representing rainfall), magnetic stripes (tacking the balls to the white board) and sieves (for ball/water gauging).
Benjamin Müller, Matthias Bernhardt, Conrad Jackisch, and Karsten Schulz
Hydrol. Earth Syst. Sci., 20, 3765–3775, https://doi.org/10.5194/hess-20-3765-2016, https://doi.org/10.5194/hess-20-3765-2016, 2016
Short summary
Short summary
A technology for the spatial derivation of soil texture classes is presented. Information about soil texture is key for predicting the local and regional hydrological cycle. It is needed for the calculation of soil water movement, the share of surface runoff, the evapotranspiration rate and others. Nevertheless, the derivation of soil texture classes is expensive and time-consuming. The presented technique uses soil samples and remotely sensed data for estimating their spatial distribution.
S. Härer, M. Bernhardt, and K. Schulz
Geosci. Model Dev., 9, 307–321, https://doi.org/10.5194/gmd-9-307-2016, https://doi.org/10.5194/gmd-9-307-2016, 2016
Short summary
Short summary
This paper describes a new method to produce spatially and temporally calibrated NDSI-based satellite snow cover maps utilizing simultaneously captured terrestrial photographs as in situ information. First results confirm a high quality of the produced satellite snow cover maps and emphasize the need for calibration of the NDSI threshold value to ensure a high accuracy and reproduciblity. The software "PRACTISE V.2.1" was developed to automatically process the photographs and satellite images.
M. Herrnegger, H. P. Nachtnebel, and K. Schulz
Hydrol. Earth Syst. Sci., 19, 4619–4639, https://doi.org/10.5194/hess-19-4619-2015, https://doi.org/10.5194/hess-19-4619-2015, 2015
Short summary
Short summary
Especially in alpine catchments, areal rainfall estimates often exhibit large errors. Runoff measurements are, on the other hand, one of the most robust observations within the hydrological cycle. We therefore calculate mean catchment rainfall by inverting an HBV-type rainfall-runoff model, using runoff observations as input. The inverse model may e.g. be used to analyse rainfall conditions of extreme flood events or estimation of snowmelt contribution.
B. Müller, M. Bernhardt, and K. Schulz
Hydrol. Earth Syst. Sci., 18, 5345–5359, https://doi.org/10.5194/hess-18-5345-2014, https://doi.org/10.5194/hess-18-5345-2014, 2014
Short summary
Short summary
We present a method to define hydrological landscape units by a time series of thermal infrared satellite data. Land surface temperature is calculated for 28 images in 12 years for a catchment in Luxembourg. Pattern measures show spatio-temporal persistency; principle component analysis extracts relevant patterns. Functional units represent similar behaving entities based on a representative set of images. Resulting classification and patterns are discussed regarding potential applications.
C. Stumpp, A. Ekdal, I. E. Gönenc, and P. Maloszewski
Hydrol. Earth Syst. Sci., 18, 4825–4837, https://doi.org/10.5194/hess-18-4825-2014, https://doi.org/10.5194/hess-18-4825-2014, 2014
E. Zehe, U. Ehret, L. Pfister, T. Blume, B. Schröder, M. Westhoff, C. Jackisch, S. J. Schymanski, M. Weiler, K. Schulz, N. Allroggen, J. Tronicke, L. van Schaik, P. Dietrich, U. Scherer, J. Eccard, V. Wulfmeyer, and A. Kleidon
Hydrol. Earth Syst. Sci., 18, 4635–4655, https://doi.org/10.5194/hess-18-4635-2014, https://doi.org/10.5194/hess-18-4635-2014, 2014
S. Härer, M. Bernhardt, J. G. Corripio, and K. Schulz
Geosci. Model Dev., 6, 837–848, https://doi.org/10.5194/gmd-6-837-2013, https://doi.org/10.5194/gmd-6-837-2013, 2013
Related subject area
Hydrology and Soil Science – Hydrology
CCAM: China Catchment Attributes and Meteorology dataset
A high-accuracy rainfall dataset by merging multiple satellites and dense gauges over the southern Tibetan Plateau for 2014–2019 warm seasons
Baseline data for monitoring geomorphological effects of glacier lake outburst flood: a very-high-resolution image and GIS datasets of the distal part of the Zackenberg River, northeast Greenland
Mineral, thermal and deep groundwater of Hesse, Germany
LamaH-CE: LArge-SaMple DAta for Hydrology and Environmental Sciences for Central Europe
Development of observation-based global multilayer soil moisture products for 1970 to 2016
A year of attenuation data from a commercial dual-polarized duplex microwave link with concurrent disdrometer, rain gauge, and weather observations
Long time series of daily evapotranspiration in China based on the SEBAL model and multisource images and validation
CAMELS-AUS: hydrometeorological time series and landscape attributes for 222 catchments in Australia
Global distribution of wastewater treatment plants and their released effluents into rivers and streams
A multi-source 120-year US flood database with a unified common format and public access
C-band radar data and in situ measurements for the monitoring of wheat crops in a semi-arid area (center of Morocco)
The three-dimensional groundwater salinity distribution and fresh groundwater volumes in the Mekong Delta, Vietnam, inferred from geostatistical analyses
Correcting Thornthwaite potential evapotranspiration using a global grid of local coefficients to support temperature-based estimations of reference evapotranspiration and aridity indices
A national topographic dataset for hydrological modeling over the contiguous United States
Status of the Tibetan Plateau observatory (Tibet-Obs) and a 10-year (2009–2019) surface soil moisture dataset
CLIGEN parameter regionalization for mainland China
Year-long, broad-band, microwave backscatter observations of an alpine meadow over the Tibetan Plateau with a ground-based scatterometer
STH-net: a soil monitoring network for process-based hydrological modelling from the pedon to the hillslope scale
Comprehensive bathymetry and intertidal topography of the Amazon estuary
Virtual water trade and water footprint of agricultural goods: the 1961–2016 CWASI database
Historical cartographic and topo-bathymetric database on the French Rhône River (17th–20th century)
COSMOS-UK: national soil moisture and hydrometeorology data for environmental science research
SoilKsatDB: global database of soil saturated hydraulic conductivity measurements for geoscience applications
ADHI: the African Database of Hydrometric Indices (1950–2018)
Dynamics of shallow wakes on gravel-bed floodplains: dataset from field experiments
Two decades of distributed global radiation time series across a mountainous semiarid area (Sierra Nevada, Spain)
Inventory of dams in Germany
Country-level and gridded estimates of wastewater production, collection, treatment and reuse
Dataset of Georeferenced Dams in South America (DDSA)
The impact of landscape evolution on soil physics: evolution of soil physical and hydraulic properties along two chronosequences of proglacial moraines
The CH-IRP data set: a decade of fortnightly data on δ2H and δ18O in streamflow and precipitation in Switzerland
CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain
A dense network of cosmic-ray neutron sensors for soil moisture observation in a highly instrumented pre-Alpine headwater catchment in Germany
CAMELS-BR: hydrometeorological time series and landscape attributes for 897 catchments in Brazil
GloFAS-ERA5 operational global river discharge reanalysis 1979–present
A Canadian River Ice Database from the National Hydrometric Program Archives
An integration of gauge, satellite, and reanalysis precipitation datasets for the largest river basin of the Tibetan Plateau
Towards harmonisation of image velocimetry techniques for river surface velocity observations
AIMERG: a new Asian precipitation dataset (0.1°/half-hourly, 2000–2015) by calibrating the GPM-era IMERG at a daily scale using APHRODITE
Vegetation, ground cover, soil, rainfall simulation, and overland-flow experiments before and after tree removal in woodland-encroached sagebrush steppe: the hydrology component of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP)
Satellite-based remote sensing data set of global surface water storage change from 1992 to 2018
Data for wetlandscapes and their changes around the world
Measurements of the water balance components of a large green roof in the greater Paris area
A distributed soil moisture, temperature and infiltrometer dataset for permeable pavements and green spaces
A 439-year simulated daily discharge dataset (1861–2299) for the upper Yangtze River, China
Runoff reaction from extreme rainfall events on natural hillslopes: a data set from 132 large-scale sprinkling experiments in south-western Germany
Paleo-hydrologic reconstruction of 400 years of past flows at a weekly time step for major rivers of Western Canada
Global River Radar Altimetry Time Series (GRRATS): new river elevation earth science data records for the hydrologic community
An Arctic watershed observatory at Lake Peters, Alaska: weather–glacier–river–lake system data for 2015–2018
Zhen Hao, Jin Jin, Runliang Xia, Shimin Tian, Wushuang Yang, Qixing Liu, Min Zhu, Tao Ma, Chengran Jing, and Yanning Zhang
Earth Syst. Sci. Data, 13, 5591–5616, https://doi.org/10.5194/essd-13-5591-2021, https://doi.org/10.5194/essd-13-5591-2021, 2021
Short summary
Short summary
CCAM is proposed to promote large-sample hydrological research in China. The first catchment attribute dataset and catchment-scale meteorological time series dataset in China are built. We also built HydroMLYR, a hydrological dataset with standardized streamflow observations supporting machine learning modeling. The open-source code producing CCAM supports the calculation of custom watersheds.
Kunbiao Li, Fuqiang Tian, Mohd Yawar Ali Khan, Ran Xu, Zhihua He, Long Yang, Hui Lu, and Yingzhao Ma
Earth Syst. Sci. Data, 13, 5455–5467, https://doi.org/10.5194/essd-13-5455-2021, https://doi.org/10.5194/essd-13-5455-2021, 2021
Short summary
Short summary
Due to complex climate and topography, there is still a lack of a high-quality rainfall dataset for hydrological modeling over the Tibetan Plateau. This study aims to establish a high-accuracy daily rainfall product over the southern Tibetan Plateau through merging satellite rainfall estimates based on a high-density rainfall gauge network. Statistical and hydrological evaluation indicated that the new dataset outperforms the raw satellite estimates and several other products of similar types.
Aleksandra M. Tomczyk and Marek W. Ewertowski
Earth Syst. Sci. Data, 13, 5293–5309, https://doi.org/10.5194/essd-13-5293-2021, https://doi.org/10.5194/essd-13-5293-2021, 2021
Short summary
Short summary
We collected detailed (cm-scale) topographical data to illustrate how a single flood event can modify river landscape in the high-Arctic setting of Zackenberg Valley, NE Greenland. The studied flood was a result of an outburst from a glacier-dammed lake. We used drones to capture images immediately before, during, and after the flood for the 2 km long section of the river. Data can be used for monitoring and modelling of flood events and assessment of geohazards for Zackenberg Research Station.
Rafael Schäffer, Kristian Bär, Sebastian Fischer, Johann-Gerhard Fritsche, and Ingo Sass
Earth Syst. Sci. Data, 13, 4847–4860, https://doi.org/10.5194/essd-13-4847-2021, https://doi.org/10.5194/essd-13-4847-2021, 2021
Short summary
Short summary
Knowledge of groundwater properties is relevant, e.g. for drinking-water supply, spas or geothermal energy. We compiled 1035 groundwater datasets from 560 springs or wells sampled since 1810, using mainly publications, supplemented by personal communication and our own measurements. The data can help address spatial–temporal variation in groundwater composition, uncertainties in groundwater property prediction, deep groundwater movement, or groundwater characteristics like temperature and age.
Christoph Klingler, Karsten Schulz, and Mathew Herrnegger
Earth Syst. Sci. Data, 13, 4529–4565, https://doi.org/10.5194/essd-13-4529-2021, https://doi.org/10.5194/essd-13-4529-2021, 2021
Short summary
Short summary
LamaH-CE is a large-sample catchment hydrology dataset for Central Europe. The dataset contains hydrometeorological time series (daily and hourly resolution) and various attributes for 859 gauged basins. Sticking closely to the CAMELS datasets, LamaH includes additional basin delineations and attributes for describing a large interconnected river network. LamaH further contains outputs of a conceptual hydrological baseline model for plausibility checking of the inputs and for benchmarking.
Yaoping Wang, Jiafu Mao, Mingzhou Jin, Forrest M. Hoffman, Xiaoying Shi, Stan D. Wullschleger, and Yongjiu Dai
Earth Syst. Sci. Data, 13, 4385–4405, https://doi.org/10.5194/essd-13-4385-2021, https://doi.org/10.5194/essd-13-4385-2021, 2021
Short summary
Short summary
We developed seven global soil moisture datasets (1970–2016, monthly, half-degree, and multilayer) by merging a wide range of data sources, including in situ and satellite observations, reanalysis, offline land surface model simulations, and Earth system model simulations. Given the great value of long-term, multilayer, gap-free soil moisture products to climate research and applications, we believe this paper and the presented datasets would be of interest to many different communities.
Anna Špačková, Vojtěch Bareš, Martin Fencl, Marc Schleiss, Joël Jaffrain, Alexis Berne, and Jörg Rieckermann
Earth Syst. Sci. Data, 13, 4219–4240, https://doi.org/10.5194/essd-13-4219-2021, https://doi.org/10.5194/essd-13-4219-2021, 2021
Short summary
Short summary
An original dataset of microwave signal attenuation and rainfall variables was collected during 1-year-long field campaign. The monitored 38 GHz dual-polarized commercial microwave link with a short sampling resolution (4 s) was accompanied by five disdrometers and three rain gauges along its path. Antenna radomes were temporarily shielded for approximately half of the campaign period to investigate antenna wetting impacts.
Minghan Cheng, Xiyun Jiao, Binbin Li, Xun Yu, Mingchao Shao, and Xiuliang Jin
Earth Syst. Sci. Data, 13, 3995–4017, https://doi.org/10.5194/essd-13-3995-2021, https://doi.org/10.5194/essd-13-3995-2021, 2021
Short summary
Short summary
Evapotranspiration (ET) is a key node linking surface water and energy balance. Satellite observations of ET have been widely used for water resources management in China. In this study, an ET product with high spatiotemporal resolution was generated using a surface energy balance algorithm and multisource remote sensing data. The generated ET product can be used for geoscience studies, especially global change, water resources management, and agricultural drought monitoring, for example.
Keirnan J. A. Fowler, Suwash Chandra Acharya, Nans Addor, Chihchung Chou, and Murray C. Peel
Earth Syst. Sci. Data, 13, 3847–3867, https://doi.org/10.5194/essd-13-3847-2021, https://doi.org/10.5194/essd-13-3847-2021, 2021
Short summary
Short summary
This paper presents the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS comprises data for 222 unregulated catchments with long-term monitoring, combining hydrometeorological time series (streamflow and 18 climatic variables) with 134 attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://doi.pangaea.de/10.1594/PANGAEA.921850.
Heloisa Ehalt Macedo, Bernhard Lehner, Jim Nicell, Günther Grill, Jing Li, Antonio Limtong, and Ranish Shakya
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-214, https://doi.org/10.5194/essd-2021-214, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
We introduce HydroWASTE, a location-explicit global database of 58,502 wastewater treatment plants (WWTPs) and their characteristics to understand the impact of discharges from such facilities. HydroWASTE was developed compiling regional datasets and using auxiliary information to complete missing characteristics. The location of the outfall of the WWTPs into the river system is also included, allowing the identification of the waterbodies most likely affected.
Zhi Li, Mengye Chen, Shang Gao, Jonathan J. Gourley, Tiantian Yang, Xinyi Shen, Randall Kolar, and Yang Hong
Earth Syst. Sci. Data, 13, 3755–3766, https://doi.org/10.5194/essd-13-3755-2021, https://doi.org/10.5194/essd-13-3755-2021, 2021
Short summary
Short summary
This dataset is a compilation of multi-sourced flood records, retrieved from official reports, instruments, and crowdsourcing data since 1900. This study utilizes the flood database to analyze flood seasonality within major basins and socioeconomic impacts over time. It is anticipated that this dataset can support a variety of flood-related research, such as validation resources for hydrologic models, hydroclimatic studies, and flood vulnerability analysis across the United States.
Nadia Ouaadi, Jamal Ezzahar, Saïd Khabba, Salah Er-Raki, Adnane Chakir, Bouchra Ait Hssaine, Valérie Le Dantec, Zoubair Rafi, Antoine Beaumont, Mohamed Kasbani, and Lionel Jarlan
Earth Syst. Sci. Data, 13, 3707–3731, https://doi.org/10.5194/essd-13-3707-2021, https://doi.org/10.5194/essd-13-3707-2021, 2021
Short summary
Short summary
In this paper, a radar remote sensing database composed of processed Sentinel-1 products and field measurements of soil and vegetation characteristics, weather data, and irrigation water inputs is described. The data set was collected over 3 years (2016–2019) in three drip-irrigated wheat fields in the center of Morocco. It is dedicated to radar data analysis over vegetated surface including the retrieval of soil and vegetation characteristics.
Jan L. Gunnink, Hung Van Pham, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 3297–3319, https://doi.org/10.5194/essd-13-3297-2021, https://doi.org/10.5194/essd-13-3297-2021, 2021
Short summary
Short summary
In the Mekong Delta (Vietnam) groundwater is important for domestic, agricultural and industrial use. Increased pumping of groundwater has caused land subsidence and increased the risk of salinization, thereby endangering the livelihood of the population in the delta. We made a model of the salinity of the groundwater by integrating different sources of information and determined fresh groundwater volumes. The resulting model can be used by researchers and policymakers.
Vassilis Aschonitis, Dimos Touloumidis, Marie-Claire ten Veldhuis, and Miriam Coenders-Gerrits
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-115, https://doi.org/10.5194/essd-2021-115, 2021
Revised manuscript accepted for ESSD
Short summary
Short summary
This work provides a global database of correction coefficients for improving the performance of the temperature-based Thornthwaite potential evapotranspiration formula and aridity indices (e.g. UNEP, Thronthwaite) that make use of this formula. The coefficients were produced using as benchmark the ASCE-standardized reference evapotranspiration formula (former FAO-56) that requires temperature, solar radiation, wind speed and relative humidity data.
Jun Zhang, Laura E. Condon, Hoang Tran, and Reed M. Maxwell
Earth Syst. Sci. Data, 13, 3263–3279, https://doi.org/10.5194/essd-13-3263-2021, https://doi.org/10.5194/essd-13-3263-2021, 2021
Short summary
Short summary
Existing national topographic datasets for the US may not be compatible with gridded hydrologic models. A national topographic dataset developed to support physically based hydrologic models at 1 km and 250 m over the contiguous US is provided. We used a Priority Flood algorithm to ensure hydrologically consistent drainage networks and evaluated the performance with an integrated hydrologic model. Datasets and scripts are available for direct data usage or modification of processing as desired.
Pei Zhang, Donghai Zheng, Rogier van der Velde, Jun Wen, Yijian Zeng, Xin Wang, Zuoliang Wang, Jiali Chen, and Zhongbo Su
Earth Syst. Sci. Data, 13, 3075–3102, https://doi.org/10.5194/essd-13-3075-2021, https://doi.org/10.5194/essd-13-3075-2021, 2021
Short summary
Short summary
This paper reports on the status of the Tibet-Obs and presents a 10-year (2009–2019) surface soil moisture (SM) dataset produced based on in situ measurements taken at a depth of 5 cm collected from the Tibet-Obs. This surface SM dataset includes the original 15 min in situ measurements collected by multiple SM monitoring sites of three networks (i.e. the Maqu, Naqu, and Ngari networks) and the spatially upscaled SM records produced for the Maqu and Shiquanhe networks.
Wenting Wang, Shuiqing Yin, Bofu Yu, and Shaodong Wang
Earth Syst. Sci. Data, 13, 2945–2962, https://doi.org/10.5194/essd-13-2945-2021, https://doi.org/10.5194/essd-13-2945-2021, 2021
Short summary
Short summary
A gridded input dataset at a 10 km resolution of a weather generator, CLIGEN, was established for mainland China. Based on this, CLIGEN can generate a series of daily temperature, solar radiation, precipitation data, and rainfall intensity information. In each grid, the input file contains 13 groups of parameters. All parameters were first calculated based on long-term observations and then interpolated by universal kriging. The accuracy of the gridded input dataset has been fully assessed.
Jan G. Hofste, Rogier van der Velde, Jun Wen, Xin Wang, Zuoliang Wang, Donghai Zheng, Christiaan van der Tol, and Zhongbo Su
Earth Syst. Sci. Data, 13, 2819–2856, https://doi.org/10.5194/essd-13-2819-2021, https://doi.org/10.5194/essd-13-2819-2021, 2021
Short summary
Short summary
The dataset reported in this paper concerns the measurement of microwave reflections from an alpine meadow over the Tibetan Plateau. These microwave reflections were measured continuously over 1 year. With it, variations in soil water content due to evaporation, precipitation, drainage, and soil freezing/thawing can be seen. A better understanding of the effects aforementioned processes have on microwave reflections may improve methods for estimating soil water content used by satellites.
Edoardo Martini, Matteo Bauckholt, Simon Kögler, Manuel Kreck, Kurt Roth, Ulrike Werban, Ute Wollschläger, and Steffen Zacharias
Earth Syst. Sci. Data, 13, 2529–2539, https://doi.org/10.5194/essd-13-2529-2021, https://doi.org/10.5194/essd-13-2529-2021, 2021
Short summary
Short summary
We present the in situ data available from the soil monitoring network
STH-net, recently implemented at the Schäfertal Hillslope site (Germany). The STH-net provides data (soil water content, soil temperature, water level, and meteorological variables – measured at a 10 min interval since 1 January 2019) for developing and testing modelling approaches in the context of vadose zone hydrology at spatial scales ranging from the pedon to the hillslope.
Alice César Fassoni-Andrade, Fabien Durand, Daniel Moreira, Alberto Azevedo, Valdenira Ferreira dos Santos, Claudia Funi, and Alain Laraque
Earth Syst. Sci. Data, 13, 2275–2291, https://doi.org/10.5194/essd-13-2275-2021, https://doi.org/10.5194/essd-13-2275-2021, 2021
Short summary
Short summary
We present a seamless dataset of river, land, and ocean topography of the Amazon River estuary with a 30 m spatial resolution. An innovative remote sensing approach was used to estimate the topography of the intertidal flats, riverbanks, and adjacent floodplains. Amazon River bathymetry was generated from digitized nautical charts. The novel dataset opens up a broad range of opportunities, providing the poorly known underwater digital topography required for environmental sciences.
Stefania Tamea, Marta Tuninetti, Irene Soligno, and Francesco Laio
Earth Syst. Sci. Data, 13, 2025–2051, https://doi.org/10.5194/essd-13-2025-2021, https://doi.org/10.5194/essd-13-2025-2021, 2021
Short summary
Short summary
The database includes water footprint and virtual water trade data for 370 agricultural goods in all countries, starting from 1961 and 1986, respectively. Data improve upon earlier datasets because of the annual variability of data and the tracing of goods’ origin within the international trade. The CWASI database aims at supporting national and global assessments of water use in agriculture and food production/consumption and welcomes contributions from the research community.
Fanny Arnaud, Lalandy Sehen Chanu, Jules Grillot, Jérémie Riquier, Hervé Piégay, Dad Roux-Michollet, Georges Carrel, and Jean-Michel Olivier
Earth Syst. Sci. Data, 13, 1939–1955, https://doi.org/10.5194/essd-13-1939-2021, https://doi.org/10.5194/essd-13-1939-2021, 2021
Short summary
Short summary
This article provides a database of 350 cartographic and topographic resources on the 530-km-long French Rhône River, compiled from the 17th to mid-20th century in 14 national, regional, and departmental archive services. The database has several potential applications in geomorphology, retrospective hydraulic modelling, historical ecology, and sustainable river management and restoration, as well as permitting comparisons of channel changes with other human-impacted rivers worldwide.
Hollie M. Cooper, Emma Bennett, James Blake, Eleanor Blyth, David Boorman, Elizabeth Cooper, Jonathan Evans, Matthew Fry, Alan Jenkins, Ross Morrison, Daniel Rylett, Simon Stanley, Magdalena Szczykulska, Emily Trill, Vasileios Antoniou, Anne Askquith-Ellis, Lucy Ball, Milo Brooks, Michael A. Clarke, Nicholas Cowan, Alexander Cumming, Philip Farrand, Olivia Hitt, William Lord, Peter Scarlett, Oliver Swain, Jenna Thornton, Alan Warwick, and Ben Winterbourn
Earth Syst. Sci. Data, 13, 1737–1757, https://doi.org/10.5194/essd-13-1737-2021, https://doi.org/10.5194/essd-13-1737-2021, 2021
Short summary
Short summary
COSMOS-UK is a UK network of environmental monitoring sites, with a focus on measuring field-scale soil moisture. Each site includes soil and hydrometeorological sensors providing data including air temperature, humidity, net radiation, neutron counts, snow water equivalent, and potential evaporation. These data can provide information for science, industry, and agriculture by improving existing understanding and data products in fields such as water resources, space sciences, and biodiversity.
Surya Gupta, Tomislav Hengl, Peter Lehmann, Sara Bonetti, and Dani Or
Earth Syst. Sci. Data, 13, 1593–1612, https://doi.org/10.5194/essd-13-1593-2021, https://doi.org/10.5194/essd-13-1593-2021, 2021
Yves Tramblay, Nathalie Rouché, Jean-Emmanuel Paturel, Gil Mahé, Jean-François Boyer, Ernest Amoussou, Ansoumana Bodian, Honoré Dacosta, Hamouda Dakhlaoui, Alain Dezetter, Denis Hughes, Lahoucine Hanich, Christophe Peugeot, Raphael Tshimanga, and Patrick Lachassagne
Earth Syst. Sci. Data, 13, 1547–1560, https://doi.org/10.5194/essd-13-1547-2021, https://doi.org/10.5194/essd-13-1547-2021, 2021
Short summary
Short summary
This dataset provides a set of hydrometric indices for about 1500 stations across Africa with daily discharge data. These indices represent mean flow characteristics and extremes (low flows and floods), allowing us to study the long-term evolution of hydrology in Africa and support the modeling efforts that aim at reducing the vulnerability of African countries to hydro-climatic variability.
Oleksandra O. Shumilova, Alexander N. Sukhodolov, George S. Constantinescu, and Bruce J. MacVicar
Earth Syst. Sci. Data, 13, 1519–1529, https://doi.org/10.5194/essd-13-1519-2021, https://doi.org/10.5194/essd-13-1519-2021, 2021
Short summary
Short summary
Obstructions (vegetation and/or boulders) located on a riverbed alter flow structure and affect riverbed morphology and biodiversity. We studied flow dynamics around obstructions by carrying out experiments in a gravel-bed river. Flow rates, size, submergence and solid fractions of the obstructions were varied in a set of 30 experimental runs, in which high-resolution patterns of mean and turbulent flow were obtained. For an introduction to the experiments see: https://youtu.be/5wXjvzqxONI.
Cristina Aguilar, Rafael Pimentel, and María J. Polo
Earth Syst. Sci. Data, 13, 1335–1359, https://doi.org/10.5194/essd-13-1335-2021, https://doi.org/10.5194/essd-13-1335-2021, 2021
Short summary
Short summary
This work presents the reconstruction of 19 years of daily, monthly, and annual global radiation maps in Sierra Nevada (Spain) derived using daily historical records from weather stations in the area and a modeling scheme that captures the topographic effects that constitute the main sources of the spatial and temporal variability of solar radiation. The generated datasets are valuable in different fields, such as hydrology, ecology, or energy production systems downstream.
Gustavo Andrei Speckhann, Heidi Kreibich, and Bruno Merz
Earth Syst. Sci. Data, 13, 731–740, https://doi.org/10.5194/essd-13-731-2021, https://doi.org/10.5194/essd-13-731-2021, 2021
Short summary
Short summary
Dams are an important element of water resources management. Data about dams are crucial for practitioners, scientists, and policymakers. We present the most comprehensive open-access dam inventory for Germany to date. The inventory combines multiple sources of information. It comprises 530 dams with information on name, location, river, start year of construction and operation, crest length, dam height, lake area, lake volume, purpose, dam structure, and building characteristics.
Edward R. Jones, Michelle T. H. van Vliet, Manzoor Qadir, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 237–254, https://doi.org/10.5194/essd-13-237-2021, https://doi.org/10.5194/essd-13-237-2021, 2021
Short summary
Short summary
Continually improving and affordable wastewater management provides opportunities for both pollution reduction and clean water supply augmentation. This study provides a global outlook on the state of domestic and industrial wastewater production, collection, treatment and reuse. Our results can serve as a baseline in evaluating progress towards policy goals (e.g. Sustainable Development Goals) and as input data in large-scale water resource assessments (e.g. water quality modelling).
Bolivar Paredes-Beltran, Alvaro Sordo-Ward, and Luis Garrote
Earth Syst. Sci. Data, 13, 213–229, https://doi.org/10.5194/essd-13-213-2021, https://doi.org/10.5194/essd-13-213-2021, 2021
Short summary
Short summary
We present a dataset of 1010 entries of dams in South America describing several attributes such as the dams' names, characteristics, purposes, georeferenced locations and also relevant data on the dams' catchments. Information was obtained from extensive research through numerous sources and then validated individually.
With this work we expect to contribute to the development of new research in the region, which to date has been limited to certain basins due to the absence of information.
Anne Hartmann, Markus Weiler, and Theresa Blume
Earth Syst. Sci. Data, 12, 3189–3204, https://doi.org/10.5194/essd-12-3189-2020, https://doi.org/10.5194/essd-12-3189-2020, 2020
Short summary
Short summary
Our analysis of soil physical and hydraulic properties across two soil chronosequences of 10 millennia in the Swiss Alps provides important observation of the evolution of soil hydraulic behavior. A strong co-evolution of soil physical and hydraulic properties was revealed by the observed change of fast-draining coarse-textured soils to slow-draining soils with a high water-holding capacity in correlation with a distinct change in structural properties and organic matter content.
Maria Staudinger, Stefan Seeger, Barbara Herbstritt, Michael Stoelzle, Jan Seibert, Kerstin Stahl, and Markus Weiler
Earth Syst. Sci. Data, 12, 3057–3066, https://doi.org/10.5194/essd-12-3057-2020, https://doi.org/10.5194/essd-12-3057-2020, 2020
Short summary
Short summary
The data set CH-IRP provides isotope composition in precipitation and streamflow from 23 Swiss catchments, being unique regarding its long-term multi-catchment coverage along an alpine–pre-alpine gradient. CH-IRP contains fortnightly time series of stable water isotopes from streamflow grab samples complemented by time series in precipitation. Sampling conditions, catchment and climate information, lab standards and errors are provided together with areal precipitation and catchment boundaries.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Benjamin Fersch, Till Francke, Maik Heistermann, Martin Schrön, Veronika Döpper, Jannis Jakobi, Gabriele Baroni, Theresa Blume, Heye Bogena, Christian Budach, Tobias Gränzig, Michael Förster, Andreas Güntner, Harrie-Jan Hendricks Franssen, Mandy Kasner, Markus Köhli, Birgit Kleinschmit, Harald Kunstmann, Amol Patil, Daniel Rasche, Lena Scheiffele, Ulrich Schmidt, Sandra Szulc-Seyfried, Jannis Weimar, Steffen Zacharias, Marek Zreda, Bernd Heber, Ralf Kiese, Vladimir Mares, Hannes Mollenhauer, Ingo Völksch, and Sascha Oswald
Earth Syst. Sci. Data, 12, 2289–2309, https://doi.org/10.5194/essd-12-2289-2020, https://doi.org/10.5194/essd-12-2289-2020, 2020
Vinícius B. P. Chagas, Pedro L. B. Chaffe, Nans Addor, Fernando M. Fan, Ayan S. Fleischmann, Rodrigo C. D. Paiva, and Vinícius A. Siqueira
Earth Syst. Sci. Data, 12, 2075–2096, https://doi.org/10.5194/essd-12-2075-2020, https://doi.org/10.5194/essd-12-2075-2020, 2020
Short summary
Short summary
We present a new dataset for large-sample hydrological studies in Brazil. The dataset encompasses daily observed streamflow from 3679 gauges, as well as meteorological forcing for 897 selected catchments. It also includes 65 attributes covering topographic, climatic, hydrologic, land cover, geologic, soil, and human intervention variables. CAMELS-BR is publicly available and will enable new insights into the hydrological behavior of catchments in Brazil.
Shaun Harrigan, Ervin Zsoter, Lorenzo Alfieri, Christel Prudhomme, Peter Salamon, Fredrik Wetterhall, Christopher Barnard, Hannah Cloke, and Florian Pappenberger
Earth Syst. Sci. Data, 12, 2043–2060, https://doi.org/10.5194/essd-12-2043-2020, https://doi.org/10.5194/essd-12-2043-2020, 2020
Short summary
Short summary
A new river discharge reanalysis dataset is produced operationally by coupling ECMWF's latest global atmospheric reanalysis, ERA5, with the hydrological modelling component of the Global Flood Awareness System (GloFAS). The GloFAS-ERA5 reanalysis is a global gridded dataset with a horizontal resolution of 0.1° at a daily time step and is freely available from 1979 until near real time. The evaluation against observations shows that the GloFAS-ERA5 reanalysis was skilful in 86 % of catchments.
Laurent de Rham, Yonas Dibike, Spyros Beltaos, Daniel Peters, Barrie Bonsal, and Terry Prowse
Earth Syst. Sci. Data, 12, 1835–1860, https://doi.org/10.5194/essd-12-1835-2020, https://doi.org/10.5194/essd-12-1835-2020, 2020
Short summary
Short summary
This paper describes the Canadian River Ice Database. Water level recordings at a network of 196 National Hydrometric Program gauging sites over the period 1894–2015 were reviewed. This database, of nearly 73 000 recorded variables and over 460 000 data entries, includes the timing and magnitude of fall freeze-up, midwinter break-up, winter minimum, ice thickness, spring break-up and maximum open-water levels. These data cover the range of river types and climate regions for Canada.
Yuanwei Wang, Lei Wang, Xiuping Li, Jing Zhou, and Zhidan Hu
Earth Syst. Sci. Data, 12, 1789–1803, https://doi.org/10.5194/essd-12-1789-2020, https://doi.org/10.5194/essd-12-1789-2020, 2020
Short summary
Short summary
This article is to provide a better precipitation product for the largest river basin of the Tibetan Plateau, the upper Brahmaputra River basin, suitable for use in hydrological simulations and other climate change studies. We integrate gauge, satellite, and reanalysis precipitation datasets to generate a new dataset. The new product has been rigorously validated at various temporal and spatial scales with gauge precipitation observations as well as in cryosphere hydrological simulations.
Matthew T. Perks, Silvano Fortunato Dal Sasso, Alexandre Hauet, Elizabeth Jamieson, Jérôme Le Coz, Sophie Pearce, Salvador Peña-Haro, Alonso Pizarro, Dariia Strelnikova, Flavia Tauro, James Bomhof, Salvatore Grimaldi, Alain Goulet, Borbála Hortobágyi, Magali Jodeau, Sabine Käfer, Robert Ljubičić, Ian Maddock, Peter Mayr, Gernot Paulus, Lionel Pénard, Leigh Sinclair, and Salvatore Manfreda
Earth Syst. Sci. Data, 12, 1545–1559, https://doi.org/10.5194/essd-12-1545-2020, https://doi.org/10.5194/essd-12-1545-2020, 2020
Short summary
Short summary
We present datasets acquired from seven countries across Europe and North America consisting of image sequences. These have been subjected to a range of pre-processing methods in preparation for image velocimetry analysis. These datasets and accompanying reference data are a resource that may be used for conducting benchmarking experiments, assessing algorithm performances, and focusing future software development.
Ziqiang Ma, Jintao Xu, Siyu Zhu, Jun Yang, Guoqiang Tang, Yuanjian Yang, Zhou Shi, and Yang Hong
Earth Syst. Sci. Data, 12, 1525–1544, https://doi.org/10.5194/essd-12-1525-2020, https://doi.org/10.5194/essd-12-1525-2020, 2020
Short summary
Short summary
Focusing on the potential drawbacks in generating the state-of-the-art IMERG data in both the TRMM and GPM era, a new daily calibration algorithm on IMERG was proposed, as well as a new AIMERG precipitation dataset (0.1°/half-hourly, 2000–2015, Asia) with better quality than IMERG for Asian scientific research and applications. The proposed daily calibration algorithm for GPM is promising and applicable in generating the future IMERG in either an operational scheme or a retrospective manner.
C. Jason Williams, Frederick B. Pierson, Patrick R. Kormos, Osama Z. Al-Hamdan, and Justin C. Johnson
Earth Syst. Sci. Data, 12, 1347–1365, https://doi.org/10.5194/essd-12-1347-2020, https://doi.org/10.5194/essd-12-1347-2020, 2020
Short summary
Short summary
Data were collected at three sites over 10 years to evaluate ecologic impacts of tree encroachment on rangelands and assess impacts of tree-removal practices on vegetation, surface conditions, and hydrologic/erosion processes. The dataset includes 1300 rainfall simulation and 838 overland-flow experiments paired with vegetation, surface cover, and soil data across point to hillslope scales. The data advance hydrology/erosion process understanding and are a source for model development/testing.
Riccardo Tortini, Nina Noujdina, Samantha Yeo, Martina Ricko, Charon M. Birkett, Ankush Khandelwal, Vipin Kumar, Miriam E. Marlier, and Dennis P. Lettenmaier
Earth Syst. Sci. Data, 12, 1141–1151, https://doi.org/10.5194/essd-12-1141-2020, https://doi.org/10.5194/essd-12-1141-2020, 2020
Short summary
Short summary
We present a global collection of satellite-derived time series of surface water volume changes for 347 lakes and reservoirs for 1992–2018. These changes were estimated using a statistical relationship between water surface elevation and area measured from satellite, even during periods when either elevation or area was not available. These records represent the most complete global surface water time series, and they are of fundamental importance to baseline future satellite missions.
Navid Ghajarnia, Georgia Destouni, Josefin Thorslund, Zahra Kalantari, Imenne Åhlén, Jesús A. Anaya-Acevedo, Juan F. Blanco-Libreros, Sonia Borja, Sergey Chalov, Aleksandra Chalova, Kwok P. Chun, Nicola Clerici, Amanda Desormeaux, Bethany B. Garfield, Pierre Girard, Olga Gorelits, Amy Hansen, Fernando Jaramillo, Jerker Jarsjö, Adnane Labbaci, John Livsey, Giorgos Maneas, Kathryn McCurley Pisarello, Sebastián Palomino-Ángel, Jan Pietroń, René M. Price, Victor H. Rivera-Monroy, Jorge Salgado, A. Britta K. Sannel, Samaneh Seifollahi-Aghmiuni, Ylva Sjöberg, Pavel Terskii, Guillaume Vigouroux, Lucia Licero-Villanueva, and David Zamora
Earth Syst. Sci. Data, 12, 1083–1100, https://doi.org/10.5194/essd-12-1083-2020, https://doi.org/10.5194/essd-12-1083-2020, 2020
Short summary
Short summary
Hydroclimate and land-use conditions determine the dynamics of wetlands and their ecosystem services. However, knowledge and data for conditions and changes over entire wetlandscapes are scarce. This paper presents a novel database for 27 wetlandscapes around the world, combining survey-based local information and hydroclimatic and land-use datasets. The developed database can enhance our capacity to understand and manage critical wetland ecosystems and their services under global change.
Pierre-Antoine Versini, Filip Stanic, Auguste Gires, Daniel Schertzer, and Ioulia Tchiguirinskaia
Earth Syst. Sci. Data, 12, 1025–1035, https://doi.org/10.5194/essd-12-1025-2020, https://doi.org/10.5194/essd-12-1025-2020, 2020
Short summary
Short summary
The Blue Green Wave of Champs-sur-Marne (1 ha, France) has been converted into a full-scale monitoring site devoted to studying the uses of green infrastructure in storm-water management. For this purpose, the components of the water balance have been monitored: rainfall, water content in the substrate, and discharge. These measurements are useful to better understand the processes (infiltration and retention) in hydrological performance and spatial variability.
Axel Schaffitel, Tobias Schuetz, and Markus Weiler
Earth Syst. Sci. Data, 12, 501–517, https://doi.org/10.5194/essd-12-501-2020, https://doi.org/10.5194/essd-12-501-2020, 2020
Short summary
Short summary
This paper contains detailed information about the instrumentation of permeable pavements with soil moisture sensors and the performance of infiltration experiments on these surfaces. The collected data are beneficial for studying urban water and energy cycles. They contain valuable information about the hydrological behavior of permeable pavements and urban subsurface heat anomalies. Due to the lack of similar data, we are convinced that the dataset is of great scientific value.
Chao Gao, Buda Su, Valentina Krysanova, Qianyu Zha, Cai Chen, Gang Luo, Xiaofan Zeng, Jinlong Huang, Ming Xiong, Liping Zhang, and Tong Jiang
Earth Syst. Sci. Data, 12, 387–402, https://doi.org/10.5194/essd-12-387-2020, https://doi.org/10.5194/essd-12-387-2020, 2020
Short summary
Short summary
The study produced the daily discharge time series for the upper Yangtze River basin (Cuntan hydrological station) in the period 1861–2299 under scenarios with and without anthropogenic climate change. The daily discharge was simulated by using four hydrological models (HBV, SWAT, SWIM and VIC) driven by multiple GCM outputs. This dataset could be compared to assess changes in river discharge in the upper Yangtze River basin attributable to anthropogenic climate change.
Fabian Ries, Lara Kirn, and Markus Weiler
Earth Syst. Sci. Data, 12, 245–255, https://doi.org/10.5194/essd-12-245-2020, https://doi.org/10.5194/essd-12-245-2020, 2020
Short summary
Short summary
Pluvial or flash floods generated by heavy precipitation events cause large economic damage and loss of life worldwide. As discharge observations from such extreme occurrences are rare, data from artificial sprinkling experiments offer valuable information on runoff generation processes, overland and subsurface flow rates, and response times. A extensive data set from 132 large-scale sprinkling experiments in Germany is described and presented in this paper.
Andrew R. Slaughter and Saman Razavi
Earth Syst. Sci. Data, 12, 231–243, https://doi.org/10.5194/essd-12-231-2020, https://doi.org/10.5194/essd-12-231-2020, 2020
Short summary
Short summary
Water management faces the challenge of non-stationarity in future flows. To extend flow datasets beyond the gauging data, this study presents a method of generating an ensemble of weekly flows from tree-ring reconstructed flows to represent uncertainty that can overcome certain long-standing data challenges with paleo-reconstruction. An ensemble of 500 flow time series were generated for the four sub-basins of the Saskatchewan River basin, Canada, for the period 1600–2001.
Stephen Coss, Michael Durand, Yuchan Yi, Yuanyuan Jia, Qi Guo, Stephen Tuozzolo, C. K. Shum, George H. Allen, Stéphane Calmant, and Tamlin Pavelsky
Earth Syst. Sci. Data, 12, 137–150, https://doi.org/10.5194/essd-12-137-2020, https://doi.org/10.5194/essd-12-137-2020, 2020
Short summary
Short summary
We present a new radar-altimeter-satellite-measured river surface height dataset. Our novel approach is broadly applicable rather than location specific. We were able to measure rivers that account for > 34 % of global drainage area with an accuracy comparable to much of the established literature. 389 of our 932 measurement locations include river gage validation. We have focused our efforts on creating a consistent, well-documented data product to encourage use by the broader science community.
Ellie Broadman, Lorna L. Thurston, Erik Schiefer, Nicholas P. McKay, David Fortin, Jason Geck, Michael G. Loso, Matt Nolan, Stéphanie H. Arcusa, Christopher W. Benson, Rebecca A. Ellerbroek, Michael P. Erb, Cody C. Routson, Charlotte Wiman, A. Jade Wong, and Darrell S. Kaufman
Earth Syst. Sci. Data, 11, 1957–1970, https://doi.org/10.5194/essd-11-1957-2019, https://doi.org/10.5194/essd-11-1957-2019, 2019
Short summary
Short summary
Rapid climate warming is impacting physical processes in Arctic environments. Glacier–fed lakes are influenced by many of these processes, and they are impacted by the changing behavior of weather, glaciers, and rivers. We present data from weather stations, river gauging stations, lake moorings, and more, following 4 years of environmental monitoring in the watershed of Lake Peters, a glacier–fed lake in Arctic Alaska. These data can help us study the changing dynamics of this remote setting.
Cited articles
Anderson, S. P., Bales, R. C., and Duffy, C. J.: Critical Zone
Observatories: Building a network to advance interdisciplinary study of
Earth surface processes, Mineral. Mag., 72, 7–10, https://doi.org/10.1180/minmag.2008.072.1.7, 2018.
Bernhardt, M., Schulz, K., and Pomeroy, J. W.: The International Network for
Alpine Research Catchment Hydrology: A new GEWEX crosscutting Project,
Hydrol. Wasserbewirts., 59, 190–191, 2015.
Blöschl, G., Blaschke, A. P., Broer, M., Bucher, C., Carr, G., Chen, X., Eder, A., Exner-Kittridge, M., Farnleitner, A., Flores-Orozco, A., Haas, P., Hogan, P., Kazemi Amiri, A., Oismüller, M., Parajka, J., Silasari, R., Stadler, P., Strauss, P., Vreugdenhil, M., Wagner, W., and Zessner, M.: The Hydrological Open Air Laboratory (HOAL) in Petzenkirchen: a hypothesis-driven observatory, Hydrol. Earth Syst. Sci., 20, 227–255, https://doi.org/10.5194/hess-20-227-2016, 2016.
Bogena, H. R., White, T., Bour, O., Li, X., and Jensen, K. H.: Toward Better
Understanding of Terrestrial Processes through Long-Term Hydrological
Observatories, Vadose Zone J., 17, 1–10, https://doi.org/10.2136/vzj2018.10.0194, 2018.
Cosby, J. and Emmett, B.: Plynlimon Experimental Catchments: available at: https://www.ceh.ac.uk/our-science/projects/plynlimon-experimental-catchments,
last access: 28 May 2020.
ESFRI: Roadmap & Strategy Report on Research Infrastructures: available at: http://roadmap2018.esfri.eu/media/1066/esfri-roadmap-2018.pdf, last access:
28 May 2020.
Feng, X., Faiia, A. M., and Posmentier, E. S.: Seasonality of isotopes in
precipitation: A global perspective, J. Geophys. Res.-Atmos., 114, D08116, https://doi.org/10.1029/2008JD011279, 2009.
Fürst, J., Nachtnebel, H. P., Gasch, J., Nolz, R., Stockinger, M. P.,
Stumpp, C., and Schulz, K.: Rosalia: an experimental research site to study
hydrological processes in a forest catchment – data repository, Zenodo [data set],
https://doi.org/10.5281/zenodo.3997141, 2020.
Gröning, M., Lutz, H. O., Roller-Lutz, Z., Kralik, M., Gourcy, L., and
Pöltenstein, L.: A simple rain collector preventing water re-evaporation
dedicated for δ18O and δ2H analysis of cumulative
precipitation samples, J. Hydrol., 448–449, 195–200, https://doi.org/10.1016/j.jhydrol.2012.04.041, 2012.
Haberl, H., Winiwarter, V., Andersson, K., Ayres, R. U., Boone, C.,
Castillo, A., Cunfer, G., Fischer-Kowalski, M., Freudenburg, W. R., Furman,
E., Kaufmann, R., Krausmann, F., Langthaler, E., Lotze-Campen, H., Mirtl,
M., Redman, C. L., Reenberg, A., Wardell, A., Warr, B., and Zechmeister, H.:
From LTER to LTSER: Conceptualizing the Socioeconomic Dimension of Long-term
Socioecological Research, Ecol. Soc., 11, 13, https://doi.org/10.5751/ES-01786-110213,
2006.
Hipp, D. R., Kennedy, D., and Mistachkin, J.: SQLite SQLite Development
Team, available at: https://www.sqlite.org/download.html (last access: 29 June 2021), 2019.
Holzmann, H.: Status and perspectives of hydrological research in small
basins in Europe, Geographical Research Letters, 44, 601–614, https://doi.org/10.18172/cig.3406, 2018.
Hydrologic Engineering Center: HEC DSSVue Version 2.0, US Army Corps of
Engineers, Institute for Water Resources, Davis, CA, 2010.
Immitzer, M.: Auswertung von Airborne-Laser-Scanning-Daten für die
Ableitung des Holzvorrates im Lehrforst der Universität für
Bodenkultur, MSc thesis, University of Natural Resources and Life Sciences
Vienna, Vienna, 163 pp., 2009.
Irsigler, S. Z.: Nutzung von Leitfähigkeits- und Temperaturdaten zur
verbesserten Beschreibung der Abflussprozesse in kleinen bewaldeten
Einzugsgebieten, MSc thesis, Wasser – Atmosphäre – Umwelt,
Universität für Bodenkultur Wien, Wien, 128 pp., 2017.
Kampe, T., Johnson, B., Kuester, M., and Keller, M.: NEON: the first
continental-scale ecological observatory with airborne remote sensing of
vegetation canopy biochemistry and structure, J. Appl. Remote
Sens., 4, 043510, https://doi.org/10.1117/1.3361375, 2010.
Laudon, H., Taberman, I., Ågren, A., Futter, M., Ottosson-Löfvenius,
M., and Bishop, K.: The Krycklan Catchment Study – A flagship infrastructure
for hydrology, biogeochemistry, and climate research in the boreal
landscape, Water Resour. Res., 49, 7154–7158, https://doi.org/10.1002/wrcr.20520,
2013.
Leitner, S., Minixhofer, P., Inselsbacher, E., Keiblinger, K. M.,
Zimmermann, M., and Zechmeister-Boltenstern, S.: Short-term soil mineral and
organic nitrogen fluxes during moderate and severe drying–rewetting events,
Appl. Soil Ecol., 114, 28–33,
https://doi.org/10.1016/j.apsoil.2017.02.014, 2017.
Lott, D. A. and Stewart, M. T.: Base flow separation: A comparison of
analytical and mass balance methods, J. Hydrol., 535, 525–533,
https://doi.org/10.1016/j.jhydrol.2016.01.063, 2016.
LTER Network Office: LTER History, available at:
https://lternet.edu/network-organization/lter-a-history/, last access:
28 May 2020.
Morgenschweis, G.: Hydrometrie – Theorie und Praxis der Durchflussmessung in
offenen Gerinnen, Springer-Verlag, Berlin Heidelberg, 582 pp., 2010.
Müller, K., Wickham, H., James, D. A., and Falcon, S.: RSQLite: “SQLite”
Interface for R. R package version 2.1.1, available at:
https://CRAN.R-project.org/package=RSQLite (last access: 29 June 2021), 2018.
Neal, C., Reynolds, B., Norris, D., Kirchner, J. W., Neal, M., Rowland, P.,
Wickham, H., Harman, S., Armstrong, L., Sleep, D., Lawlor, A., Woods, C.,
Williams, B., Fry, M., Newton, G., and Wright, D.: Three decades of water
quality measurements from the Upper Severn experimental catchments at
Plynlimon, Wales: an openly accessible data resource for research,
modelling, environmental management and education, Hydrol. Process.,
25, 3818–3830, https://doi.org/10.1002/hyp.8191, 2011.
Netherer, S., Matthews, B., Katzensteiner, K., Blackwell, E., Henschke, P.,
Hietz, P., Pennerstorfer, J., Rosner, S., Kikuta, S., Schume, H., and
Schopf, A.: Do water-limiting conditions predispose Norway spruce to bark
beetle attack?, New Phytol., 205, 1128–1141,
https://doi.org/10.1111/nph.13166, 2015.
Porporato, A. and Rodriguez-Iturbe, I.: Ecohydrology-a challenging
multidisciplinary research perspective/Ecohydrologie: une perspective
stimulante de recherche multidisciplinaire, Hydrolog. Sci. J.,
47, 811–821, https://doi.org/10.1080/02626660209492985, 2002.
Schumann, S., Schmalz, B., Meesenburg, H., and Schröder, U.: Status and
Perspectives of Hydrology in Small Basins – Results and recommendations of
the International Workshop in Goslar-Hahnenklee, Germany, 2009 and Inventory
of Small Hydrological Research Basins, German National Committee for the
International Hydrological Programme (IHP) of UNESCO and the Hydrology and
Water Resources Programme (HWRP) of WMO KoblenzIHP/HWRP-Berichte, Heft 10,
71 pp., 2010.
Schwen, A., Zimmermann, M., Leitner, S., and Woche, S. K.: Soil Water
Repellency and its Impact on Hydraulic Characteristics in a Beech Forest
under Simulated Climate Change, Vadose Zone J., 14, vzj2015.2006.0089,
https://doi.org/10.2136/vzj2015.06.0089, 2015.
Seyfried, M., Lohse, K., Marks, D., Flerchinger, G., Pierson, F., and
Holbrook, W. S.: Reynolds Creek Experimental Watershed and Critical Zone
Observatory, Vadose Zone J., 17, 180129, https://doi.org/10.2136/vzj2018.07.0129, 2018.
Seyfried, M. S., Grant, L. E., Du, E., and Humes, K.: Dielectric loss and
calibration of the Hydra Probe Soil Water Sensor, Vadose Zone J., 4,
1070–1079, 2005.
Simunek, J., Sejna, M., and van Genuchten, M. T.: The Hydrus-2D software
package for simulating two-dimensional movement of water, heat, and multiple
solutes in variably saturated media, IGWMC – TPS – 53, International Ground
Water Modeling Center, Colorado School of Mines, Golden, Colorado, 251 pp.,
1999.
Stecher, G.: Analyses of diurnal discharge fluctuations in forested
micro-watersheds (Lehrforst Rosalia), M.Sc. thesis, University of Natural
Resources and Life Sciences Vienna, Vienna, 118 pp., 2021.
Steinbrich, A., Leistert, H., and Weiler, M.: Model-based quantification of
runoff generation processes at high spatial and temporal resolution,
Environ. Earth Sci., 75, 1423, https://doi.org/10.1007/s12665-016-6234-9, 2016.
Stevens Water Monitoring Systems: Comprehensive Stevens HydraProbe user's
manual, rev. IV, Portland, 2015.
Stockinger, M., Lücke, A., McDonnell, J., Diekkrüger, B., Vereecken,
H., and Bogena, H.: Interception effects on stable isotope driven
streamwater transit time estimates, Geophys. Res. Lett., 42,
5299–5308, https://doi.org/10.1002/2015GL064622, 2015.
Thomson, J.: On experiments on the measurement of water by triangular
notches in weir-boards, British Ass. for Advancement of Science, London,
181–185, 1859.
von Freyberg, J., Knapp, J. L. A., Rücker, A., Studer, B., and Kirchner, J. W.: Technical note: Evaluation of a low-cost evaporation protection method for portable water samplers, Hydrol. Earth Syst. Sci., 24, 5821–5834, https://doi.org/10.5194/hess-24-5821-2020, 2020.
Wesemann, J.: Hydrologische Modellierung des natürlichen
Abflussverhaltens und dessen Veränderung durch anthropogene
Einflüsse, PhD thesis, University of Natural Resources and Life
Sciences Vienna, Vienna, 175 pp., 2021.
WMO: Guide to Hydrological Practices Volume I Hydrology – From Measurement
to Hydrological Information, 6th Edn., Geneva, Switzerland, 2008.
Zacharias, S., Bogena, H., Samaniego, L., Mauder, M., Fuß, R., Pütz,
T., Frenzel, M., Schwank, M., Baessler, C., Butterbach-Bahl, K., Bens, O.,
Borg, E., Brauer, A., Dietrich, P., Hajnsek, I., Helle, G., Kiese, R.,
Kunstmann, H., Klotz, S., Munch, J. C., Papen, H., Priesack, E., Schmid, H.
P., Steinbrecher, R., Rosenbaum, U., Teutsch, G., and Vereecken, H.: A
Network of Terrestrial Environmental Observatories in Germany, Vadose Zone
J., 10, 955–973, https://doi.org/10.2136/vzj2010.0139, 2011.
Short summary
Rosalia is a 222 ha forested research watershed in eastern Austria to study water, energy and solute transport processes. The paper describes the site, monitoring network, instrumentation and the datasets: high-resolution (10 min interval) time series starting in 2015 of four discharge gauging stations, seven rain gauges, and observations of air and water temperature, relative humidity, and conductivity, as well as soil water content and temperature, at different depths at four profiles.
Rosalia is a 222 ha forested research watershed in eastern Austria to study water, energy and...