Articles | Volume 13, issue 7
https://doi.org/10.5194/essd-13-3467-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/essd-13-3467-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A global database of marine isotope substage 5a and 5c marine terraces and paleoshoreline indicators
Schmitty B. Thompson
CORRESPONDING AUTHOR
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, 97331 OR, USA
Jessica R. Creveling
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, 97331 OR, USA
Related authors
No articles found.
Meghan E. King, Jessica R. Creveling, and Jerry X. Mitrovica
EGUsphere, https://doi.org/10.5194/egusphere-2024-344, https://doi.org/10.5194/egusphere-2024-344, 2024
Short summary
Short summary
In this study, we compute glacial-interglacial sea-level changes across the mid-Pliocene Warm Period (MPWP; 3.264 – 3.025 Ma) produced from ice mass loss of different ice sheets. Our results quantify the relationship between local and global mean sea-level (GMSL) change and highlight the level of consistency in this mapping across different ice melt scenarios. These predictions can help to guide site selection in any effort to constrain the sources and magnitude of MPWP GMSL change.
Related subject area
Marine geology
The SDUST2022GRA global marine gravity anomalies recovered from radar and laser altimeter data: contribution of ICESat-2 laser altimetry
Demersal fishery Impacts on Sedimentary Organic Matter (DISOM): a global harmonized database of studies assessing the impacts of demersal fisheries on sediment biogeochemistry
Predictive mapping of organic carbon stocks in surficial sediments of the Canadian continental margin
SCShores: a comprehensive shoreline dataset of Spanish sandy beaches from a citizen-science monitoring programme
The Modern Ocean Sediment Archive and Inventory of Carbon (MOSAIC): version 2.0
Large freshwater-influx-induced salinity gradient and diagenetic changes in the northern Indian Ocean dominate the stable oxygen isotopic variation in Globigerinoides ruber
Beach-face slope dataset for Australia
Last interglacial sea-level proxies in the Korean Peninsula
A review of last interglacial sea-level proxies in the western Atlantic and southwestern Caribbean, from Brazil to Honduras
Last Interglacial sea-level proxies in the western Mediterranean
A standardized database of Last Interglacial (MIS 5e) sea-level indicators in Southeast Asia
The last interglacial sea-level record of Aotearoa New Zealand
Last interglacial sea levels within the Gulf of Mexico and northwestern Caribbean Sea
Deep-sea sediments of the global ocean
Measurements of hydrodynamics, sediment, morphology and benthos on Ameland ebb-tidal delta and lower shoreface
Global distribution of nearshore slopes with implications for coastal retreat
Data set of submerged sand deposits organised in an interoperable spatial data infrastructure (Western Sardinia, Mediterranean Sea)
Thickness of marine Holocene sediment in the Gulf of Trieste (northern Adriatic Sea)
The GIK-Archive of sediment core radiographs with documentation
Zhen Li, Jinyun Guo, Chengcheng Zhu, Xin Liu, Cheinway Hwang, Sergey Lebedev, Xiaotao Chang, Anatoly Soloviev, and Heping Sun
Earth Syst. Sci. Data, 16, 4119–4135, https://doi.org/10.5194/essd-16-4119-2024, https://doi.org/10.5194/essd-16-4119-2024, 2024
Short summary
Short summary
A new global marine gravity model, SDUST2022GRA, is recovered from radar and laser altimeter data. The accuracy of SDUST2022GRA is 4.43 mGal on a global scale, which is at least 0.22 mGal better than that of other models. The spatial resolution of SDUST2022GRA is approximately 20 km in a certain region, slightly superior to other models. These assessments suggest that SDUST2022GRA is a reliable global marine gravity anomaly model.
Sarah Paradis, Justin Tiano, Emil De Borger, Antonio Pusceddu, Clare Bradshaw, Claudia Ennas, Claudia Morys, and Marija Sciberras
Earth Syst. Sci. Data, 16, 3547–3563, https://doi.org/10.5194/essd-16-3547-2024, https://doi.org/10.5194/essd-16-3547-2024, 2024
Short summary
Short summary
DISOM is a database that compiles data of 71 independent studies that assess the effect of demersal fisheries on sedimentological and biogeochemical properties. This database also provides crucial metadata (i.e. environmental and fishing descriptors) needed to understand the effects of demersal fisheries in a global context.
Graham Epstein, Susanna D. Fuller, Dipti Hingmire, Paul G. Myers, Angelica Peña, Clark Pennelly, and Julia K. Baum
Earth Syst. Sci. Data, 16, 2165–2195, https://doi.org/10.5194/essd-16-2165-2024, https://doi.org/10.5194/essd-16-2165-2024, 2024
Short summary
Short summary
Improved mapping of surficial seabed sediment organic carbon is vital for best-practice marine management. Here, using systematic data review, data unification process and machine learning techniques, the first national predictive maps were produced for Canada at 200 m resolution. We show fine-scale spatial variation of organic carbon across the continental margin and estimate the total standing stock in the top 30 cm of the sediment to be 10.9 Gt.
Rita González-Villanueva, Jesús Soriano-González, Irene Alejo, Francisco Criado-Sudau, Theocharis Plomaritis, Àngels Fernàndez-Mora, Javier Benavente, Laura Del Río, Miguel Ángel Nombela, and Elena Sánchez-García
Earth Syst. Sci. Data, 15, 4613–4629, https://doi.org/10.5194/essd-15-4613-2023, https://doi.org/10.5194/essd-15-4613-2023, 2023
Short summary
Short summary
Sandy beaches, shaped by tides, waves, and winds, constantly change. Studying these changes is crucial for coastal management, but obtaining detailed shoreline data is difficult and costly. Our paper introduces a unique dataset of high-resolution shorelines from five Spanish beaches collected through the CoastSnap citizen-science program. With 1721 shorelines, our dataset provides valuable information for coastal studies.
Sarah Paradis, Kai Nakajima, Tessa S. Van der Voort, Hannah Gies, Aline Wildberger, Thomas M. Blattmann, Lisa Bröder, and Timothy I. Eglinton
Earth Syst. Sci. Data, 15, 4105–4125, https://doi.org/10.5194/essd-15-4105-2023, https://doi.org/10.5194/essd-15-4105-2023, 2023
Short summary
Short summary
MOSAIC is a database of global organic carbon in marine sediments. This new version holds more than 21 000 sediment cores and includes new variables to interpret organic carbon distribution, such as sedimentological parameters and biomarker signatures. MOSAIC also stores data from specific sediment and molecular fractions to better understand organic carbon degradation and ageing. This database is continuously expanding, and version control will allow reproducible research outputs.
Rajeev Saraswat, Thejasino Suokhrie, Dinesh K. Naik, Dharmendra P. Singh, Syed M. Saalim, Mohd Salman, Gavendra Kumar, Sudhira R. Bhadra, Mahyar Mohtadi, Sujata R. Kurtarkar, and Abhayanand S. Maurya
Earth Syst. Sci. Data, 15, 171–187, https://doi.org/10.5194/essd-15-171-2023, https://doi.org/10.5194/essd-15-171-2023, 2023
Short summary
Short summary
Much effort is made to project monsoon changes by reconstructing the past. The stable oxygen isotopic ratio of marine calcareous organisms is frequently used to reconstruct past monsoons. Here, we use the published and new stable oxygen isotopic data to demonstrate a diagenetic effect and a strong salinity influence on the oxygen isotopic ratio of foraminifera in the northern Indian Ocean. We also provide updated calibration equations to deduce monsoons from the oxygen isotopic ratio.
Kilian Vos, Wen Deng, Mitchell Dean Harley, Ian Lloyd Turner, and Kristen Dena Marie Splinter
Earth Syst. Sci. Data, 14, 1345–1357, https://doi.org/10.5194/essd-14-1345-2022, https://doi.org/10.5194/essd-14-1345-2022, 2022
Short summary
Short summary
Along the world's coastlines, we find sandy beaches that are constantly reshaped by ocean waves and tides. The way the incoming waves interact with the sandy beach is dictated by the slope of the beach face. Yet, despite their importance in coastal sciences, beach-face slope data remain unavailable along most coastlines. Here we use satellite remote sensing to present a new dataset of beach-face slopes for the Australian continent, covering 13 200 km of sandy coast.
Woo Hun Ryang, Alexander R. Simms, Hyun Ho Yoon, Seung Soo Chun, and Gee Soo Kong
Earth Syst. Sci. Data, 14, 117–142, https://doi.org/10.5194/essd-14-117-2022, https://doi.org/10.5194/essd-14-117-2022, 2022
Short summary
Short summary
This work is part of the World Atlas of Last Interglacial Shorelines (WALIS), whose aim is to construct a database of Last Interglacial (LIG) relative sea-level (RSL) indicators from across the globe. This paper reviews the LIG sea-level constraints from the Korean Peninsula entered into the online WALIS database. This paper including the dataset will contribute to reconstructing global LIG sea-level changes and regional LIG RSL in the Korean Peninsula.
Karla Rubio-Sandoval, Alessio Rovere, Ciro Cerrone, Paolo Stocchi, Thomas Lorscheid, Thomas Felis, Ann-Kathrin Petersen, and Deirdre D. Ryan
Earth Syst. Sci. Data, 13, 4819–4845, https://doi.org/10.5194/essd-13-4819-2021, https://doi.org/10.5194/essd-13-4819-2021, 2021
Short summary
Short summary
The Last Interglacial (LIG) is a warm period characterized by a higher-than-present sea level. For this reason, scientists use it as an analog for future climatic conditions. In this paper, we use the World Atlas of Last Interglacial Shorelines database to standardize LIG sea-level data along the coasts of the western Atlantic and mainland Caribbean, identifying 55 unique sea-level indicators.
Ciro Cerrone, Matteo Vacchi, Alessandro Fontana, and Alessio Rovere
Earth Syst. Sci. Data, 13, 4485–4527, https://doi.org/10.5194/essd-13-4485-2021, https://doi.org/10.5194/essd-13-4485-2021, 2021
Short summary
Short summary
The paper is a critical review and standardization of 199 published scientific papers to compile a Last Interglacial sea-level database for the Western Mediterranean sector. In the database, 396 sea-level data points associated with 401 dated samples are included. The relative sea-level data points and associated ages have been ranked on a 0 to 5 scale score.
Kathrine Maxwell, Hildegard Westphal, and Alessio Rovere
Earth Syst. Sci. Data, 13, 4313–4329, https://doi.org/10.5194/essd-13-4313-2021, https://doi.org/10.5194/essd-13-4313-2021, 2021
Short summary
Short summary
Marine Isotope Stage 5e (MIS 5e; the Last Interglacial, 125 ka) represents a period in the Earth’s geologic history when sea level was higher than present. In this paper, a standardized database was produced after screening and reviewing LIG sea-level data from published papers in Southeast Asia. We identified 43 unique sea-level indicators (42 from coral reef terraces and 1 from a tidal notch) and compiled the data in the World Atlas of Last Interglacial Shorelines (WALIS).
Deirdre D. Ryan, Alastair J. H. Clement, Nathan R. Jankowski, and Paolo Stocchi
Earth Syst. Sci. Data, 13, 3399–3437, https://doi.org/10.5194/essd-13-3399-2021, https://doi.org/10.5194/essd-13-3399-2021, 2021
Short summary
Short summary
Studies of ancient sea level and coastlines help scientists understand how coasts will respond to future sea-level rise. This work standardized the published records of sea level around New Zealand correlated with sea-level peaks within the Last Interglacial (~128 000–73 000 years ago) using the World Atlas of Last Interglacial Shorelines (WALIS) database. New Zealand has the potential to provide an important sea-level record with more detailed descriptions and improved age constraint.
Alexander R. Simms
Earth Syst. Sci. Data, 13, 1419–1439, https://doi.org/10.5194/essd-13-1419-2021, https://doi.org/10.5194/essd-13-1419-2021, 2021
Short summary
Short summary
This study is part of a larger community effort to catalogue the elevation of sea levels approximately 120 000 years ago – a time period when global temperatures were generally warmer than they are today. For this specific study I summarized the work of other scientists who had determined the age and elevations of ancient shorelines and coral reefs from across the Gulf of Mexico and Yucatán Peninsula.
Markus Diesing
Earth Syst. Sci. Data, 12, 3367–3381, https://doi.org/10.5194/essd-12-3367-2020, https://doi.org/10.5194/essd-12-3367-2020, 2020
Short summary
Short summary
A new digital map of the sediment types covering the bottom of the ocean has been created. Direct observations of the seafloor sediments are few and far apart. Therefore, machine learning was used to fill those gaps between observations. This was possible because known relationships between sediment types and the environment in which they form (e.g. water depth, temperature, and salt content) could be exploited. The results are expected to provide important information for marine research.
Bram C. van Prooijen, Marion F. S. Tissier, Floris P. de Wit, Stuart G. Pearson, Laura B. Brakenhoff, Marcel C. G. van Maarseveen, Maarten van der Vegt, Jan-Willem Mol, Frank Kok, Harriette Holzhauer, Jebbe J. van der Werf, Tommer Vermaas, Matthijs Gawehn, Bart Grasmeijer, Edwin P. L. Elias, Pieter Koen Tonnon, Giorgio Santinelli, José A. A. Antolínez, Paul Lodewijk M. de Vet, Ad J. H. M. Reniers, Zheng Bing Wang, Cornelis den Heijer, Carola van Gelder-Maas, Rinse J. A. Wilmink, Cor A. Schipper, and Harry de Looff
Earth Syst. Sci. Data, 12, 2775–2786, https://doi.org/10.5194/essd-12-2775-2020, https://doi.org/10.5194/essd-12-2775-2020, 2020
Short summary
Short summary
To protect the Dutch coastal zone, sand is nourished and disposed at strategic locations. Simple questions like where, how, how much and when to nourish the sand are not straightforward to answer. This is especially the case around the Wadden Sea islands where sediment transport pathways are complicated. Therefore, a large-scale field campaign has been carried out on the seaward side of Ameland Inlet. Sediment transport, hydrodynamics, morphology and fauna in the bed were measured.
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Sandra Gaytan-Aguilar, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 11, 1515–1529, https://doi.org/10.5194/essd-11-1515-2019, https://doi.org/10.5194/essd-11-1515-2019, 2019
Short summary
Short summary
This dataset provides the spatial distribution of nearshore slopes at a resolution of 1 km along the global coastline. The calculation was based on available global topo-bathymetric datasets and ocean wave reanalysis. The calculated slopes show skill in capturing the spatial variability of the nearshore slopes when compared against local observations. The importance of this variability is presented with a global coastal retreat assessment for an arbitrary sea level rise scenario.
Walter Brambilla, Alessandro Conforti, Simone Simeone, Paola Carrara, Simone Lanucara, and Giovanni De Falco
Earth Syst. Sci. Data, 11, 515–527, https://doi.org/10.5194/essd-11-515-2019, https://doi.org/10.5194/essd-11-515-2019, 2019
Short summary
Short summary
The expected sea level rise by the year 2100 will determine an adaptation of the whole coastal system and the land retreat of the shoreline. Future scenarios coupled with the improvement of mining technologies will favour increased exploitation of sand deposits for nourishment. This work summarises a large data set of geophysical and sedimentological data that maps the spatial features of submerged sand deposits and is a useful tool in future climate change scenarios.
Ana Trobec, Martina Busetti, Fabrizio Zgur, Luca Baradello, Alberto Babich, Andrea Cova, Emiliano Gordini, Roberto Romeo, Isabella Tomini, Sašo Poglajen, Paolo Diviacco, and Marko Vrabec
Earth Syst. Sci. Data, 10, 1077–1092, https://doi.org/10.5194/essd-10-1077-2018, https://doi.org/10.5194/essd-10-1077-2018, 2018
Short summary
Short summary
Following the last glacial period the sea level started rising rapidly. The sea started entering the Gulf of Trieste approximately 10000 years ago and since then marine Holocene sediment has been depositing. We wanted to understand how thick this sediment is, so we used modern scientific equipment which lets us determine the depth of the seafloor and the sediment below. The sediment is thickest in the SE part of the gulf (approx. 5 m). In the other parts it is very thin, except near the coast.
Hannes Grobe, Kyaw Winn, Friedrich Werner, Amelie Driemel, Stefanie Schumacher, and Rainer Sieger
Earth Syst. Sci. Data, 9, 969–976, https://doi.org/10.5194/essd-9-969-2017, https://doi.org/10.5194/essd-9-969-2017, 2017
Short summary
Short summary
A unique archive of radiographs from ocean floor sediments was produced during five decades of marine geological work at the Geological-Paleontological Institute, Kiel University. The content of 18 500 images was digitized, uploaded to the data library PANGAEA, georeferenced and completed with metadata. With this publication the images are made available to the scientific community under a CC-BY licence, which is open-access and citable with the persistent identifier https://doi.org/10.1594/PANGAEA.854841.
Cited articles
Adams, J.:
Active deformation of the Pacific Northwest Continental Margin,
Tectonics,
3, 449–472, https://doi.org/10.1029/TC003i004p00449, 1984.
Addicott, W. O. and Emerson, W. K.:
Late Pleistocene Invertebrates from Punta Cabras, Baja California, Mexico,
Am. Mus. Novit.,
1925, 1–34, 1959.
Alexander, C. S.:
The marine and stream terraces of the Capitola-Watsonville area, University of California Publications in Geology,
1953.
Allen, C. R., Silver, L. T., and Stehli, F. G.:
Agua Blanca fault – A major transverse structure of northern Baja California, Mexico,
Geol. Soc. Am. Bull.,
71, 457–482, https://doi.org/10.1130/0016-7606(1960)71[467:ABFMTS]2.0.CO;2, 1960.
Banerjee, D., Hildebrand, A. N., Murray-Wallace, C. V., Bourman, R. P., Brooke, B. P., and Blair, M.:
New quartz SAR-OSL ages from the stranded beach dune sequence in south-east South Australia,
Quaternary Sci. Rev.,
22, 1019–1025, 2003.
Bard, E., Hamelin, B., and Fairbanks, R. G.:
U-Th ages obtained by mass spectrometry in corals from Barbados: Sea level during the past
130,000 years,
Nature,
346, 456–458, 1990.
Barnes, J. W., Lang, E. J., and Potratz, H. A.:
Ratio of ionium to uranium in coral limestone,
Science,
124, 175–176, 1956.
Bender, M. L., Fairbanks, R. G., Taylor, F. W., Matthews, R. K., Goddard, J. G., and Broecker, W. S.:
Uranium-series dating of the Pleistocene reef tracts of Barbados, West Indies,
Bull. Geol. Soc. Am.,
90, 577–594, https://doi.org/10.1130/0016-7606(1979)90<577:UDOTPR>2.0.CO;2, 1979.
Berger, G. W. and Hanson, K. L.:
Thermoluminescence Ages of Estuarine Deposits Associated With Quaternary Marine Terraces,
South-Central California,
in: Quaternary coasts of the United States,
edited by: Fletcher, C. H. and Wehmiller, J. F.,
SEPM
Society for Sedimentary Geology, Tulsa, Oklahoma, USA, 303–308, 1992.
Birkeland, P. W.:
Late Quaternary Eustatic Sea-Level Changes along the Malibu Coast, Los Angeles County, California,
J. Geol.,
80, 432–448, https://doi.org/10.1086/627765, 1972.
Blakemore, A. G., Murray-Wallace, C. V., Westaway, K. E., and Lachlan, T. J.:
Aminostratigraphy and sea-level history of the Pleistocene Bridgewater Formation, Mount Gambier region, southern Australia,
Aust. J. Earth Sci.,
62, 151–169, 2015.
Bowles, C. J. and Cowgill, E.:
Discovering marine terraces using airborne LiDAR along the Mendocino-Sonoma coast, northern California,
Geosphere,
8, 386–402, https://doi.org/10.1130/GES00702.1, 2012.
Bradley, W. C. and Addicott, W. O.:
Age of First Marine Terrace Near Santa Cruz, California,
Geol. Soc. Am. Bull.,
79, 1203–1210, https://doi.org/10.1130/0016-7606(1968)79[1203:AOFMTN]2.0.CO;2, 1968.
Bradley, W. C. and Griggs, G. B.:
Form, genesis, and deformation of central California wave-cut platforms,
Bull. Geol. Soc. Am.,
87, 433–449, https://doi.org/10.1130/0016-7606(1976)87<433:FGADOC>2.0.CO;2, 1976.
Bretz, J. H.:
Bermuda: A Partially Drowned, Late Mature, Pleistocene Karst,
Bull. Geol. Soc. Am.,
71, 1729–1754, 1960.
Broecker, W. S. and Thurber, D. L.:
Uranium-series dating of corals and oolites from Bahaman and Florida Key limestones,
Science,
149, 58–60, 1965.
Broecker, W. S., Thurber, D. L., Goddard, J., Ku, T. L., Matthews, R. K., and Mesolella, K. J.:
Milankovitch hypothesis supported by precise dating of coral reefs and deep-sea sediments,
Science,
159, 297–300, https://doi.org/10.1126/science.159.3812.297, 1968.
Carter, G. F.:
Pleistocene man at San Diego,
Johns Hopkins Press, Baltimore, 400, 1957.
Chappell, J.:
Geology of coral terraces, Huon Peninsula, New Guinea: A study of Quaternary tectonic movements and sea-level changes,
Bull. Geol. Soc. Am.,
85, 553–570, https://doi.org/10.1130/0016-7606(1975)86<1482:GOCTHP>2.0.CO;2, 1974.
Chappell, J. and Shackleton, N. J.:
Oxygen isotopes and sea level,
Nature,
324, 137–140, https://doi.org/10.1038/324137a0, 1986.
Chappell, J. and Veeh, H. H.:
Late Quaternary tectonic movements and sea-level changes at Timor and Atauro Island,
Bull. Geol. Soc. Am.,
89, 356–368, https://doi.org/10.1130/0016-7606(1978)89<356:LQTMAS>2.0.CO;2, 1978.
Chappell, J., Omura, A., Esat, T., McCulloch, M., Pandolfi, J., Ota, Y., and Pillans, B.:
Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records,
Earth Planet. Sc. Lett.,
141, 227–236, 1996.
Choi, J. H., Murray, A. S., Jain, M., Cheong, C. S., and Chang, H. W.:
Luminescence dating of well-sorted marine terrace sediments on the southeastern coast of Korea,
Quaternary Sci. Rev.,
22, 407–421, https://doi.org/10.1016/S0277-3791(02)00136-1, 2003.
Choi, S. J., Merritts, D. J., and Ota, Y.:
Elevations and ages of marine terraces and late Quaternary rock uplift in southeastern Korea, J. Geophys. Res.-Sol. Ea.,
113, 1–15, https://doi.org/10.1029/2007JB005260, 2008.
Chutcharavan, P. M. and Dutton, A.: A global compilation of U-series-dated fossil coral sea-level indicators for the Last Interglacial period (Marine Isotope Stage 5e), Earth Syst. Sci. Data, 13, 3155–3178, https://doi.org/10.5194/essd-13-3155-2021, 2021.
Clark, J., Mitrovica, J. X., and Latychev, K.:
Glacial isostatic adjustment in central Cascadia: Insights from three-dimensional Earth modeling,
Geology,
47, 295–298, https://doi.org/10.1130/G45566.1, 2019.
Creveling, J. R., Mitrovica, J. X., Hay, C. C., Austermann, J., and Kopp, R. E.:
Revisiting tectonic corrections applied to Pleistocene sea-level highstands,
Quaternary Sci. Rev.,
111, 72–80, 2015.
Creveling, J. R., Mitrovica, J. X., Clark, P. U., Waelbroeck, C., and Pico, T.:
Predicted bounds on peak global mean sea level during marine isotope stages 5a and 5c,
Quaternary Sci. Rev.,
163, 193–208, https://doi.org/10.1016/j.quascirev.2017.03.003, 2017.
Cronin, T. M., Szabo, B. J., Ager, T. A., Hazel, J. E., and Owens, J. P.:
Quaternary climates and sea levels of the U. S. Atlantic coastal plain,
Science,
211, 233–240, https://doi.org/10.1126/science.211.4479.233, 1981.
Cutler, K. B., Edwards, R. L., Taylor, F. W., Cheng, H., Adkins, J., Gallup, C. D., Cutler, P. M., Burr, G. S., and Bloom, A. L.:
Rapid sea-level fall and deep-ocean temperature change since the last interglacial period,
Earth Planet. Sc. Lett.,
206, 253–271, https://doi.org/10.1016/S0012-821X(02)01107-X, 2003.
Davis, W. M.:
Glacial epochs of the Santa Monica Mountains, California,
P. Natl. Acad. Sci. USA,
18, 659–665, https://doi.org/10.1073/pnas.18.11.659, 1932.
Dibblee Jr., T. W. and Ehrenspeck, H. E.: General geology of
Santa Rosa Island, California, in: Contributions to the Geology of the Northern Channel Islands,
Southern California, edited by: Weigand, P. W., Pacific Section American Association of
Petroleum Geologists, Bakersfield, California, USA, 1998.
Dodge, R. E., Fairbanks, R. G., Benninger, L. K., and Maurrasse, F.:
Pleistocene sea levels from raised coral reefs of Haiti,
Science,
219, 1423–1425, https://doi.org/10.1126/science.219.4591.1423, 1983.
Duller, G. A. T.:
Luminescence dating of Quaternary sediments: Recent advances,
J. Quaternary Sci.,
19, 183–192, https://doi.org/10.1002/jqs.809, 2004.
Dumas, B., Hoang, C. T., and Raffy, J.:
Record of MIS 5 sea-level highstands based on U/Th dated coral terraces of Haiti,
Quatern. Int.,
145–146, 106–118, https://doi.org/10.1016/j.quaint.2005.07.010, 2006.
Dutton, A. and Lambeck, K.:
Ice Volume and Sea Level During the Last Interglacial,
Science,
216, 216–220, https://doi.org/10.1126/science.1205749, 2012.
Dutton, A., Carlson, A. E., Long, A. J., Milne, G. A., Clark, P. U., DeConto, R., Horton, B. P., Rahmstorf, S., and Raymo, M. E.:
Sea-level rise due to polar ice-sheet mass loss during past warm periods,
Science,
349, 6244, https://doi.org/10.1126/science.aaa4019, 2015.
Edwards, R. L., Cheng, H., Murrell, M. T., and Goldstein, S. J.:
Protactinium-231 dating of carbonates by thermal ionization mass spectrometry: Implications for quaternary climate change,
Science,
276, 782–786, https://doi.org/10.1126/science.276.5313.782, 1997.
Ellis, A. J.:
Physiography,
in: Geology and ground waters of the western part of San Diego County, California, U.S. Geol. Survey Water-Supply Paper, 446, 20–50,
1919.
Esat, T. M., McCulloch, M. T., Chappell, J., Pillans, B., and Omura, A.:
Rapid fluctuations in sea level recorded at Huon Peninsula during the penultimate deglaciation,
Science,
283, 197–201, https://doi.org/10.1126/science.283.5399.197, 1999.
Grant, L. B., Mueller, K. J., Gath, E. M., Cheng, H., Edwards, R. L., Munro, R., and Kennedy, G. L.:
Late Quaternary uplift and earthquake potential of the San Joaquin Hills, southern Los Angeles basin, California,
Geology,
27, 1031–1034, https://doi.org/10.1130/0091-7613(1999)027<1031:LQUAEP>2.3.CO;2, 1999.
Griggs, A. B.:
Chromite-Bearing Sands of the Southern Part of the Coast of Oregon,
Geological Survey Bulletin,
1944, 113–150, 1945.
Grove, K., Sklar, L. S., Scherer, A. M., Lee, G., and Davis, J.:
Accelerating and spatially-varying crustal uplift and its geomorphic expression, San Andreas Fault zone north of San Francisco, California,
Tectonophysics,
495, 256–268, https://doi.org/10.1016/j.tecto.2010.09.034, 2010.
Gzam, M., Mejdoub, N. El, and Jedoui, Y.:
Late quaternary sea level changes of gabes coastal plain and shelf: Identification of the MIS 5c and MIS 5a onshore highstands, Southern Mediterranean,
J. Earth Syst. Sci.,
125, 13–28, https://doi.org/10.1007/s12040-015-0649-7, 2016.
Hails, J. R., Belperio, A. P., and Gostin, V. A.:
Quaternary sea levels, northern Spencer Gulf, Australia,
Mar. Geol.,
61, 373–389, https://doi.org/10.1016/0025-3227(84)90175-0, 1984.
Hanks, T. C., Bucknam, R. C., Lajoie, K. R., and Wallace, R. E.:
Modification of Wave-Cut and Faulting-Controlled Landforms,
J. Geophys. Res.,
89, 5771–5790, https://doi.org/10.1029/JB089iB07p05771, 1984.
Hanson, K. L., Lettis, W. R., Wesling, J. R., Kelson, K. I., and Mezger, L.:
Quaternary marine terraces, south-central coastal California: implications for crustal deformation and coastal evolution,
in: Quaternary coasts of the United States,
edited by: Fletcher, C. H. and Wehmiller, J. F.,
323–332, https://doi.org/10.2110/pec.92.48.0323, 1992.
Harmon, R. S., Mitterer, R. M., Kriausakul, N., Land, L. S., Schwarcz, H. P., Garrett, P., Larson, G. J., Leonard Vacher, H., and Rowe, M.:
U-series and amino-acid racemization geochronology of Bermuda: Implications for eustatic sea-level fluctuation over the past 250,000 years,
Palaeogeogr. Palaeocl.,
44, 41–70, https://doi.org/10.1016/0031-0182(83)90004-4, 1983.
Harrison, J. V.:
Coastal Makran: Discussion,
Geogr. J.,
97, 15, https://doi.org/10.2307/1787108, 1941.
Hays, J. D., Imbrie, J., and Shackleton, N. J.:
Variations in the earth's orbit: Pacemaker of the ice ages,
Science, 194, 1121–1132,
https://doi.org/10.1126/science.194.4270.1121, 1976.
Hearty, P. J.:
The geology of Eleuthera Island, Bahamas: A Rosetta Stone of quaternary stratigraphy and sea-level history,
Quaternary Sci. Rev.,
17, 333–355, https://doi.org/10.1016/S0277-3791(98)00046-8, 1998.
Hearty, P. J.:
Revision of the late Pleistocene stratigraphy of Bermuda,
Sediment. Geol.,
153, 1–21, https://doi.org/10.1016/S0037-0738(02)00261-0, 2002.
Hearty, P. J. and Kaufman, D. S.:
Whole-rock aminostratigraphy and Quaternary sea-level history of the Bahamas,
Quaternary Res.,
54, 163–173, https://doi.org/10.1006/qres.2000.2164, 2000.
Hearty, P. J., Vacher, H. L., and Mitterer, R. M.:
Aminostratigraphy and ages of Pleistocene limestones of Bermuda,
Geol. Soc. Am. Bull.,
104, 471–480, https://doi.org/10.1130/0016-7606(1992)104<0471:AAAOPL>2.3.CO;2, 1992.
Hertlein, L. G. and Grant IV, U. S.:
The Geology and Paleontology of the Marine Pliocene of San Diego, California,
Memoirs of the San Diego Society of Natural History,
2, 15–20, 1944.
Hijma, M. P., Engelhart, S. E., Törnqvist, T. E., Horton, B. P., Hu, P., and Hill, D. F.:
A protocol for a geological sea-level database,
in: Handbook of Sea-Level Research,
edited by: Shennan, I., Long, A. J., and Horton, B. P.,
536–556,
Wiley, Germany, 2015.
Hunter, J. D.:
Matplotlib: A 2D Graphics Environment,
Comput. Sci. Eng.,
9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007.
Huntley, D. J. and Prescott, J. R.:
Improved methodology and new thermoluminescence ages for the dune sequence in south-east South Australia.
Quaternary Sci. Rev.,
20, 687–699, 2001.
Huntley, D. J., Hutton, J. T., and Prescott, J. R.:
The stranded beach-dune sequence of south-east South Australia: A test of thermoluminescence dating, 0–800 ka.
Quaternary Sci. Rev.,
12, 1–20, 1993a.
Huntley, D. J., Hutton, J. T., and Prescott, J. R.:
Optical dating using inclusions within quartz grains,
Geology,
21, 1087–1090, 1993b.
Huntley D. J., Hutton J. T., and Prescott J. R.:
Further thermoluminescence dates from the dune sequence in southeast of South Australia,
Quaternary Sci. Rev.,
13, 201–207, https://doi.org/10.1016/0277-3791(94)90025-6, 1994.
Johnson, D. L.:
Beachrock (water-tablerock) on San Miguel Island,
in: Geology of the Northern Channel Islands,
edited by: Weaver, D. W.,
AAPG
and SEPM Pacific, Los Angeles, California, USA, 1969.
Kelsey, H. M. and Bockheim, J. G.:
Coastal landscape evolution as a function of eustasy and surface uplift rate, Cascadia margin, southern Oregon,
Bull. Geol. Soc. Am.,
106, 840–854, https://doi.org/10.1130/0016-7606(1994)106<0840:CLEAAF>2.3.CO;2, 1994.
Kelsey, H. M., Ticknor, R. L., Bockheim, J. G., and Mitchell, C. E.:
Quaternary upper plate deformation in coastal Oregon,
Bull. Geol. Soc. Am.,
108, 843–860, https://doi.org/10.1130/0016-7606(1996)108<0843:QUPDIC>2.3.CO;2, 1996.
Kennedy, G. L., Lajoie, K. R., and Wehmiller, J. F.:
Aminostratigraphy and faunal correlations of late Quaternary marine terraces, Pacific Coast, USA,
Nature,
299, 545–547, https://doi.org/10.1038/299545a0, 1982.
Kennedy, G. L., Wehmiller, J. F., and Rockwell, T. K.:
Paleoecology and paleozoogeography of late Pleistocene marine- terrace faunas of southwestern Santa Barbara County, California,
in: Quaternary coasts of the United States,
edited by: Fletcher, C. H. and Wehmiller, J. F.,
343–361, https://doi.org/10.2110/pec.92.48.0343, 1992.
Kern, J. P.:
Late Quaternary deformation of the Nestor terrace on the east side of Point Loma, San Diego, California,
in: Studies on the geology and geologic hazards of the greater San Diego area, California,
edited by: Ross, A. and Dowlen, R. J.,
San Diego Assoc. Geologists and Assoc. Engineering, San Diego, California, USA, 1973.
Kern, J. P.:
Origin and history of upper Pleistocene marine terraces, San Diego, California,
Bull. Geol. Soc. Am.,
88, 1553–1566, https://doi.org/10.1130/0016-7606(1977)88<1553:OAHOUP>2.0.CO;2, 1977.
Kern, J. P. and Rockwell, T. K.:
Chronology and deformation of Quaternary marine shorelines, San Diego County, California,
in: Quaternary coasts of the United States,
edited by: Fletcher, C. H. and Wehmiller, J. F.,
377–382, https://doi.org/10.2110/pec.92.48.0377, 1992.
Kindler, P. and Hearty, P. J.:
Carbonate petrography as an indicator of climate and sea-level changes: New data from Bahamian Quaternary units,
Sedimentology,
43, 381–399, https://doi.org/10.1046/j.1365-3091.1996.d01-11.x, 1996.
Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C., and Oppenheimer, M.:
Probabilistic assessment of sea level during the last interglacial stage,
Nature,
462, 863–867, https://doi.org/10.1038/nature08686, 2009.
Ku, T. L. and Kern, J. P.:
Uranium-series age of the upper pleistocene Nestor Terrace, San Diego, California,
Bull. Geol. Soc. Am.,
85, 1713–1716, https://doi.org/10.1130/0016-7606(1974)85<1713:UAOTUP>2.0.CO;2, 1974.
Lambeck, K. and Chappell, J.:
Sea level change through the last glacial cycle,
Science,
292, 679–686, https://doi.org/10.1126/science.1059549, 2001.
Land, L. S., MacKenzie, F. T., and Gould, S. J.:
Pleistocene history of Bermuda,
Geol. Soc. Am. Bull.,
78, 993–1006, https://doi.org/10.1130/0016-7606(1967)78[993:PHOB]2.0.CO;2, 1967.
Latychev, K., Mitrovica, J. X., Tromp, J., Tamisiea, M. E., Komatitsch, D., and Christara, C. C.:
Glacial isostatic adjustment on 3-D earth models: A finite-volume formulation,
Geophys. J. Int.,
161, 421–444, 2005.
Lidz, B. H., Hine, A. C., Shinn, E. A., and Kindinger, J. L.:
Multiple outer-reef tracts along the south Florida bank margin: outlier reefs, a new windward-margin model,
Geology,
19, 115–118, https://doi.org/10.1130/0091-7613(1991)019<0115:MORTAT>2.3.CO;2, 1991.
Lindgren, W.:
Notes on the geology of Baja California, Mexico,
Proceedings of the California Academy of Sciences,
1, 173–196, 1889.
Lorscheid, T. and Rovere, A.:
The indicative meaning calculator – quantification of paleo sea-level relationships by using global wave and tide datasets,
Open Geospatial, Data Software and Standards,
4, 10, https://doi.org/10.1186/s40965-019-0069-8, 2019.
Ludwig, K. R., Muhs, D. R., Simmons, K. R., Halley, R. B., and Shinn, E. A.:
Sea-level records at ∼ 80 ka from tectonically stable platforms: Florida and Bermuda,
Geology,
24, 211–214, https://doi.org/10.1130/0091-7613(1996)024<0211:SLRAKF>2.3.CO;2, 1996.
Marquardt, C., Lavenu, A., Ortlieb, L., Godoy, E., and Comte, D.:
Coastal neotectonics in Southern Central Andes: Uplift and deformation of marine terraces in Northern Chile (27∘ S),
Tectonophysics,
394, 193–219, https://doi.org/10.1016/j.tecto.2004.07.059, 2004.
Matthews, R. K.:
Relative elevationn of late Pleistocence high sea level stands: Barbados uplift rates and their implications,
Quaternary Res.,
3, 147–153, https://doi.org/10.1016/0033-5894(73)90061-6, 1973.
McInelly, G. W. and Kelsey, H. M.:
Late Quaternary tectonic deformation in the Cape Arago-Bandon region of coastal Oregon as deduced from wave-cut platforms,
J. Geophys. Res.,
95, 6699–6713, https://doi.org/10.1029/JB095iB05p06699, 1990.
Merritts, D. and Bull, W. B.:
Interpreting Quaternary uplift rates at the Mendocino triple junction, northern California, from uplifted marine terraces,
Geology,
17, 1020–1024, https://doi.org/10.1130/0091-7613(1989)017<1020:IQURAT>2.3.CO;2, 1989.
Mesolella, K. J.:
Zonation of Uplifted Pleistocene Coral Reefs on Barbados, West Indies,
Science,
156, 638–640, 1967.
Mesolella, K. J., Matthews, R. K., Broecker, W. S., and Thurber, D. L.:
The astronomical theory of climatic change: Barbados Data,
J. Geol.,
77, 250–274, https://doi.org/10.1086/627434, 1969.
Miller, G. H., Hollin, J. T., and Andrews, J. T.:
Aminostratigraphy of UK Pleistocene deposits,
Nature,
281, 539–543, https://doi.org/10.1038/281539a0, 1979.
Mirecki, J. E., Wehmillert, J. F., and Skinner, A. F.:
Geochronology of Quaternary Coastal Plain Deposits, Southeastern Virginia, U.S.A.,
J. Coastal Res.,
11, 1135–1144, 1995.
Mitterer, R. M.:
Pleistocene stratigraphy in Southern Florida based on amino acid diagenesis in fossil mercenaria,
Geology,
2, 425–428, https://doi.org/10.1130/0091-7613(1974)2<425:PSISFB>2.0.CO;2, 1974.
Mueller, K., Kier, G., Rockwell, T., and Jones, C. H.:
Quaternary rift flank uplift of the Peninsular Ranges in Baja and southern California by removal of mantle lithosphere,
Tectonics,
28, 1–17, https://doi.org/10.1029/2007TC002227, 2009.
Muhs, D. R., Kelsey, H. M., Miller, G. H., Kennedy, G. L., Whelan, J. F., and Mcinelly, G. W.:
Age Estimates and Uplift Rates for Late Pleistocene Marine Terraces,
J. Geophys. Res.,
95, 6685–6698, https://doi.org/10.1029/JB095iB05p06685, 1990.
Muhs, D. R., Miller, G. H., Whelan, J. F., and Kennedy, G. L.:
Aminostratigraphy and oxygen isotope stratigraphy of marine-terrace deposits, Palos Verdes Hills and San Pedro areas, Los Angeles County, California,
in: Quaternary coasts of the United States,
edited by: Fletcher, C. H. and Wehmiller, J. F.,
SEPM Society for Sedimentary Geology,
Tulsa, Oklahoma, USA, 363–376, 1992a.
Muhs, D. R., Rockwell, T. K., and Kennedy, G. L.:
Late quaternary uplift rates of marine terraces on the Pacific coast of North America, southern Oregon to Baja California sur,
Quatern. Int.,
15–16, 121–133, https://doi.org/10.1016/1040-6182(92)90041-Y, 1992b.
Muhs, D. R., Kennedy, G. L., and Rockwell, T. K.:
Uranium-series ages of marine terrace corals from the Pacific coast of North America and implications for last-interglacial sea level history,
Quaternary Res.,
42, 72–87, https://doi.org/10.1006/qres.1994.1055, 1994.
Muhs, D. R., Simmons, K. R., and Steinke, B.:
Timing and warmth of the Last Interglacial period: New U-series evidence from Hawaii and Bermuda and a new fossil compilation for North America,
Quaternary Sci. Rev.,
21, 1355–1383, https://doi.org/10.1016/S0277-3791(01)00114-7, 2002.
Muhs, D. R., Simmons, K. R., Kennedy, G. L., Ludwig, K. R., and Groves, L. T.:
A cool eastern Pacific Ocean at the close of the Last Interglacial complex,
Quaternary Sci. Rev.,
25, 235–262, https://doi.org/10.1016/j.quascirev.2005.03.014 2006.
Muhs, D. R., Simmons, K. R., Schumann, R. R., Groves, L. T., Mitrovica, J. X., and Laurel, D. A.:
Sea-level history during the Last Interglacial complex on San Nicolas Island, California: Implications for glacial isostatic adjustment processes, paleozoogeography and tectonics,
Quaternary Sci. Rev.,
37, 1–25, https://doi.org/10.1016/j.quascirev.2012.01.010, 2012.
Muhs, D. R., Simmons, K. R., Schumann, R. R., Groves, L. T., DeVogel, S. B., Minor, S. A., and Laurel, D. A.:
Coastal tectonics on the eastern margin of the Pacific Rim: Late Quaternary sea-level history and uplift rates, Channel Islands National Park, California, USA,
Quaternary Sci. Rev.,
105, 209–238, https://doi.org/10.1016/j.quascirev.2014.09.017, 2014.
Murray-Wallace, C. V.:
Pleistocene coastal stratigraphy, sea-level highstands and neotectonism of the southern Australian passive continental margin – A review,
J. Quaternary Sci.,
17, 469–489, https://doi.org/10.1002/jqs.717, 2002.
Murray-Wallace, C. V.:
Quaternary history of the Coorong Coastal Plain, Southern Australia: An archive of environmental and global sea-level changes,
Springer, Cham,
229, 2018.
Neumann, A. C. and Moore, W. S.:
Sea level events and Pleistocene coral ages in the northern Bahamas,
Quaternary Res.,
5, 215–224, https://doi.org/10.1016/0033-5894(75)90024-1, 1975.
Newell, N. D.:
Warm interstadial interval in Wisconsin stage of the Pleistocene,
Science,
148, 1488, https://doi.org/10.1126/science.148.3676.1488, 1965.
Normand, R., Simpson, G., Herman, F., Biswas, R. H., Bahroudi, A., and Schneider, B.: Dating and morpho-stratigraphy of uplifted marine terraces in the Makran subduction zone (Iran), Earth Surf. Dynam., 7, 321–344, https://doi.org/10.5194/esurf-7-321-2019, 2019.
Omura, A.:
Uranium-series Age of the Riukiu Limestone on Hateruma Island, Southwestern Ryukyus,
Transactions and Proceedings of the Palaeontological Society of Japan,
415–426, https://doi.org/10.14825/prpsj1951.1984.135_415, 1984.
Omura, A., Maeda, Y., Kawana, T., Siringan, F. P., and Berdin, R. D.:
U-series dates of Pleistocene corals and their implications to the paleo-sea levels and the vertical displacement in the Central Philippines,
Quatern. Int.,
115–116, 3–13, https://doi.org/10.1016/S1040-6182(03)00092-2, 2004.
Orr, P. C.:
Prehistory of Santa Rosa Island,
Santa Barbara Museum of Natural History, Santa Barbra, California, 1968.
Osmond, J. K., Carpenter, J. R., and Windom, H. L.:
Th 230 /U 234 age of the Pleistocene corals and oolites of Florida,
J. Geophys. Res.,
70, 1843–1847, https://doi.org/10.1029/JZ070i008p01843, 1965.
Ota, Y. and Hori, N.:
Late Quaternary tectonic movement of the Ryukyu Islands, Japan,
The Quaternary Research (Daiyonki-kenkyu),
18, 221–240, https://doi.org/10.4116/jaqua.18.221, 1980.
Ota, Y. and Omura, A.:
Contrasting styles and rates of tectonic uplift of coral reef terraces in the Ryukyu and Daito Islands, southwestern Japan,
Quatern. Int.,
15–16, 17–29, https://doi.org/10.1016/1040-6182(92)90033-X, 1992.
Page, W. D., Alt, J. N., Cluff, L. S., and Plafker, G.:
Evidence for the recurrence of large-magnitude earthquake along the Makran coast of Iran and Pakistan,
Tectonophysics,
52, 533–547, https://doi.org/10.1016/0040-1951(79)90269-5, 1979.
Parham, P. R., Riggs, S. R., Culver, S. J., Mallinson, D. J., Jack Rink, W., and Burdette, K.:
Quaternary coastal lithofacies, sequence development and stratigraphy in a passive margin setting, North Carolina and Virginia, USA,
Sedimentology,
60, 503–547, https://doi.org/10.1111/j.1365-3091.2012.01349.x, 2013.
Perg, L. A., Anderson, R. S., and Finkel, R. C.:
Use of a new 10Be and 26Al inventory method to date marine terraces, Santa Cruz, California, USA,
Geology,
29, 879–882, https://doi.org/10.1130/0091-7613(2001)029<0879:UOANBA>2.0.CO;2, 2001.
Pinter, N., Johns, B., Little, B., and Vestal, W. D.:
Fault-related folding in California's Northern Channel Islands documented by rapid-static GPS positioning,
GSA Today,
11, 4–9, https://doi.org/10.1130/1052-5173(2001)011<0004:FRFICN>2.0.CO;2, 2001.
Potter, E. K. and Lambeck, K.:
Reconciliation of sea-level observations in the Western North Atlantic during the last glacial cycle,
Earth Planet. Sc. Lett.,
217, 171–181, https://doi.org/10.1016/S0012-821X(03)00587-9, 2004.
Potter, E. K., Esat, T. M., Schellmann, G., Radtke, U., Lambeck, K., and McCulloch, M. T.:
Suborbital-period sea-level oscillations during marine isotope substages 5a and 5c,
Earth Planet. Sc. Lett.,
225, 191–204, https://doi.org/10.1016/j.epsl.2004.05.034, 2004.
Railsback, L. B., Gibbard, P. L., Head, M. J., Voarintsoa, N. R. G., and Toucanne, S.:
An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages,
Quaternary Sci. Rev.,
111, 94–106, https://doi.org/10.1016/j.quascirev.2015.01.012, 2015.
Reyss, J. L., Pirazzoli, P. A., Haghipour, A., Hatté, C., and Fontugne, M.:
Quaternary marine terraces and tectonic uplift rates on the south coast of Iran,
Geol. Soc. Spec. Publ.,
146, 225–237, https://doi.org/10.1144/GSL.SP.1999.146.01.13, 1998.
Ringor, C. L., Omura, A., and Maeda, Y.:
Last Interglacial Terraces Sea Level in Southwest Changes Deduced Central from Coral Reef Terraces in Southwest Bohol, Central Philippines,
Quaternary Res.,
46, 401–416, https://doi.org/10.4116/jaqua.43.401, 2004.
Rockwell, T. K., Muhs, D. R., Kennedy, G. L., Hatch, M. E., Wilson, S. H., and Klinger, R. E.:
Uranium-Series Ages, Faunal Correlations and Tectonic Deformation of Marine Terraces Within the Agua Blanca Fault Zone at Punta Banda, Northern Baja California, Mexico, Geologic Studies in Baja California,
Pacific Section, Society of
Economic Paleontologists and Mineralogists, Los Angeles, California, USA, 1–16, 1989.
Rockwell, T. K., Nolan, J., Johnson, D. L., and Patterson, R. H.:
Age and Deformation of Marine Terraces Between Point Conception and Gaviota, Western Traverse Ranges, California,
in: Quaternary coasts of the United States,
edited by: Fletcher, C. H. and Wehmiller, J. F.,
SEPM Society for Sedimentary Geology, Tulsa, Oklahoma, USA, 333–341, 1992.
Rovere, A., Raymo, M. E., Vacchi, M., Lorscheid, T., Stocchi, P., Gómez-Pujol, L., Harris, D. L., Casella, E., O'Leary, M. J., and Hearty, P. J.:
The analysis of Last Interglacial (MIS 5e) relative sea-level indicators: Reconstructing sea-level in a warmer world,
Earth-Sci. Rev.,
159, 404–427, https://doi.org/10.1016/j.earscirev.2016.06.006, 2016.
Rovere, A., Ryan, D., Murray-Wallace, C., Simms, A., Vacchi, M., Dutton, A., and Gowan, E.:
Descriptions of database fields for the World Atlas of Last Interglacial Shorelines (WALIS) (Version 1,0),
Zenodo,
https://doi.org/10.5281/zenodo.3961544, 2020.
Schellmann, G. and Radtke, U.:
A revised morpho- and chronostratigraphy of the Late and Middle Pleistocene coral reef terraces on Southern Barbados (West Indies),
Earth-Sci Rev.,
64, 157–187, 2004.
Schwebel, D. A.: Quaternary Stratigraphy and Sea-Level Variation
in the Southeast of South Australia, in: Coastal Geomorphology in Australia, edited by: Thom,
B. G., Academic Press, Sydney, 291–311, 1984.
Sherman, C. E., Fletcher, C. H., Rubin, K. H., Simmons, K. R., and Adey, W. H.:
Sea-level and reef accretion history of Marine Oxygen Isotope Stage 7 and late Stage 5 based on age and facies of submerged late Pleistocene reefs, Oahu, Hawaii,
Quaternary Res.,
81, 138–150, https://doi.org/10.1016/j.yqres.2013.11.001, 2014.
Simms, A. R., DeWitt, R., Rodriguez, A. B., Lambeck, K., and Anderson, J. B.:
Revisiting marine isotope stage 3 and 5a (MIS3-5a) sea levels within the northwestern Gulf of Mexico,
Global Planet. Change,
66, 100–111, https://doi.org/10.1016/j.gloplacha.2008.03.014, 2009.
Simms, A. R., Rouby, H., and Lambeck, K.:
Marine terraces and rates of vertical tectonic motion: The importance of glacio-isostatic adjustment along the Pacific coast of central North America,
Bull. Geol. Soc. Am.,
128, 81–93, https://doi.org/10.1130/B31299.1, 2016.
Sprigg, R. C.:
Stranded Pleistocene sea beaches of South Australia and aspects of the theories of Milankovitch and Zeuner,
Int. Geol. Congr. (XVI. II, GB, 1948), 1952.
Szabo, B. J.:
Uranium-series dating of fossil corals from marine sediments of southeastern United States Atlantic Coastal Plain,
Geol. Soc. Am. Bull.,
96, 398–406, https://doi.org/10.1130/0016-7606(1985)96<398:UDOFCF>2.0.CO;2, 1985.
Szabo, B. J. and Rosholt, J. N.:
Uranium-series dating of Pleistocene molluscan shells from southern California-An open system model,
J. Geophys. Res.,
74, 3253–3260, https://doi.org/10.1029/jb074i012p03253, 1969.
Thompson, S. and Creveling, J. R.:
WALIS Spreadsheet Thompson Creveling,
Zenodo,
https://doi.org/10.5281/zenodo.5021306, 2021.
Thurber, D. L., Broecker, W. S., Blanchard, R. L., and Potratz, H. A.:
Uranium-series ages of Pacific atoll coral,
Science
149, 55–58, 1965.
Toscano, M. A. and Lundberg, J.:
Submerged late pleistocene reefs on the tectonically-stable S. E. Florida margin: High-precision geochronology, stratigraphy, resolution of substage 5a sea-level elevation, and orbital forcing,
Quaternary Sci. Rev.,
18, 753–767, https://doi.org/10.1016/S0277-3791(98)00077-8, 1999.
Vacchi, M., Montefalcone, M., Schiaffino, C. F., Parravicini, V., Bianchi, C. N., Morri, C., and Ferrari, M.:
Towards a predictive model to assess the natural position of the Posidonia oceanica seagrass meadows upper limit,
Mar. Pollut. Bull.,
83, 458–466, 2014.
Vacher, H. L. and Hearty, P.:
History of stage 5 sea level in Bermuda: Review with new evidence of a brief rise to present sea level during Substage 5a,
Quaternary Sci. Rev.,
8, 159–168, https://doi.org/10.1016/0277-3791(89)90004-8, 1989.
Valensise, G. and Ward, S. N.:
Long-term uplift of the Santa Cruz coastline in response to repeated earthquakes along the San Andreas Fault,
B. Seismol. Soc. Am.,
81, 1694–1704, 1991.
Vedder, J. G. and Norris, R. M.:
Geology of San Nicolas Island California, US Geological Survey Professional Paper,
369, 65 pp., 1963.
Vedder, J. G., Yerkes, R. F., and Schoelhamer, J. E.:
Geologic map of the San Joaquin Hills–San Juan Capistrano area, Orange County, California,
U. S. Geological Survey Oil and Gas Investigations, Washington, D.C., USA, 1957.
Veeh, H. H. and Chappell, J.:
Astronomical Theory of Climatic Change, Support from New Guinea,
Science,
167, 862–865, https://doi.org/10.1126/science.167.3919.862, 1970.
Wehmiller, J. F., Simmons, K. R., Cheng, H., Edwards, R. L., Martin-McNaughton, J., York, L. L., Krantz, D. E., and Shen, C. C.:
Uranium-series coral ages from the US Atlantic Coastal Plain-the “80 ka problem” revisited,
Quatern. Int.,
120, 3–14, https://doi.org/10.1016/j.quaint.2004.01.002, 2004.
Wehmiller, J. F., Brothers, L. L., Ramsey, K. W., Foster, D. S., and Mattheus, C. R.:
Molluscan aminonstratigraphy of the US Mid-Atlantic Quaternary coastal system: implications for onshore-offshore correlation, paleochannel and barrier island evolution, and local late Quaternary sea-level history,
Quat. Geochronol., 101177,
https://doi.org/10.1016/j.quageo.2021.101177, in press,
2021a.
Wehmiller, J. F.:
May 2nd: Summary of Amino Acid Racemization data and associated geochronological data,
US Atlantic Coastal Plain,
available at: https://arcg.is/1L0uyK, last access: 7 July 2021b.
Woodring, W. P., Brown, J. S., and Burbank, W. S.:
Geology of the Republic of Haiti,
Lord Baltimore Press, Port-au-Prince, Haiti, 631 pp., 1924.
Woodring, W. P., Bramlette, M. N., and Kew, W. S. W.:
Geology and Paleontology of Palos Verdes Hills, California,
U.S. Government Printing Office, District of
Columbia, USA, 145, 1946.
Short summary
The elevations of geological indicators of past sea level inform paleoclimate reconstructions of interglacial intervals, including changes in ice volume and equivalent sea level rise and fall. In this review article, we summarize previously reported elevations and chronologies of a global set of ~80 000- and ~100 000-year-old interglacial shorelines and compile these in the open-source World Atlas of Last Interglacial Shorelines (WALIS) database for further paleoclimate analysis.
The elevations of geological indicators of past sea level inform paleoclimate reconstructions of...
Special issue
Altmetrics
Final-revised paper
Preprint