Articles | Volume 13, issue 8
https://doi.org/10.5194/essd-13-3847-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-3847-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CAMELS-AUS: hydrometeorological time series and landscape attributes for 222 catchments in Australia
Keirnan J. A. Fowler
CORRESPONDING AUTHOR
Department of Infrastructure Engineering, University of Melbourne,
Parkville, Victoria, Australia
Suwash Chandra Acharya
Department of Infrastructure Engineering, University of Melbourne,
Parkville, Victoria, Australia
Nans Addor
Department of Geography, University of Exeter, Exeter, UK
Chihchung Chou
Department of Infrastructure Engineering, University of Melbourne,
Parkville, Victoria, Australia
now at: Department of Earth Sciences, Barcelona Supercomputing
Centre, Barcelona, Spain
Murray C. Peel
Department of Infrastructure Engineering, University of Melbourne,
Parkville, Victoria, Australia
Related authors
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Luca Trotter, Wouter J. M. Knoben, Keirnan J. A. Fowler, Margarita Saft, and Murray C. Peel
Geosci. Model Dev., 15, 6359–6369, https://doi.org/10.5194/gmd-15-6359-2022, https://doi.org/10.5194/gmd-15-6359-2022, 2022
Short summary
Short summary
MARRMoT is a piece of software that emulates 47 common models for hydrological simulations. It can be used to run and calibrate these models within a common environment as well as to easily modify them. We restructured and recoded MARRMoT in order to make the models run faster and to simplify their use, while also providing some new features. This new MARRMoT version runs models on average 3.6 times faster while maintaining very strong consistency in their outputs to the previous version.
Wouter J. M. Knoben, Jim E. Freer, Keirnan J. A. Fowler, Murray C. Peel, and Ross A. Woods
Geosci. Model Dev., 12, 2463–2480, https://doi.org/10.5194/gmd-12-2463-2019, https://doi.org/10.5194/gmd-12-2463-2019, 2019
Short summary
Short summary
Computer models are used to predict river flows. A good model should represent the river basin to which it is applied so that flow predictions are as realistic as possible. However, many different computer models exist, and selecting the most appropriate model for a given river basin is not always easy. This study combines computer code for 46 different hydrological models into a single coding framework so that models can be compared in an objective way and we can learn about model differences.
Nele Reyniers, Timothy J. Osborn, Nans Addor, and Geoff Darch
Hydrol. Earth Syst. Sci., 27, 1151–1171, https://doi.org/10.5194/hess-27-1151-2023, https://doi.org/10.5194/hess-27-1151-2023, 2023
Short summary
Short summary
In an analysis of future drought projections for Great Britain based on the Standardised Precipitation Index and the Standardised Precipitation Evapotranspiration Index, we show that the choice of drought indicator has a decisive influence on the resulting projected changes in drought characteristics, although both result in increased drying. This highlights the need to understand the interplay between increasing atmospheric evaporative demand and drought impacts under a changing climate.
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Luca Trotter, Wouter J. M. Knoben, Keirnan J. A. Fowler, Margarita Saft, and Murray C. Peel
Geosci. Model Dev., 15, 6359–6369, https://doi.org/10.5194/gmd-15-6359-2022, https://doi.org/10.5194/gmd-15-6359-2022, 2022
Short summary
Short summary
MARRMoT is a piece of software that emulates 47 common models for hydrological simulations. It can be used to run and calibrate these models within a common environment as well as to easily modify them. We restructured and recoded MARRMoT in order to make the models run faster and to simplify their use, while also providing some new features. This new MARRMoT version runs models on average 3.6 times faster while maintaining very strong consistency in their outputs to the previous version.
Andrew J. Newman, Amanda G. Stone, Manabendra Saharia, Kathleen D. Holman, Nans Addor, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 5603–5621, https://doi.org/10.5194/hess-25-5603-2021, https://doi.org/10.5194/hess-25-5603-2021, 2021
Short summary
Short summary
This study assesses methods that estimate flood return periods to identify when we would obtain a large flood return estimate change if the method or input data were changed (sensitivities). We include an examination of multiple flood-generating models, which is a novel addition to the flood estimation literature. We highlight the need to select appropriate flood models for the study watershed. These results will help operational water agencies develop more robust risk assessments.
Peter T. La Follette, Adriaan J. Teuling, Nans Addor, Martyn Clark, Koen Jansen, and Lieke A. Melsen
Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021, https://doi.org/10.5194/hess-25-5425-2021, 2021
Short summary
Short summary
Hydrological models are useful tools that allow us to predict distributions and movement of water. A variety of numerical methods are used by these models. We demonstrate which numerical methods yield large errors when subject to extreme precipitation. As the climate is changing such that extreme precipitation is more common, we find that some numerical methods are better suited for use in hydrological models. Also, we find that many current hydrological models use relatively inaccurate methods.
John P. Bloomfield, Mengyi Gong, Benjamin P. Marchant, Gemma Coxon, and Nans Addor
Hydrol. Earth Syst. Sci., 25, 5355–5379, https://doi.org/10.5194/hess-25-5355-2021, https://doi.org/10.5194/hess-25-5355-2021, 2021
Short summary
Short summary
Groundwater provides flow, known as baseflow, to surface streams and rivers. It is important as it sustains the flow of many rivers at times of water stress. However, it may be affected by water management practices. Statistical models have been used to show that abstraction of groundwater may influence baseflow. Consequently, it is recommended that information on groundwater abstraction is included in future assessments and predictions of baseflow.
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021, https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary
Short summary
We present a cascade of models to compute high-resolution river flooding. This takes meteorological inputs, e.g., rainfall and temperature from observations or climate models, and takes them through a series of modeling steps. This is relevant to evaluating current day and future flood risk and impacts. The model framework uses global data sets, allowing it to be applied anywhere in the world.
Gemma Coxon, Nans Addor, John P. Bloomfield, Jim Freer, Matt Fry, Jamie Hannaford, Nicholas J. K. Howden, Rosanna Lane, Melinda Lewis, Emma L. Robinson, Thorsten Wagener, and Ross Woods
Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, https://doi.org/10.5194/essd-12-2459-2020, 2020
Short summary
Short summary
We present the first large-sample catchment hydrology dataset for Great Britain. The dataset collates river flows, catchment attributes, and catchment boundaries for 671 catchments across Great Britain. We characterise the topography, climate, streamflow, land cover, soils, hydrogeology, human influence, and discharge uncertainty of each catchment. The dataset is publicly available for the community to use in a wide range of environmental and modelling analyses.
Vinícius B. P. Chagas, Pedro L. B. Chaffe, Nans Addor, Fernando M. Fan, Ayan S. Fleischmann, Rodrigo C. D. Paiva, and Vinícius A. Siqueira
Earth Syst. Sci. Data, 12, 2075–2096, https://doi.org/10.5194/essd-12-2075-2020, https://doi.org/10.5194/essd-12-2075-2020, 2020
Short summary
Short summary
We present a new dataset for large-sample hydrological studies in Brazil. The dataset encompasses daily observed streamflow from 3679 gauges, as well as meteorological forcing for 897 selected catchments. It also includes 65 attributes covering topographic, climatic, hydrologic, land cover, geologic, soil, and human intervention variables. CAMELS-BR is publicly available and will enable new insights into the hydrological behavior of catchments in Brazil.
Kirsti Hakala, Nans Addor, Thibault Gobbe, Johann Ruffieux, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3815–3833, https://doi.org/10.5194/hess-24-3815-2020, https://doi.org/10.5194/hess-24-3815-2020, 2020
Short summary
Short summary
Under a changing climate, reliable information on future hydrological conditions is necessary to inform water resource management. Here, we collaborated with a hydropower company that selected streamflow and energy demand indices. Using these indices, we identified stakeholder needs and used this to tailor the production of our climate change impact projections. We show that opportunities and risks for a hydropower company depend on a range of factors beyond those covered by traditional studies.
Suwash Chandra Acharya, Rory Nathan, Quan J. Wang, Chun-Hsu Su, and Nathan Eizenberg
Hydrol. Earth Syst. Sci., 24, 2951–2962, https://doi.org/10.5194/hess-24-2951-2020, https://doi.org/10.5194/hess-24-2951-2020, 2020
Short summary
Short summary
BARRA is a high-resolution reanalysis dataset over the Oceania region. This study evaluates the performance of sub-daily BARRA precipitation at point and spatial scales over Australia. We find that the dataset reproduces some of the sub-daily characteristics of precipitation well, although it exhibits some spatial displacement errors, and it performs better in temperate than in tropical regions. The product is well suited to complement other estimates derived from remote sensing and rain gauges.
Suwash Chandra Acharya, Rory Nathan, Quan J. Wang, Chun-Hsu Su, and Nathan Eizenberg
Hydrol. Earth Syst. Sci., 23, 3387–3403, https://doi.org/10.5194/hess-23-3387-2019, https://doi.org/10.5194/hess-23-3387-2019, 2019
Short summary
Short summary
BARRA is a novel regional reanalysis for Australia. Our research demonstrates that it is able to characterize a rich spatial variation in daily precipitation behaviour. In addition, its ability to represent large rainfalls is valuable for the analysis of extremes. It is a useful complement to existing precipitation datasets for Australia, especially in sparsely gauged regions.
Wouter J. M. Knoben, Jim E. Freer, Keirnan J. A. Fowler, Murray C. Peel, and Ross A. Woods
Geosci. Model Dev., 12, 2463–2480, https://doi.org/10.5194/gmd-12-2463-2019, https://doi.org/10.5194/gmd-12-2463-2019, 2019
Short summary
Short summary
Computer models are used to predict river flows. A good model should represent the river basin to which it is applied so that flow predictions are as realistic as possible. However, many different computer models exist, and selecting the most appropriate model for a given river basin is not always easy. This study combines computer code for 46 different hydrological models into a single coding framework so that models can be compared in an objective way and we can learn about model differences.
Camila Alvarez-Garreton, Pablo A. Mendoza, Juan Pablo Boisier, Nans Addor, Mauricio Galleguillos, Mauricio Zambrano-Bigiarini, Antonio Lara, Cristóbal Puelma, Gonzalo Cortes, Rene Garreaud, James McPhee, and Alvaro Ayala
Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, https://doi.org/10.5194/hess-22-5817-2018, 2018
Short summary
Short summary
CAMELS-CL provides a catchment dataset in Chile, including 516 catchment boundaries, hydro-meteorological time series, and 70 catchment attributes quantifying catchments' climatic, hydrological, topographic, geological, land cover and anthropic intervention features. By using CAMELS-CL, we characterise hydro-climatic regional variations, assess precipitation and potential evapotranspiration uncertainties, and analyse human intervention impacts on catchment response.
Lieke A. Melsen, Nans Addor, Naoki Mizukami, Andrew J. Newman, Paul J. J. F. Torfs, Martyn P. Clark, Remko Uijlenhoet, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 22, 1775–1791, https://doi.org/10.5194/hess-22-1775-2018, https://doi.org/10.5194/hess-22-1775-2018, 2018
Short summary
Short summary
Long-term hydrological predictions are important for water management planning, but are also prone to uncertainty. This study investigates three sources of uncertainty for long-term hydrological predictions in the US: climate models, hydrological models, and hydrological model parameters. Mapping the results revealed spatial patterns in the three sources of uncertainty: different sources of uncertainty dominate in different regions.
Nans Addor, Andrew J. Newman, Naoki Mizukami, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, https://doi.org/10.5194/hess-21-5293-2017, 2017
Short summary
Short summary
We introduce a data set describing the landscape of 671 catchments in the contiguous USA: we synthesized various data sources to characterize the topography, climate, streamflow, land cover, soil, and geology of each catchment. This extends the daily time series of meteorological forcing and discharge provided by an earlier study. The diversity of these catchments will help to improve our understanding and modeling of how the interplay between catchment attributes shapes hydrological processes.
Z. K. Tesemma, Y. Wei, M. C. Peel, and A. W. Western
Hydrol. Earth Syst. Sci., 19, 2821–2836, https://doi.org/10.5194/hess-19-2821-2015, https://doi.org/10.5194/hess-19-2821-2015, 2015
M. C. Peel, R. Srikanthan, T. A. McMahon, and D. J. Karoly
Hydrol. Earth Syst. Sci., 19, 1615–1639, https://doi.org/10.5194/hess-19-1615-2015, https://doi.org/10.5194/hess-19-1615-2015, 2015
Short summary
Short summary
We present a proof-of-concept approximation of within-GCM uncertainty using non-stationary stochastic replicates of monthly precipitation and temperature projections and investigate the impact of within-GCM uncertainty on projected runoff and reservoir yield. Amplification of within-GCM variability from precipitation to runoff to reservoir yield suggests climate change impact assessments ignoring within-GCM uncertainty would provide water resources managers with an unjustified sense of certainty
T. A. McMahon, M. C. Peel, and D. J. Karoly
Hydrol. Earth Syst. Sci., 19, 361–377, https://doi.org/10.5194/hess-19-361-2015, https://doi.org/10.5194/hess-19-361-2015, 2015
Short summary
Short summary
Here we assess GCM performance from a hydrologic perspective. We identify five better performing CMIP3 GCMs that reproduce grid-scale climatological statistics of observed precipitation and temperature over global land regions for future hydrologic simulation. GCM performance in reproducing observed mean and standard deviation of annual precipitation, mean annual temperature and mean monthly precipitation and temperature was assessed and ranked, and five better performing GCMs were identified.
Z. K. Tesemma, Y. Wei, M. C. Peel, and A. W. Western
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-10515-2014, https://doi.org/10.5194/hessd-11-10515-2014, 2014
Revised manuscript not accepted
T. A. McMahon, M. C. Peel, and J. Szilagyi
Hydrol. Earth Syst. Sci., 17, 4865–4867, https://doi.org/10.5194/hess-17-4865-2013, https://doi.org/10.5194/hess-17-4865-2013, 2013
T. A. McMahon, M. C. Peel, L. Lowe, R. Srikanthan, and T. R. McVicar
Hydrol. Earth Syst. Sci., 17, 1331–1363, https://doi.org/10.5194/hess-17-1331-2013, https://doi.org/10.5194/hess-17-1331-2013, 2013
Related subject area
Hydrology
Twelve years of profile soil moisture and temperature measurements in Twente, the Netherlands
Shallow-groundwater-level time series and a groundwater chemistry survey from a boreal headwater catchment, Krycklan, Sweden
Weekly high-resolution multi-spectral and thermal uncrewed-aerial-system mapping of an alpine catchment during summer snowmelt, Niwot Ridge, Colorado
Nunataryuk field campaigns: understanding the origin and fate of terrestrial organic matter in the coastal waters of the Mackenzie Delta region
Integrated ecohydrological hydrometric and stable water isotope data of a drought-sensitive mixed land use lowland catchment
Regional data sets of high-resolution (1 and 6 km) irrigation estimates from space
Lake surface temperature retrieved from Landsat satellite series (1984 to 2021) for the North Slave Region
Global hourly, 5 km, all-sky land surface temperature data from 2011 to 2021 based on integrating geostationary and polar-orbiting satellite data
Panta Rhei benchmark dataset: socio-hydrological data of paired events of floods and droughts
Flood detection using Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage and extreme precipitation data
The pan-Arctic catchment database (ARCADE)
Multi-hazard susceptibility mapping of cryospheric hazards in a high-Arctic environment: Svalbard Archipelago
Generation of global 1-km daily soil moisture product from 2000 to 2020 using ensemble learning
High-resolution water level and storage variation datasets for 338 reservoirs in China during 2010–2021
WaterBench-Iowa: a large-scale benchmark dataset for data-driven streamflow forecasting
A dataset of 10-year regional-scale soil moisture and soil temperature measurements at multiple depths on the Tibetan Plateau
OpenMRG: Open data from Microwave links, Radar, and Gauges for rainfall quantification in Gothenburg, Sweden
A 1 km daily soil moisture dataset over China using in situ measurement and machine learning
Downscaled hyper-resolution (400 m) gridded datasets of daily precipitation and temperature (2008–2019) for the East–Taylor subbasin (western United States)
HRLT: a high-resolution (1 d, 1 km) and long-term (1961–2019) gridded dataset for surface temperature and precipitation across China
RC4USCoast: A river chemistry dataset for regional ocean model applications in the U.S. East, Gulf of Mexico, and West Coasts
The Surface Water Chemistry (SWatCh) database: a standardized global database of water chemistry to facilitate large-sample hydrological research
Hydrography90m: a new high-resolution global hydrographic dataset
GLOBMAP SWF: a global annual surface water cover frequency dataset during 2000–2020
Streamflow data availability in Europe: a detailed dataset of interpolated flow-duration curves
High-resolution streamflow and weather data (2013–2019) for seven small coastal watersheds in the northeast Pacific coastal temperate rainforest, Canada
A 500-year annual runoff reconstruction for 14 selected European catchments
A comprehensive geospatial database of nearly 100 000 reservoirs in China
Stable water isotope monitoring network of different water bodies in Shiyang River basin, a typical arid river in China
A dataset of lake-catchment characteristics for the Tibetan Plateau
QUADICA: water QUAlity, DIscharge and Catchment Attributes for large-sample studies in Germany
A global terrestrial evapotranspiration product based on the three-temperature model with fewer input parameters and no calibration requirement
A new snow depth data set over northern China derived using GNSS interferometric reflectometry from a continuously operating network (GSnow-CHINA v1.0, 2013–2022)
Microwave radiometry experiment for snow in Altay, China: time series of in situ data for electromagnetic and physical features of snowpack
An integrated dataset of daily lake surface water temperature over the Tibetan Plateau
Meteorological and hydrological data from the Alder Creek watershed, SW Ontario
Daily soil moisture mapping at 1 km resolution based on SMAP data for desertification areas in northern China
High-temporal-resolution hydrometeorological data collected in the tropical Cordillera Blanca, Peru (2004–2020)
Escherichia coli concentration, multiscale monitoring over the decade 2011–2021 in the Mekong River basin, Lao PDR
A 1 km daily surface soil moisture dataset of enhanced coverage under all-weather conditions over China in 2003–2019
Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site Wüstebach
Concentrations and fluxes of suspended particulate matter and associated contaminants in the Rhône River from Lake Geneva to the Mediterranean Sea
A global drought dataset of standardized moisture anomaly index incorporating snow dynamics (SZIsnow) and its application in identifying large-scale drought events
River network and hydro-geomorphological parameters at 1∕12° resolution for global hydrological and climate studies
Integrated hydrogeological and hydrogeochemical dataset of an alpine catchment in the northern Qinghai–Tibet Plateau
GeoDAR: georeferenced global dams and reservoirs dataset for bridging attributes and geolocations
Spatial and seasonal patterns of water isotopes in northeastern German lakes
A new dataset of river flood hazard maps for Europe and the Mediterranean Basin
COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors
eFLaG: enhanced future FLows and Groundwater. A national dataset of hydrological projections based on UKCP18
Rogier van der Velde, Harm-Jan F. Benninga, Bas Retsios, Paul C. Vermunt, and M. Suhyb Salama
Earth Syst. Sci. Data, 15, 1889–1910, https://doi.org/10.5194/essd-15-1889-2023, https://doi.org/10.5194/essd-15-1889-2023, 2023
Short summary
Short summary
From 2009, a network of 20 profile soil moisture and temperature monitoring stations has been operational in the Twente region, east of the Netherlands. In addition, field campaigns have been conducted covering four growing seasons during which soil moisture was measured near 12 monitoring stations. We describe the monitoring network and field campaigns, and we provide an overview of open third-party datasets that may support the use of the Twente datasets.
Jana Erdbrügger, Ilja van Meerveld, Jan Seibert, and Kevin Bishop
Earth Syst. Sci. Data, 15, 1779–1800, https://doi.org/10.5194/essd-15-1779-2023, https://doi.org/10.5194/essd-15-1779-2023, 2023
Short summary
Short summary
Groundwater can respond quickly to precipitation and is the main source of streamflow in most catchments in humid, temperate climates. To better understand shallow groundwater dynamics, we installed a network of groundwater wells in two boreal headwater catchments in Sweden. We recorded groundwater levels in 75 wells for 2 years and sampled the water and analyzed its chemical composition in one summer. This paper describes these datasets.
Oliver Wigmore and Noah P. Molotch
Earth Syst. Sci. Data, 15, 1733–1747, https://doi.org/10.5194/essd-15-1733-2023, https://doi.org/10.5194/essd-15-1733-2023, 2023
Short summary
Short summary
We flew a custom-built drone fitted with visible, near-infrared and thermal cameras every week over a summer season at Niwot Ridge in Colorado's alpine tundra. We processed these images into seamless orthomosaics that record changes in snow cover, vegetation health and the movement of water over the land surface. These novel datasets provide a unique centimetre resolution snapshot of ecohydrologic processes, connectivity and spatial and temporal heterogeneity in the alpine zone.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Doerthe Tetzlaff, Aaron Smith, Lukas Kleine, Hauke Daempfling, Jonas Freymueller, and Chris Soulsby
Earth Syst. Sci. Data, 15, 1543–1554, https://doi.org/10.5194/essd-15-1543-2023, https://doi.org/10.5194/essd-15-1543-2023, 2023
Short summary
Short summary
We present a comprehensive set of ecohydrological hydrometric and stable water isotope data of 2 years of data. The data set is unique as the different compartments of the landscape were sampled and the effects of a prolonged drought (2018–2020) captured by a marked negative rainfall anomaly (the most severe regional drought of the 21st century). Thus, the data allow the drought effects on water storage, flux and age dynamics, and persistence of lowland landscapes to be investigated.
Jacopo Dari, Luca Brocca, Sara Modanesi, Christian Massari, Angelica Tarpanelli, Silvia Barbetta, Raphael Quast, Mariette Vreugdenhil, Vahid Freeman, Anaïs Barella-Ortiz, Pere Quintana-Seguí, David Bretreger, and Espen Volden
Earth Syst. Sci. Data, 15, 1555–1575, https://doi.org/10.5194/essd-15-1555-2023, https://doi.org/10.5194/essd-15-1555-2023, 2023
Short summary
Short summary
Irrigation is the main source of global freshwater consumption. Despite this, a detailed knowledge of irrigation dynamics (i.e., timing, extent of irrigated areas, and amounts of water used) are generally lacking worldwide. Satellites represent a useful tool to fill this knowledge gap and monitor irrigation water from space. In this study, three regional-scale and high-resolution (1 and 6 km) products of irrigation amounts estimated by inverting the satellite soil moisture signals are presented.
Gifty Attiah, Homa Kheyrollah Pour, and K. Andrea Scott
Earth Syst. Sci. Data, 15, 1329–1355, https://doi.org/10.5194/essd-15-1329-2023, https://doi.org/10.5194/essd-15-1329-2023, 2023
Short summary
Short summary
Lake surface temperature (LST) is a significant indicator of climate change and influences local weather and climate. This study developed a LST dataset retrieved from Landsat archives for 535 lakes across the North Slave Region, NWT, Canada. The data consist of individual NetCDF files for all observed days for each lake. The North Slave LST dataset will provide communities, scientists, and stakeholders with the changing spatiotemporal trends of LST for the past 38 years (1984–2021).
Aolin Jia, Shunlin Liang, Dongdong Wang, Lei Ma, Zhihao Wang, and Shuo Xu
Earth Syst. Sci. Data, 15, 869–895, https://doi.org/10.5194/essd-15-869-2023, https://doi.org/10.5194/essd-15-869-2023, 2023
Short summary
Short summary
Satellites are now producing multiple global land surface temperature (LST) products; however, they suffer from data gaps caused by cloud cover, seriously restricting the applications, and few products provide gap-free global hourly LST. We produced global hourly, 5 km, all-sky LST data from 2011 to 2021 using geostationary and polar-orbiting satellite data. Based on the assessment, it has high accuracy and can be used to estimate evapotranspiration, drought, etc.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir Aghakouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H.J. van Huijgevoort, Michelle T.H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-330, https://doi.org/10.5194/essd-2022-330, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e., two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Jianxin Zhang, Kai Liu, and Ming Wang
Earth Syst. Sci. Data, 15, 521–540, https://doi.org/10.5194/essd-15-521-2023, https://doi.org/10.5194/essd-15-521-2023, 2023
Short summary
Short summary
This study successfully extracted global flood days based on gravity satellite and precipitation data between 60° S and 60° N from 1 April 2002 to 31 August 2016. Our flood days data performed well compared with current available observations. This provides an important data foundation for analyzing the spatiotemporal distribution of large-scale floods and exploring the impact of ocean–atmosphere oscillations on floods in different regions.
Niek Jesse Speetjens, Gustaf Hugelius, Thomas Gumbricht, Hugues Lantuit, Wouter R. Berghuijs, Philip A. Pika, Amanda Poste, and Jorien E. Vonk
Earth Syst. Sci. Data, 15, 541–554, https://doi.org/10.5194/essd-15-541-2023, https://doi.org/10.5194/essd-15-541-2023, 2023
Short summary
Short summary
The Arctic is rapidly changing. Outside the Arctic, large databases changed how researchers look at river systems and land-to-ocean processes. We present the first integrated pan-ARctic CAtchments summary DatabasE (ARCADE) (> 40 000 river catchments draining into the Arctic Ocean). It incorporates information about the drainage area with 103 geospatial, environmental, climatic, and physiographic properties and covers small watersheds , which are especially subject to change, at a high resolution
Ionut Cristi Nicu, Letizia Elia, Lena Rubensdotter, Hakan Tanyaş, and Luigi Lombardo
Earth Syst. Sci. Data, 15, 447–464, https://doi.org/10.5194/essd-15-447-2023, https://doi.org/10.5194/essd-15-447-2023, 2023
Short summary
Short summary
Thaw slumps and thermo-erosion gullies are cryospheric hazards that are widely encountered in Nordenskiöld Land, the largest and most compact ice-free area of the Svalbard Archipelago. By statistically analysing the landscape characteristics of locations where these processes occurred, we can estimate where they may occur in the future. We mapped 562 thaw slumps and 908 thermo-erosion gullies and used them to create the first multi-hazard susceptibility map in a high-Arctic environment.
Yufang Zhang, Shunlin Liang, Han Ma, Tao He, Qian Wang, Bing Li, Jianglei Xu, Guodong Zhang, Xiaobang Liu, and Changhao Xiong
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-348, https://doi.org/10.5194/essd-2022-348, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Soil moisture observations are important for a range of earth system applications. This study generated a long-term (2000–2020) global seamless soil moisture product with both high spatial and temporal resolutions (1 km, daily) using an XGBoost model and multi-source datasets. Evaluation of this product against dense in-situ soil moisture datasets and microwave soil moisture products showed that this product has reliable accuracy and more complete spatial coverage.
Youjiang Shen, Dedi Liu, Liguang Jiang, Karina Nielsen, Jiabo Yin, Jun Liu, and Peter Bauer-Gottwein
Earth Syst. Sci. Data, 14, 5671–5694, https://doi.org/10.5194/essd-14-5671-2022, https://doi.org/10.5194/essd-14-5671-2022, 2022
Short summary
Short summary
A data gap of 338 Chinese reservoirs with their surface water area (SWA), water surface elevation (WSE), and reservoir water storage change (RWSC) during 2010–2021. Validation against the in situ observations of 93 reservoirs indicates the relatively high accuracy and reliability of the datasets. The unique and novel remotely sensed dataset would benefit studies involving many aspects (e.g., hydrological models, water resources related studies, and more).
Ibrahim Demir, Zhongrun Xiang, Bekir Demiray, and Muhammed Sit
Earth Syst. Sci. Data, 14, 5605–5616, https://doi.org/10.5194/essd-14-5605-2022, https://doi.org/10.5194/essd-14-5605-2022, 2022
Short summary
Short summary
We provide a large benchmark dataset, WaterBench-Iowa, with valuable features for hydrological modeling. This dataset is designed to support cutting-edge deep learning studies for a more accurate streamflow forecast model. We also propose a modeling task for comparative model studies and provide sample models with codes and results as the benchmark for reference. This makes up for the lack of benchmarks in earth science research.
Pei Zhang, Donghai Zheng, Rogier van der Velde, Jun Wen, Yaoming Ma, Yijian Zeng, Xin Wang, Zuoliang Wang, Jiali Chen, and Zhongbo Su
Earth Syst. Sci. Data, 14, 5513–5542, https://doi.org/10.5194/essd-14-5513-2022, https://doi.org/10.5194/essd-14-5513-2022, 2022
Short summary
Short summary
Soil moisture and soil temperature (SMST) are important state variables for quantifying the heat–water exchange between land and atmosphere. Yet, long-term, regional-scale in situ SMST measurements at multiple depths are scarce on the Tibetan Plateau (TP). The presented dataset would be valuable for the evaluation and improvement of long-term satellite- and model-based SMST products on the TP, enhancing the understanding of TP hydrometeorological processes and their response to climate change.
Jafet C. M. Andersson, Jonas Olsson, Remco (C. Z.) van de Beek, and Jonas Hansryd
Earth Syst. Sci. Data, 14, 5411–5426, https://doi.org/10.5194/essd-14-5411-2022, https://doi.org/10.5194/essd-14-5411-2022, 2022
Short summary
Short summary
This article presents data from three types of sensors for rain measurement, i.e. commercial microwave links (CMLs), gauges, and weather radar. Access to CML data is typically restricted, which limits research and applications. We openly share a large CML database (364 CMLs at 10 s resolution with true coordinates), along with 11 gauges and one radar composite. This opens up new opportunities to study CMLs, to benchmark algorithms, and to investigate how multiple sensors can best be combined.
Qingliang Li, Gaosong Shi, Wei Shangguan, Vahid Nourani, Jianduo Li, Lu Li, Feini Huang, Ye Zhang, Chunyan Wang, Dagang Wang, Jianxiu Qiu, Xingjie Lu, and Yongjiu Dai
Earth Syst. Sci. Data, 14, 5267–5286, https://doi.org/10.5194/essd-14-5267-2022, https://doi.org/10.5194/essd-14-5267-2022, 2022
Short summary
Short summary
SMCI1.0 is a 1 km resolution dataset of daily soil moisture over China for 2000–2020 derived through machine learning trained with in situ measurements of 1789 stations, meteorological forcings, and land surface variables. It contains 10 soil layers with 10 cm intervals up to 100 cm deep. Evaluated by in situ data, the error (ubRMSE) ranges from 0.045 to 0.051, and the correlation (R) range is 0.866-0.893. Compared with ERA5-Land, SMAP-L4, and SoMo.ml, SIMI1.0 has higher accuracy and resolution.
Utkarsh Mital, Dipankar Dwivedi, James B. Brown, and Carl I. Steefel
Earth Syst. Sci. Data, 14, 4949–4966, https://doi.org/10.5194/essd-14-4949-2022, https://doi.org/10.5194/essd-14-4949-2022, 2022
Short summary
Short summary
We present a new dataset that estimates small-scale variations in precipitation and temperature in mountainous terrain. The dataset is generated using a new machine learning framework that extracts relationships between climate and topography from existing coarse-scale datasets. The generated dataset is shown to capture small-scale variations more reliably than existing datasets and constitutes a valuable resource to model the water cycle in the mountains of Colorado, western United States.
Rongzhu Qin, Zeyu Zhao, Jia Xu, Jian-Sheng Ye, Feng-Min Li, and Feng Zhang
Earth Syst. Sci. Data, 14, 4793–4810, https://doi.org/10.5194/essd-14-4793-2022, https://doi.org/10.5194/essd-14-4793-2022, 2022
Short summary
Short summary
This work presents a new high-resolution daily gridded maximum temperature, minimum temperature, and precipitation dataset for China (HRLT) with a spatial resolution of 1 × 1 km for the period 1961 to 2019. This dataset is valuable for crop modelers and climate change studies. We created the HRLT dataset using comprehensive statistical analyses, which included machine learning, the generalized additive model, and thin-plate splines.
Fabian A. Gomez, Sang-Ki Lee, Charles A. Stock, Andrew C. Ross, Laure Resplandy, Samantha A. Siedlecki, Filippos Tagklis, and Joseph E. Salisbury
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-341, https://doi.org/10.5194/essd-2022-341, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
We present a river chemistry and discharge dataset for 140 rivers in the United States, which integrates information from the Water Quality Database of the U.S. Geological Survey (USGS), the USGS’s Surface-Water Monthly Statistics for the Nation, and the U.S. Army Corps of Engineers. This dataset includes dissolved inorganic carbon and alkalinity, two key properties to characterize the carbonate system, as well as nutrient concentration, such as nitrate and phosphate, and silica.
Lobke Rotteveel, Franz Heubach, and Shannon M. Sterling
Earth Syst. Sci. Data, 14, 4667–4680, https://doi.org/10.5194/essd-14-4667-2022, https://doi.org/10.5194/essd-14-4667-2022, 2022
Short summary
Short summary
Data are needed to detect environmental problems, find their solutions, and identify knowledge gaps. Existing datasets have limited availability, sample size and/or frequency, or geographic scope. Here, we begin to address these limitations by collecting, cleaning, standardizing, and compiling the Surface Water Chemistry (SWatCh) database. SWatCh contains global surface water chemistry data for seven continents, 24 variables, 33 722 sites, and > 5 million samples collected between 1960 and 2022.
Giuseppe Amatulli, Jaime Garcia Marquez, Tushar Sethi, Jens Kiesel, Afroditi Grigoropoulou, Maria M. Üblacker, Longzhu Q. Shen, and Sami Domisch
Earth Syst. Sci. Data, 14, 4525–4550, https://doi.org/10.5194/essd-14-4525-2022, https://doi.org/10.5194/essd-14-4525-2022, 2022
Short summary
Short summary
Streams and rivers drive several processes in hydrology, geomorphology, geography, and ecology. A hydrographic network that accurately delineates streams and rivers, along with their topographic and topological properties, is needed for environmental applications. Using the MERIT Hydro Digital Elevation Model at 90 m resolution, we derived a globally seamless, standardised hydrographic network: Hydrography90m. The validation demonstrates improved accuracy compared to other datasets.
Yang Liu, Ronggao Liu, and Rong Shang
Earth Syst. Sci. Data, 14, 4505–4523, https://doi.org/10.5194/essd-14-4505-2022, https://doi.org/10.5194/essd-14-4505-2022, 2022
Short summary
Short summary
Surface water has been changing significantly with high seasonal variation and abrupt change, making it hard to capture its interannual trend. Here we generated a global annual surface water cover frequency dataset during 2000–2020. The percentage of the time period when a pixel is covered by water in a year was estimated to describe the seasonal dynamics of surface water. This dataset can be used to analyze the interannual variation and change trend of highly dynamic inland water extent.
Simone Persiano, Alessio Pugliese, Alberto Aloe, Jon Olav Skøien, Attilio Castellarin, and Alberto Pistocchi
Earth Syst. Sci. Data, 14, 4435–4443, https://doi.org/10.5194/essd-14-4435-2022, https://doi.org/10.5194/essd-14-4435-2022, 2022
Short summary
Short summary
For about 24000 river basins across Europe, this study provides a continuous representation of the streamflow regime in terms of empirical flow–duration curves (FDCs), which are key signatures of the hydrological behaviour of a catchment and are widely used for supporting decisions on water resource management as well as for assessing hydrologic change. FDCs at ungauged sites are estimated by means of a geostatistical procedure starting from data observed at about 3000 sites across Europe.
Maartje C. Korver, Emily Haughton, William C. Floyd, and Ian J. W. Giesbrecht
Earth Syst. Sci. Data, 14, 4231–4250, https://doi.org/10.5194/essd-14-4231-2022, https://doi.org/10.5194/essd-14-4231-2022, 2022
Short summary
Short summary
The central coastline of the northeast Pacific coastal temperate rainforest contains many small streams that are important for the ecology of the region but are sparsely monitored. Here we present the first 5 years (2013–2019) of streamflow and weather data from seven small streams, using novel automated methods with estimations of measurement uncertainties. These observations support regional climate change monitoring and provide a scientific basis for environmental management decisions.
Sadaf Nasreen, Markéta Součková, Mijael Rodrigo Vargas Godoy, Ujjwal Singh, Yannis Markonis, Rohini Kumar, Oldrich Rakovec, and Martin Hanel
Earth Syst. Sci. Data, 14, 4035–4056, https://doi.org/10.5194/essd-14-4035-2022, https://doi.org/10.5194/essd-14-4035-2022, 2022
Short summary
Short summary
This article presents a 500-year reconstructed annual runoff dataset for several European catchments. Several data-driven and hydrological models were used to derive the runoff series using reconstructed precipitation and temperature and a set of proxy data. The simulated runoff was validated using independent observed runoff data and documentary evidence. The validation revealed a good fit between the observed and reconstructed series for 14 catchments, which are available for further analysis.
Chunqiao Song, Chenyu Fan, Jingying Zhu, Jida Wang, Yongwei Sheng, Kai Liu, Tan Chen, Pengfei Zhan, Shuangxiao Luo, Chunyu Yuan, and Linghong Ke
Earth Syst. Sci. Data, 14, 4017–4034, https://doi.org/10.5194/essd-14-4017-2022, https://doi.org/10.5194/essd-14-4017-2022, 2022
Short summary
Short summary
Over the last century, many dams/reservoirs have been built globally to meet various needs. The official statistics reported more than 98 000 dams/reservoirs in China. Despite the availability of several global-scale dam/reservoir databases, these databases have insufficient coverage in China. Therefore, we present the China Reservoir Dataset (CRD), which contains 97 435 reservoir polygons. The CRD reservoirs have a total area of 50 085.21 km2 and total storage of about 979.62 Gt.
Guofeng Zhu, Yuwei Liu, Peiji Shi, Wenxiong Jia, Junju Zhou, Yuanfeng Liu, Xinggang Ma, Hanxiong Pan, Yu Zhang, Zhiyuan Zhang, Zhigang Sun, Leilei Yong, and Kailiang Zhao
Earth Syst. Sci. Data, 14, 3773–3789, https://doi.org/10.5194/essd-14-3773-2022, https://doi.org/10.5194/essd-14-3773-2022, 2022
Short summary
Short summary
From 2015 to 2020, we studied the Shiyang River basin, which has the highest utilization rate of water resources and the most prominent contradiction of water use, as a typical demonstration basin to establish and improve the isotope hydrology observation system, including river source region, oasis region, reservoir channel system region, oasis farmland region, ecological engineering construction region, and salinization process region.
Junzhi Liu, Pengcheng Fang, Yefeng Que, Liang-Jun Zhu, Zheng Duan, Guoan Tang, Pengfei Liu, Mukan Ji, and Yongqin Liu
Earth Syst. Sci. Data, 14, 3791–3805, https://doi.org/10.5194/essd-14-3791-2022, https://doi.org/10.5194/essd-14-3791-2022, 2022
Short summary
Short summary
The management and conservation of lakes should be conducted in the context of catchments because lakes collect water and materials from their upstream catchments. This study constructed the first dataset of lake-catchment characteristics for 1525 lakes with an area from 0.2 to 4503 km2 on the Tibetan Plateau (TP), which provides exciting opportunities for lake studies in a spatially explicit context and promotes the development of landscape limnology on the TP.
Pia Ebeling, Rohini Kumar, Stefanie R. Lutz, Tam Nguyen, Fanny Sarrazin, Michael Weber, Olaf Büttner, Sabine Attinger, and Andreas Musolff
Earth Syst. Sci. Data, 14, 3715–3741, https://doi.org/10.5194/essd-14-3715-2022, https://doi.org/10.5194/essd-14-3715-2022, 2022
Short summary
Short summary
Environmental data are critical for understanding and managing ecosystems, including the mitigation of water quality degradation. To increase data availability, we present the first large-sample water quality data set (QUADICA) of riverine macronutrient concentrations combined with water quantity, meteorological, and nutrient forcing data as well as catchment attributes. QUADICA covers 1386 German catchments to facilitate large-sample data-driven and modeling water quality assessments.
Leiyu Yu, Guo Yu Qiu, Chunhua Yan, Wenli Zhao, Zhendong Zou, Jinshan Ding, Longjun Qin, and Yujiu Xiong
Earth Syst. Sci. Data, 14, 3673–3693, https://doi.org/10.5194/essd-14-3673-2022, https://doi.org/10.5194/essd-14-3673-2022, 2022
Short summary
Short summary
Accurate evapotranspiration (ET) estimation is essential to better understand Earth’s energy and water cycles. We estimate global terrestrial ET with a simple three-temperature model, without calibration and resistance parameterization requirements. Results show the ET estimates agree well with FLUXNET EC data, water balance ET, and other global ET products. The proposed daily and 0.25° ET product from 2001 to 2020 could provide large-scale information to support water-cycle-related studies.
Wei Wan, Jie Zhang, Liyun Dai, Hong Liang, Ting Yang, Baojian Liu, Zhizhou Guo, Heng Hu, and Limin Zhao
Earth Syst. Sci. Data, 14, 3549–3571, https://doi.org/10.5194/essd-14-3549-2022, https://doi.org/10.5194/essd-14-3549-2022, 2022
Short summary
Short summary
The GSnow-CHINA data set is a snow depth data set developed using the two Global Navigation Satellite System station networks in China. It includes snow depth of 24, 12, and 2/3/6 h records, if possible, for 80 sites from 2013–2022 over northern China (25–55° N, 70–140° E). The footprint of the data set is ~ 1000 m2, and it can be used as an independent data source for validation purposes. It is also useful for regional climate research and other meteorological and hydrological applications.
Liyun Dai, Tao Che, Yang Zhang, Zhiguo Ren, Junlei Tan, Meerzhan Akynbekkyzy, Lin Xiao, Shengnan Zhou, Yuna Yan, Yan Liu, Hongyi Li, and Lifu Wang
Earth Syst. Sci. Data, 14, 3509–3530, https://doi.org/10.5194/essd-14-3509-2022, https://doi.org/10.5194/essd-14-3509-2022, 2022
Short summary
Short summary
An Integrated Microwave Radiometry Campaign for Snow (IMCS) was conducted to collect ground-based passive microwave and optical remote-sensing data, snow pit and underlying soil data, and meteorological parameters. The dataset is unique in continuously providing electromagnetic and physical features of snowpack and environment. The dataset is expected to serve the evaluation and development of microwave radiative transfer models and snow process models, along with land surface process models.
Linan Guo, Hongxing Zheng, Yanhong Wu, Lanxin Fan, Mengxuan Wen, Junsheng Li, Fangfang Zhang, Liping Zhu, and Bing Zhang
Earth Syst. Sci. Data, 14, 3411–3422, https://doi.org/10.5194/essd-14-3411-2022, https://doi.org/10.5194/essd-14-3411-2022, 2022
Short summary
Short summary
Lake surface water temperature (LSWT) is a critical physical property of the aquatic ecosystem and an indicator of climate change. By combining the strengths of satellites and models, we produced an integrated dataset on daily LSWT of 160 large lakes across the Tibetan Plateau (TP) for the period 1978–2017. LSWT increased significantly at a rate of 0.01–0.47° per 10 years. The dataset can contribute to research on water and heat balance changes and their ecological effects in the TP.
Andrew J. Wiebe and David L. Rudolph
Earth Syst. Sci. Data, 14, 3229–3248, https://doi.org/10.5194/essd-14-3229-2022, https://doi.org/10.5194/essd-14-3229-2022, 2022
Short summary
Short summary
Multiple well fields in Waterloo Region, ON, Canada, draw water that enters the groundwater system from rainfall and snowmelt within the Alder Creek watershed. The rates of recharge of the underground aquifers and human impacts on streamflow are important issues that are typically addressed using computer models. Field observations such as groundwater and stream levels were collected between 2013 and 2018 to provide data for models. The data are available at https://doi.org/10.20383/101.0178
Pinzeng Rao, Yicheng Wang, Fang Wang, Yang Liu, Xiaoya Wang, and Zhu Wang
Earth Syst. Sci. Data, 14, 3053–3073, https://doi.org/10.5194/essd-14-3053-2022, https://doi.org/10.5194/essd-14-3053-2022, 2022
Short summary
Short summary
It is urgent to obtain accurate soil moisture (SM) with high temporal and spatial resolution for areas affected by desertification in northern China. A combination of multiple machine learning methods, including multiple linear regression, support vector regression, artificial neural networks, random forest and extreme gradient boosting, has been applied to downscale the 36 km SMAP SM products and produce higher-spatial-resolution SM data based on related surface variables.
Emilio I. Mateo, Bryan G. Mark, Robert Å. Hellström, Michel Baraer, Jeffrey M. McKenzie, Thomas Condom, Alejo Cochachín Rapre, Gilber Gonzales, Joe Quijano Gómez, and Rolando Cesai Crúz Encarnación
Earth Syst. Sci. Data, 14, 2865–2882, https://doi.org/10.5194/essd-14-2865-2022, https://doi.org/10.5194/essd-14-2865-2022, 2022
Short summary
Short summary
This article presents detailed and comprehensive hydrological and meteorological datasets collected over the past two decades throughout the Cordillera Blanca, Peru. With four weather stations and six streamflow gauges ranging from 3738 to 4750 m above sea level, this network displays a vertical breadth of data and enables detailed research of atmospheric and hydrological processes in a tropical high mountain region.
Laurie Boithias, Olivier Ribolzi, Emma Rochelle-Newall, Chanthanousone Thammahacksa, Paty Nakhle, Bounsamay Soulileuth, Anne Pando-Bahuon, Keooudone Latsachack, Norbert Silvera, Phabvilay Sounyafong, Khampaseuth Xayyathip, Rosalie Zimmermann, Sayaphet Rattanavong, Priscia Oliva, Thomas Pommier, Olivier Evrard, Sylvain Huon, Jean Causse, Thierry Henry-des-Tureaux, Oloth Sengtaheuanghoung, Nivong Sipaseuth, and Alain Pierret
Earth Syst. Sci. Data, 14, 2883–2894, https://doi.org/10.5194/essd-14-2883-2022, https://doi.org/10.5194/essd-14-2883-2022, 2022
Short summary
Short summary
Fecal pathogens in surface waters may threaten human health, especially in developing countries. The Escherichia coli (E. coli) database is organized in three datasets and includes 1602 records from 31 sampling stations located within the Mekong River basin in Lao PDR. Data have been used to identify the drivers of E. coli dissemination across tropical catchments, including during floods. Data may be further used to interpret new variables or to map the health risk posed by fecal pathogens.
Peilin Song, Yongqiang Zhang, Jianping Guo, Jiancheng Shi, Tianjie Zhao, and Bing Tong
Earth Syst. Sci. Data, 14, 2613–2637, https://doi.org/10.5194/essd-14-2613-2022, https://doi.org/10.5194/essd-14-2613-2022, 2022
Short summary
Short summary
Soil moisture information is crucial for understanding the earth surface, but currently available satellite-based soil moisture datasets are imperfect either in their spatiotemporal resolutions or in ensuring image completeness from cloudy weather. In this study, therefore, we developed one soil moisture data product over China that has tackled most of the above problems. This data product has the potential to promote the investigation of earth hydrology and be extended to the global scale.
Maik Heistermann, Heye Bogena, Till Francke, Andreas Güntner, Jannis Jakobi, Daniel Rasche, Martin Schrön, Veronika Döpper, Benjamin Fersch, Jannis Groh, Amol Patil, Thomas Pütz, Marvin Reich, Steffen Zacharias, Carmen Zengerle, and Sascha Oswald
Earth Syst. Sci. Data, 14, 2501–2519, https://doi.org/10.5194/essd-14-2501-2022, https://doi.org/10.5194/essd-14-2501-2022, 2022
Short summary
Short summary
This paper presents a dense network of cosmic-ray neutron sensing (CRNS) to measure spatio-temporal soil moisture patterns during a 2-month campaign in the Wüstebach headwater catchment in Germany. Stationary, mobile, and airborne CRNS technology monitored the root-zone water dynamics as well as spatial heterogeneity in the 0.4 km2 area. The 15 CRNS stations were supported by a hydrogravimeter, biomass sampling, and a wireless soil sensor network to facilitate holistic hydrological analysis.
Hugo Lepage, Alexandra Gruat, Fabien Thollet, Jérôme Le Coz, Marina Coquery, Matthieu Masson, Aymeric Dabrin, Olivier Radakovitch, Jérôme Labille, Jean-Paul Ambrosi, Doriane Delanghe, and Patrick Raimbault
Earth Syst. Sci. Data, 14, 2369–2384, https://doi.org/10.5194/essd-14-2369-2022, https://doi.org/10.5194/essd-14-2369-2022, 2022
Short summary
Short summary
The dataset contains concentrations and fluxes of suspended particle matter (SPM) and several particle-bound contaminants along the Rhône River downstream of Lake Geneva. These data allow us to understand the dynamics and origins. They show the impact of flood events which mainly contribute to a decrease in the contaminant concentrations while fluxes are significant. On the contrary, concentrations are higher during low flow periods probably due to the increase of organic matter.
Lei Tian, Baoqing Zhang, and Pute Wu
Earth Syst. Sci. Data, 14, 2259–2278, https://doi.org/10.5194/essd-14-2259-2022, https://doi.org/10.5194/essd-14-2259-2022, 2022
Short summary
Short summary
We propose a global monthly drought dataset with a resolution of 0.25° from 1948 to 2010 based on a multitype and multiscalar drought index, the standardized moisture anomaly index adding snow processes (SZIsnow). The consideration of snow processes improved its capability, and the improvement is prominent over snow-covered high-latitude and high-altitude areas. This new dataset is well suited to monitoring, assessing, and characterizing drought and is a valuable resource for drought studies.
Simon Munier and Bertrand Decharme
Earth Syst. Sci. Data, 14, 2239–2258, https://doi.org/10.5194/essd-14-2239-2022, https://doi.org/10.5194/essd-14-2239-2022, 2022
Short summary
Short summary
This paper presents a new global-scale river network at 1/12°, generated automatically and assessed over the 69 largest basins of the world. A set of hydro-geomorphological parameters are derived at the same spatial resolution, including a description of river stretches (length, slope, width, roughness, bankfull depth), floodplains (roughness, sub-grid topography) and aquifers (transmissivity, porosity, sub-grid topography). The dataset may be useful for hydrology modelling or climate studies.
Zhao Pan, Rui Ma, Ziyong Sun, Yalu Hu, Qixin Chang, Mengyan Ge, Shuo Wang, Jianwei Bu, Xiang Long, Yanxi Pan, and Lusong Zhao
Earth Syst. Sci. Data, 14, 2147–2165, https://doi.org/10.5194/essd-14-2147-2022, https://doi.org/10.5194/essd-14-2147-2022, 2022
Short summary
Short summary
We drilled four sets of cluster wells and monitored groundwater level and temperature at different depths in an alpine catchment, northern Tibet plateau. The chemical and isotopic compositions of different waters, including stream water, glacier/snow meltwater, soil water, spring, and groundwater from boreholes, were measured for 6 years. The data can be used to study the impact of soil freeze-thaw process and permafrost degradation on the groundwater flow and its interaction with surface water.
Jida Wang, Blake A. Walter, Fangfang Yao, Chunqiao Song, Meng Ding, Abu Sayeed Maroof, Jingying Zhu, Chenyu Fan, Jordan M. McAlister, Safat Sikder, Yongwei Sheng, George H. Allen, Jean-François Crétaux, and Yoshihide Wada
Earth Syst. Sci. Data, 14, 1869–1899, https://doi.org/10.5194/essd-14-1869-2022, https://doi.org/10.5194/essd-14-1869-2022, 2022
Short summary
Short summary
Improved water infrastructure data on dams and reservoirs remain to be critical to hydrologic modeling, energy planning, and environmental conservation. We present a new global dataset, GeoDAR, that includes nearly 25 000 georeferenced dam points and their associated reservoir boundaries. A majority of these features can be linked to the register of the International Commission on Large Dams, extending the potential of registered attribute information for spatially explicit applications.
Bernhard Aichner, David Dubbert, Christine Kiel, Katrin Kohnert, Igor Ogashawara, Andreas Jechow, Sarah-Faye Harpenslager, Franz Hölker, Jens Christian Nejstgaard, Hans-Peter Grossart, Gabriel Singer, Sabine Wollrab, and Stella Angela Berger
Earth Syst. Sci. Data, 14, 1857–1867, https://doi.org/10.5194/essd-14-1857-2022, https://doi.org/10.5194/essd-14-1857-2022, 2022
Short summary
Short summary
Water isotopes were measured along transects and in the form of time series in northeastern German lakes. The spatial patterns within the data and their seasonal variability are related to morphological and hydrological properties of the studied lake systems. They are further useful for the understanding of biogeochemical and ecological characteristics of these lakes.
Francesco Dottori, Lorenzo Alfieri, Alessandra Bianchi, Jon Skoien, and Peter Salamon
Earth Syst. Sci. Data, 14, 1549–1569, https://doi.org/10.5194/essd-14-1549-2022, https://doi.org/10.5194/essd-14-1549-2022, 2022
Short summary
Short summary
We present a set of hazard maps for river flooding for Europe and the Mediterranean basin. The maps depict inundation extent and depth for flood probabilities for up to 1-in-500-year flood hazards and are based on hydrological and hydrodynamic models driven by observed climatology. The maps can identify two-thirds of the flood extent reported by official flood maps, with increasing skill for higher-magnitude floods. The maps are used for evaluating present and future impacts of river floods.
Heye Reemt Bogena, Martin Schrön, Jannis Jakobi, Patrizia Ney, Steffen Zacharias, Mie Andreasen, Roland Baatz, David Boorman, Mustafa Berk Duygu, Miguel Angel Eguibar-Galán, Benjamin Fersch, Till Franke, Josie Geris, María González Sanchis, Yann Kerr, Tobias Korf, Zalalem Mengistu, Arnaud Mialon, Paolo Nasta, Jerzy Nitychoruk, Vassilios Pisinaras, Daniel Rasche, Rafael Rosolem, Hami Said, Paul Schattan, Marek Zreda, Stefan Achleitner, Eduardo Albentosa-Hernández, Zuhal Akyürek, Theresa Blume, Antonio del Campo, Davide Canone, Katya Dimitrova-Petrova, John G. Evans, Stefano Ferraris, Félix Frances, Davide Gisolo, Andreas Güntner, Frank Herrmann, Joost Iwema, Karsten H. Jensen, Harald Kunstmann, Antonio Lidón, Majken Caroline Looms, Sascha Oswald, Andreas Panagopoulos, Amol Patil, Daniel Power, Corinna Rebmann, Nunzio Romano, Lena Scheiffele, Sonia Seneviratne, Georg Weltin, and Harry Vereecken
Earth Syst. Sci. Data, 14, 1125–1151, https://doi.org/10.5194/essd-14-1125-2022, https://doi.org/10.5194/essd-14-1125-2022, 2022
Short summary
Short summary
Monitoring of increasingly frequent droughts is a prerequisite for climate adaptation strategies. This data paper presents long-term soil moisture measurements recorded by 66 cosmic-ray neutron sensors (CRNS) operated by 24 institutions and distributed across major climate zones in Europe. Data processing followed harmonized protocols and state-of-the-art methods to generate consistent and comparable soil moisture products and to facilitate continental-scale analysis of hydrological extremes.
Jamie Hannaford, Jonathan Mackay, Matthew Ascott, Victoria Bell, Thomas Chitson, Steven Cole, Christian Counsell, Mason Durant, Christopher R. Jackson, Alison Kay, Rosanna Lane, Majdi Mansour, Robert Moore, Simon Parry, Alison Rudd, Michael Simpson, Katie Facer-Childs, Stephen Turner, John Wallbank, Steven Wells, and Amy Wilcox
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-40, https://doi.org/10.5194/essd-2022-40, 2022
Revised manuscript accepted for ESSD
Short summary
Short summary
The eFLaG dataset is a nationally consistent set of projections of future climate change impacts on hydrology. eFLaG uses the latest available UK climate projections (UKCP18) run through a series of computer simulation models which enable us to produce future projections of river flows, groundwater levels and groundwater recharge. These simulations are designed for use by water resource planners and managers, but could also be used for a wide range of other purposes.
Cited articles
Acharya, S. C., Nathan, R., Wang, Q. J., Su, C.-H., and Eizenberg, N.: An evaluation of daily precipitation from a regional atmospheric reanalysis over Australia, Hydrol. Earth Syst. Sci., 23, 3387–3403, https://doi.org/10.5194/hess-23-3387-2019, 2019.
Adam, J. C., Clark, E. A., Lettenmaier, D. P., and Wood, E. F.: Correction
of global precipitation products for orographic effects, J. Climate,
19, 15–38, https://doi.org/10.1175/JCLI3604.1, 2006.
Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017.
Addor, N., Do, H. X., Alvarez-Garreton, C., Coxon, G., Fowler, K., and
Mendoza, P. A.: Large sample hydrology: recent progress, guidelines for new
datasets and grand challenges, Hydrol. Sci. J., 65, 712–725, https://doi.org/10.1080/02626667.2019.1683182, 2019.
Aghakouchak, A., D. Feldman, M. Stewardson, J. Saphores, Grant S., and
Sanders, B.: Australia's Drought: Lessons for California, Science, 343,
1430–1431, https://doi.org/10.1126/science.343.6178.1430, 2014.
Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018.
American Society for Civil Engineering (ASCE): ASCE's Standardized Reference
Evapotranspiration Equation, in: Watershed Management and Operations Management Conference 2000, Fort Collins, Colorado, United States, 20–24 June 2000, 2000.
Andréassian, V., Hall, A., Chahinian, N., and Schaake, J.: Introduction and synthesis: why should
hydrologists work on a large number of basin data sets? Large sample basin
experiments for hydrological model parameterization: results of the Model
Parameter Experiment–MOPEX, vol. 307, CEH Wallingford, IAHS Publ., UK, 307, available at: https://iahs.info/uploads/dms/13599.02-1-6-INTRODUCTION.pdf (last access: 30 July 2021), 2006.
Arsenault, R., Bazile, R., Ouellet Dallaire, C., and Brissette, F.: CANOPEX:
A Canadian hydrometeorological watershed database, Hydrol. Process., 30,
2734–2736, https://doi.org/10.1002/hyp.10880, 2016.
Ashcroft, L., Karoly, D. J., and Gergis, J.: Southeastern Australian
climate variability 1860–2009: a multivariate analysis, Int.
J. Climatol., 34, 1928–1944, https://doi.org/10.1002/joc.3812, 2014.
Australian Bureau of Statistics (ABS): Australian Census 2006 Population
Statistics, raw data available at: https://www.abs.gov.au/websitedbs/censushome.nsf/home/historicaldata2006?opendocument&navpos280 (last access: 30 July 2021), 2006.
Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., and de Roo, A.: MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data, Hydrol. Earth Syst. Sci., 21, 589–615, https://doi.org/10.5194/hess-21-589-2017, 2017.
Bureau of Meteorology, Australia (BOM): Hydrologic Reference Stations, Website, available at: http://www.bom.gov.au/water/hrs/update_2015.shtml (last access: 1 June 2020), 2015.
Chagas, V. B. P., Chaffe, P. L. B., Addor, N., Fan, F. M., Fleischmann, A. S., Paiva, R. C. D., and Siqueira, V. A.: CAMELS-BR: hydrometeorological time series and landscape attributes for 897 catchments in Brazil, Earth Syst. Sci. Data, 12, 2075–2096, https://doi.org/10.5194/essd-12-2075-2020, 2020.
Court, A.: Measures of streamflow timing, J. Geophys. Res., 67, 4335–4339,
https://doi.org/10.1029/JZ067i011p04335, 1962.
Coxon, G., Addor, N., Bloomfield, J. P., Freer, J., Fry, M., Hannaford, J., Howden, N. J. K., Lane, R., Lewis, M., Robinson, E. L., Wagener, T., and Woods, R.: CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain, Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, 2020.
CSIRO: AUS SRTM 1sec MRVBF mosaic v01, Bioregional Assessment Source
Dataset [data set], available at: https://data.gov.au/data/dataset/79975b4a-1204-4ab1-b02b-0c6fbbbbbcb5 (last access: 30 July 2021),
2016.
Department of the Environment and Water Resources, Australia (DEWR):
Estimated Pre-1750 Major Vegetation Subgroups – NVIS Stage 1, Version 3.1, available at: https://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system (last access: 30 July 2021),
2008.
Do, H. X., Gudmundsson, L., Leonard, M., and Westra, S.: The Global Streamflow Indices and Metadata Archive (GSIM) – Part 1: The production of a daily streamflow archive and metadata, Earth Syst. Sci. Data, 10, 765–785, https://doi.org/10.5194/essd-10-765-2018, 2018.
Falkenmark, M. and Chapman, T.: Comparative hydrology: An ecological approach to land and water resources, Unesco, Paris, 1989.
Food and Agriculture Organization of the United Nations (FAO): Irrigation
and drainage paper 56: Crop evapotranspiration – Guidelines for computing
crop water requirements, FAO, Rome, Italy, available at: http://www.fao.org/3/x0490e/x0490e00.htm (last access: 30 July 2021), ISBN 92-5-104219-5, 1998.
Fowler, K., Peel, M., Western, A., Zhang, L., and Peterson, T. J.:
Simulating runoff under changing climatic conditions: Revisiting an apparent
deficiency of conceptual rainfall-runoff models, Water Resour. Res.,
52, 1820–1846, https://doi.org/10.1002/2015WR018068, 2016.
Fowler, K., Peel, M., Western, A., and Zhang, L. Improved rainfall-runoff
calibration for drying climate: Choice of objective function, Water
Resour. Res., 54, 3392–3408, https://doi.org/10.1029/2017WR022466, 2018.
Fowler, K., Acharya, S. C., Addor, N., Chou, C., and Peel, M.: CAMELS-AUS v1:
Hydrometeorological time series and landscape attributes for 222 catchments
in Australia, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.921850, 2020a.
Fowler, K., Knoben, W., Peel, M., Peterson, T., Ryu, D., Saft, M., Seo, K.,
Western, A. Many commonly used rainfall-runoff models lack long, slow
dynamics: implications for runoff projections, Water Resour. Res., 56, e2019WR025286,
https://doi.org/10.1029/2019WR025286, 2020b.
Gallant, J. and Austin, J.: Slope derived from 1” SRTM DEM-S. v4, CSIRO,
Data Collection, https://doi.org/10.4225/08/5689DA774564A, 2012.
Gallant, J., Wilson, N., Tickle, P. K., Dowling, T., and Read, A.: 3 second SRTM
Derived Digital Elevation Model (DEM) Version 1.0. Record 1.0, Geoscience
Australia, Canberra, available at: http://pid.geoscience.gov.au/dataset/ga/69888 (last access: 30 July 2021), 2009.
Gallant, J. C. and Dowling, T. I.: A multiresolution index of valley bottom
flatness for mapping depositional areas, Water Resour. Res., 39, 1347,
https://doi.org/10.1029/2002WR001426, 2003.
Geoscience Australia: Dams and Water Storages 1990, Geoscience Australia,
Canberrra, later versions available at: https://data.gov.au/data/dataset/ce5b77bf-5a02-4cf8-9cf2-be4a2cee2677 (last access: 30 July 2021),
2004.
Geoscience Australia: Surface Geology of Australia 1:1 million scale
dataset, latest version is available at: https://data.gov.au/dataset/ds-dga-48fe9c9d-2f10-49d2-bd24-ac546662c4ec/details (last access: 30 July 2021),
2008.
Ghiggi, G., Humphrey, V., Seneviratne, S. I., and Gudmundsson, L.: GRUN: an observation-based global gridded runoff dataset from 1902 to 2014, Earth Syst. Sci. Data, 11, 1655–1674, https://doi.org/10.5194/essd-11-1655-2019, 2019.
Gordon, N. D., McMahon, T. A., Finlayson, B. L., and Christopher, J.:
Stream Hydrology: an Introduction for Ecologists, John Wiley & Sons, Ltd., Chichester, UK,
1992.
Gupta, H. V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark, M., and Andréassian, V.: Large-sample hydrology: a need to balance depth with breadth, Hydrol. Earth Syst. Sci., 18, 463–477, https://doi.org/10.5194/hess-18-463-2014, 2014.
Hartmann, J. and Moosdorf, N.: The new global lithological map database GLiM: A representation of rock properties at the Earth surface, Geochem. Geophy. Geosy., 13, Q12004, https://doi.org/10.1029/2012GC004370, 2012.
Hutchinson, M. F., Stein, J. L., Stein, J. A., Anderson, H., and Tickle, P. K.:
GEODATA 9 second DEM and D8: Digital Elevation Model Version 3 and Flow
Direction Grid 2008, Record DEM-9S.v3, Geoscience Australia, Canberra, available at:
http://pid.geoscience.gov.au/dataset/ga/66006 (last access: 30 July 2021), 2008.
Isbell, R. F.: The Australian Soil Classification, revised edn., CSIRO
Publishing, Melbourne, available at: https://www.asris.csiro.au/themes/Atlas.html#Atlas_Digital (last access: 30 July 2021), 2002.
Jeffrey, S. J., Carter, J. O., Moodie, K. B., and Beswick, A. R.: Using
spatial interpolation to construct a comprehensive archive of Australian
climate data. Environ. Modell. Softw., 16, 309–330,
https://doi.org/10.1016/S1364-8152(01)00008-1, 2001.
Jian, J., Costelloe, J., Ryu, D., and Wang, Q. J.: Does a fifteen-hour shift make
much difference? – Influence of time lag between rainfall and discharge
data on model calibration, 22nd International Congress on Modelling and
Simulation, Hobart, Tasmania, 3–8 December 2017, available at: https://www.mssanz.org.au/modsim2017/H3/jian.pdf (last access: 30 July 2021), 2017.
Jones, D. A., Wang, W., and Fawcett, R.: High-quality spatial climate
data-sets for Australia, Aust. Meteorol. Ocean., 58, 233–248, https://doi.org/10.22499/2.5804.003,
2009.
Knoben, W. J. M., Woods, R. A., and Freer, J. E.: A quantitative hydrological climate classification evaluated with independent streamflow data, Water Resour. Res., 54, 5088–5109, https://doi.org/10.1029/2018WR022913, 2018
Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., and
Nearing, G. S.: Toward Improved Predictions in Ungauged Basins: Exploiting
the Power of Machine Learning, Water Resour. Res., 55, 11344–11354,
https://doi.org/10.1029/2019WR026065, 2019a.
Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G.: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets, Hydrol. Earth Syst. Sci., 23, 5089–5110, https://doi.org/10.5194/hess-23-5089-2019, 2019b.
Kuentz, A., Arheimer, B., Hundecha, Y., and Wagener, T.: Understanding hydrologic variability across Europe through catchment classification, Hydrol. Earth Syst. Sci., 21, 2863–2879, https://doi.org/10.5194/hess-21-2863-2017, 2017.
Ladson, A., Brown, R., Neal, B., and Nathan, R.: A standard approach to
baseflow separation using the Lyne and Hollick filter, Aust. J. Water
Resour., 17, 25–34, https://doi.org/10.7158/W12-028.2013.17.1, 2013.
Lin, P., Pan, M., Beck, H. E., Yang, Y., Yamazaki, D., Frasson, R., David,
C. H., Durand, M., Pavelsky, T. M., Allen, G. H., Gleason, C. J., and Wood,
E. F.: Global reconstruction of naturalized river flows at 2.94 million
reaches, Water Resour. Res., 2019WR025287,
https://doi.org/10.1029/2019WR025287, 2019.
Linke, S., Lehner, B., Dallaire, C. O., Ariwi, J., Grill, G., Anand, M.,
Beames, P., Burchard-levine, V., Moidu, H., Tan, F., and Thieme, M.:
HydroATLAS: global hydro-environmental sub-basin and river reach
characteristics at high spatial resolution, Sci. Data, 6, 283,
https://doi.org/10.1038/s41597-019-0300-6, 2019.
Liu, S. F., Raymond, O. L., Stewart, A. J., Sweet, I. P., Duggan, M.,
Charlick, C., Phillips, D., and Retter, A. J.: Surface geology of Australia
1:1,000,000 scale, Northern Territory [Digital Dataset]. The Commonwealth of
Australia, Geoscience Australia, Canberra, available at: http://www.ga.gov.au (last access: 30 July 2021), 2006.
Lymburner, L., Tan, P., McIntyre, A., Thankappan, M., and Sixsmith, J.: Dynamic
Land Cover Dataset Version 2.1, Geoscience Australia, Canberra, available at: http://pid.geoscience.gov.au/dataset/ga/83868 (last access: 30 July 2021), 2015.
Mathevet, T., Gupta, H., Perrin, C., Andréassian, V., and Le Moine, N.:
Assessing the performance and robustness of two conceptual rainfall-runoff
models on a worldwide sample of watersheds, J. Hydrol., 585, 124698, https://doi.org/10.1016/j.jhydrol.2020.124698, 2020.
McInerney, D., Thyer, M., Kavetski, D., Lerat, J., and Kuczera, G.:
Improving probabilistic prediction of daily streamflow by identifying Pareto
optimal approaches for modeling heteroscedastic residual errors, Water
Resour. Res., 53, 2199–2239, https:/doi.org/10.1002/2016WR019168,
2017.
McKenzie, N. J., Jacquier, D. W., Ashton L. J., and Cresswell, H. P.: Estimation
of Soil Properties Using the Atlas of Australian Soils, CSIRO Land and Water,
Technical Report, 11/00, available at: https://www.asris.csiro.au/themes/Atlas.html#Atlas_Digital (last access: 30 July 2021), 2000.
McMahon T. and Peel M.: Uncertainty in stage–discharge rating curves:
application to Australian Hydrologic Reference Stations data, Hydrolog.
Sci. J., 64, 255–275, https://doi.org/10.1080/02626667.2019.1577555, 2019.
McMahon, T. A., Finlayson, B. L., Haines, A. T., and Srikanthan, R:. Global runoff: continental comparisons of annual flows and peak discharges, Catena
Verlag, Germany, 1992.
Morton, F. I.: Operational estimates of areal evapotranspiration and their
significance to the science and practice of hydrology, J. Hydrol.,
66, 1–76, 1983.
National Land and Water Resources Audit: Gridded soil information layers,
Canberra, available at: http://www.asris.csiro.au/mapping/viewer.htm (last access: 30 July 2021), 2001.
Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., Viger, R. J., Blodgett, D., Brekke, L., Arnold, J. R., Hopson, T., and Duan, Q.: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance, Hydrol. Earth Syst. Sci., 19, 209–223, https://doi.org/10.5194/hess-19-209-2015, 2015.
Olarinoye, T., Gleeson, T., Marx, V., Seeger, S., Adinehvand, R., Allocca, V., Andreo, B., Apaéstegui, J., Apolit, C., Arfib, B., Auler, A., Bailly-Comte, V., Barberá, J. A., Batiot-Guilhe, C., Bechtel, T., Binet, S., Bittner, D., Blatnik, M., Bolger, T., Brunet, P., Charlier, J.-B., Chen, Z., Chiogna, G., Coxon, G., De Vita, P., Doummar, J., Epting, J., Fleury, P., Fournier, M., Goldscheider, N., Gunn, J., Guo, F., Guyot, J. L., Howden, N., Huggenberger, P., Hunt, B., Jeannin, P.-Y., Jiang, G., Jones, G., Jourde, H., Karmann, I., Koit, O., Kordilla, J., Labat, D., Ladouche, B., Liso, I. S., Liu, Z., Maréchal, J.-C., Massei, N., Mazzilli, N., Mudarra, M., Parise, M., Pu, J., Ravbar, N., Hidalgo Sanchez, L., Santo, A., Sauter, M., Seidel, J.-L., Sivelle, V., Skoglund, R. Ø., Stevanovic, Z., Wood, C., Worthington, S., and Hartmann, A.:
Global karst springs hydrograph dataset for research and management of the
world's fastest-flowing groundwater, Sci. Data, 7, 59,
https://doi.org/10.1038/s41597-019-0346-5, 2020.
Open Data Charter: International open data charter, available
at: https://opendatacharter.net/wp-content/uploads/2015/10/opendatacharter-charter_F.pdf (last access: 30 July 2021), 2015
Peel, M. C., McMahon, T. A., and Finlayson, B. L.: Variability of annual
precipitation and its relationship to the El Niño–Southern Oscillation,
J. Climate, 15, 545–551, 2002.
Peel, M. C., McMahon, T. A., and Finlayson, B. L.: Continental differences in
the variability of annual runoff-update and reassessment, J.
Hydrol., 295, 185–197, 2004.
Peel, M. C., Pegram, G. G. S., and McMahon, T. A.: Global analysis of runs of
annual precipitation and runoff equal to or below the median: Run magnitude
and severity, Int. J. Climatol., 24, 549–568,
https://doi.org/10.1002/joc.1147, 2005.
Peel, M. C., McMahon, T. A., and Finlayson, B. L.: Vegetation impact on
mean annual evapotranspiration at a global catchment scale, Water Resour.
Res., 46, W09508, https://doi.org/10.1029/2009WR008233, 2010.
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, J. Hydrol., 279, 275–289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003.
Peterson, T. J., Wasko, C., Saft, M., and Peel, M. C.: AWAPer: An R package
for area weighted catchment daily meteorological data anywhere within
Australia, Hydrol. Process., 34, 1301–1306, https://doi.org/10.1002/hyp.13637, 2020
Peterson, T. J., Saft, M., Peel, M. C., and John, A.: Watersheds may not
recover from drought, Science, 372, 745–749,
https://doi.org/10.1126/science.abd5085, 2021.
Pool, S., Viviroli, D., and
Seibert, J.: Value of a limited number of discharge observations for
improving regionalization: A large-sample study across the United States,
Water Resour. Res., 55, 363–377,
https://doi.org/10.1029/2018WR023855, 2019.
Raupach, M. R., Kirby, J. M., Barrett, D. J., and Briggs, P. R.: Balances of Water, Carbon,
Nitrogen and Phosphorus in Australian Landscapes version 2.04, CSIRO Land
and Water, Canberra, available at: http://www.clw.csiro.au/publications/technical2001/tr40-01.pdf (last access: 30 July 2021), 2002.
Raymond, O. L., Liu, S. F., and Kilgour, P.: Surface geology of Australia
1:1,000,000 scale, Tasmania – 3rd edn., Digital Dataset, The
Commonwealth of Australia, Geoscience Australia, Canberra, available at:
http://www.ga.gov.au (last access: 30 July 2021), 2007a.
Raymond, O. L., Liu, S. F., Kilgour, P. L., Retter, A. J., Stewart, A. J.,
and Stewart, G.: Surface geology of Australia 1:1,000,000 scale, New South
Wales – 2nd edn., Digital Dataset, The Commonwealth of Australia,
Geoscience Australia, Canberra, available at: http://www.ga.gov.au (last access: 30 July 2021), 2007b.
Raymond, O. L., Liu, S. F., Kilgour, P., Retter, A. J., and Connolly, D. P.:
Surface geology of Australia 1:1,000,000 scale, Victoria – 3rd edn.,
Digital Dataset, The Commonwealth of Australia, Geoscience Australia,
Canberra, available at: http://www.ga.gov.au (last access: 30 July 2021), 2007c.
Rayner, D.: Australian synthetic daily Class A pan evaporation, Technical
Report December, Queensland Department of Natural Resources and Mines,
Indooroopilly, Qld., Australia, 40 pp., available at: https://data.longpaddock.qld.gov.au/static/silo/pdf/AustralianSyntheticDailyClassAPanEvaporation.pdf (last access: 30 July 2021),
2005.
Reynolds, J. E., Halldin, S., Seibert, J., and Xu, C. Y.: Definitions of
climatological and discharge days: do they matter in hydrological
modelling?, Hydrolog. Sci. J., 63, 836–844,
https://doi.org/10.1080/02626667.2018.1451646, 2018.
Saft, M., Peel, M. C., Western, A. W., Perraud, J. M., and Zhang, L.: Bias in streamflow projections due to climate‐induced shifts in catchment response, Geophys. Res. Lett., 43, 1574–1581. https://doi.org/10.1002/2015GL067326, 2016.
Sankarasubramanian, A., Vogel, R. M., and Limbrunner, J. F.: Climate
elasticity of streamflow in the United States, Water Resour. Res., 37,
1771–1781, https://doi.org/10.1029/2000WR900330, 2001.
Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., and Carrillo, G.: Catchment classification: empirical analysis of hydrologic similarity based on catchment function in the eastern USA, Hydrol. Earth Syst. Sci., 15, 2895–2911, https://doi.org/10.5194/hess-15-2895-2011, 2011.
Shen, C.: A Transdisciplinary Review of Deep Learning Research and Its
Relevance for Water Resources Scientists, Water Resour. Res., 54,
8558–8593, https://doi.org/10.1029/2018WR022643, 2018.
Skinner, D. and Langford, J.: Legislating for sustainable basin management:
the story of Australia's Water Act (2007), Water Policy, 15, 871–894,
2013.
Stein, J. L., Stein, J. A., and Nix, H. A.: Spatial analysis of anthropogenic
river disturbance at regional and continental scales: identifying the wild
rivers of Australia, Landscape Urban Plan., 60, 1–25,
https://doi.org/10.1016/S0169-2046(02)00048-8, 2002.
Stein, J. L., Hutchinson, M. F., and Stein, J. A.: National Catchment and
Stream Environment Database version 1.1.4, available at: http://pid.geoscience.gov.au/dataset/ga/73045 (last access: 30 July 2021), 2011.
Stewart, A. J., Sweet, I. P., Needham, R. S., Raymond, O. L., Whitaker, A.
J., Liu, S. F., Phillips, D., Retter, A. J., Connolly, D. P., and Stewart,
G.: Surface geology of Australia 1:1,000,000 scale, Western Australia,
Digital Dataset, The Commonwealth of Australia, Geoscience Australia,
Canberra, available at: http://www.ga.gov.au (last access: 30 July 2021), 2008.
Strahler, A. N.: Quantitative analysis of watershed geomorphology, Eos,
Transactions American Geophysical Union, 38, 913–920,
https://doi.org/10.1029/TR038i006p00913, 1957.
Tozer, C. R., Kiem, A. S., and Verdon-Kidd, D. C.: On the uncertainties associated with using gridded rainfall data as a proxy for observed, Hydrol. Earth Syst. Sci., 16, 1481–1499, https://doi.org/10.5194/hess-16-1481-2012, 2012.
Turner, M., Bari, M., Amirthanathan, G., and Ahmad, Z.: Australian network
of hydrologic reference stations-advances in design, development and
implementation, in: Hydrology and Water Resources Symposium,
Sydney, Australia, 19–22 November 2012, Engineers Australia, available at: http://www.bom.gov.au/water/hrs/media/static/papers/Turner2012.pdf (last access: 30 July 2021), p. 1555, 2012.
Van Dijk, A. I., Beck, H. E., Crosbie, R. S., de Jeu, R. A., Liu, Y. Y., Podger, G. M., Timbal, B., and Viney, N. R.: The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society, Water Resour. Res., 49, 1040–1057, https://doi.org/10.1002/wrcr.20123, 2013.
Verdon-Kidd, D. C. and Kiem, A. S.: Nature and causes of protracted droughts
in southeast Australia: Comparison between the Federation, WWII, and Big Dry
droughts, Geophys. Res. Lett., 36, L22707, https://doi.org/10.1029/2009GL041067, 2009.
Vertessy, R. A.: Water information services for Australians, Australasian Journal of Water Resources, 16, 91–105, available at: https://www.tandfonline.com/doi/abs/10.7158/13241583.2013.11465407 (last access: 30 July 2021), 2013.
Viglione, A., Borga, M., Balabanis, P., and Blöschl, G.: Barriers to the
exchange of hydrometeorological data in Europe: Results from a survey and
implications for data policy, J. Hydrol., 394, 63–77, 2010.
Western, A. and McKenzie, N.: Soil hydrological properties of Australia
Version 1.0.1, CRC for Catchment Hydrology, Melbourne, 2004.
Western, A. W., Matic, V., and Peel, M. C.: Justin Costelloe: a champion of
arid-zone water research, Hydrogeol. J., 28, 37–41, https://doi.org/10.1007/s10040-019-02051-7, 2020.
Whitaker, A. J., Champion, D. C., Sweet, I. P., Kilgour, P., and Connolly, D.
P.: Surface geology of Australia 1:1,000,000 scale, Queensland 2nd edn.,
Digital Dataset, The Commonwealth of Australia, Geoscience Australia,
Canberra, available at: http://www.ga.gov.au (last access: 30 July 2021), 2007.
Whitaker, A. J., Glanville, D. H., English, P. M., Stewart, A. J., Retter,
A. J., Connolly, D. P., Stewart, G. A., and Fisher, C. L.: Surface geology of
Australia 1:1,000,000 scale, South Australia, Digital Dataset, The
Commonwealth of Australia, Geoscience Australia, Canberra, available at:
http://www.ga.gov.au (last access: 30 July 2021), 2008.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., Hoen, P. A. C ’t, Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR guiding principles for scientific
data management and stewardship, Scientific Data, 3, 160018,
https://doi.org/10.1038/sdata.2016.18, 2016
Woods, R. A.: Analytical model of seasonal climate impacts on snow
hydrology: Continuous snowpacks, Adv. Water Resour., 32, 1465–1481,
https://doi.org/10.1016/j.advwatres.2009.06.011, 2009.
Wright, D. P., Thyer, M., and Westra, S.: Influential point detection
diagnostics in the context of hydrological model calibration, J.
Hydrol., 527, 1161–1172, https://doi.org/10.1016/j.jhydrol.2018.01.036,
2018.
Xu, T. and Hutchinson, M.: ANUCLIM version 6.1 user guide, The Australian
National University, Fenner School of Environment and Society, Canberra, available at:
https://fennerschool.anu.edu.au/files/anuclim61.pdf (last access: 30 July 2021), 2011.
Zhang, S. X., Bari, M., Amirthanathan, G., Kent, D., MacDonald, A., and
Shin, D.: Hydrologic reference stations to monitor climate-driven streamflow
variability and trends, in: Hydrology and Water Resources Symposium, Perth, Western Australia, 24–27 February 2014, Engineers Australia, p.
1048, 2014.
Zhang, X. S., Amirthanathan, G. E., Bari, M. A., Laugesen, R. M., Shin, D., Kent, D. M., MacDonald, A. M., Turner, M. E., and Tuteja, N. K.: How streamflow has changed across Australia since the 1950s: evidence from the network of hydrologic reference stations, Hydrol. Earth Syst. Sci., 20, 3947–3965, https://doi.org/10.5194/hess-20-3947-2016, 2016.
Short summary
This paper presents the Australian edition of the Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) series of datasets. CAMELS-AUS comprises data for 222 unregulated catchments with long-term monitoring, combining hydrometeorological time series (streamflow and 18 climatic variables) with 134 attributes related to geology, soil, topography, land cover, anthropogenic influence and hydroclimatology. It is freely downloadable from https://doi.pangaea.de/10.1594/PANGAEA.921850.
This paper presents the Australian edition of the Catchment Attributes and Meteorology for...