Articles | Volume 13, issue 7
https://doi.org/10.5194/essd-13-3337-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-3337-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
EMDNA: an Ensemble Meteorological Dataset for North America
Centre for Hydrology, University of Saskatchewan, Canmore, Alberta,
Canada
Martyn P. Clark
Centre for Hydrology, University of Saskatchewan, Canmore, Alberta,
Canada
Department of Geography and Planning, University of Saskatchewan,
Saskatchewan, Canada
Simon Michael Papalexiou
Centre for Hydrology, University of Saskatchewan, Saskatoon,
Saskatchewan, Canada
Department of Civil, Geological and Environmental Engineering,
University of Saskatchewan, Saskatchewan, Canada
Andrew J. Newman
National Center for Atmospheric Research, Boulder, Colorado, USA
Andrew W. Wood
National Center for Atmospheric Research, Boulder, Colorado, USA
Dominique Brunet
Meteorological Research Division, Environment and Climate Change
Canada, Toronto, Ontario, Canada
Paul H. Whitfield
Centre for Hydrology, University of Saskatchewan, Canmore, Alberta,
Canada
Related authors
Mozhgan A. Farahani, Andrew W. Wood, Guoqiang Tang, and Naoki Mizukami
Hydrol. Earth Syst. Sci., 29, 4515–4537, https://doi.org/10.5194/hess-29-4515-2025, https://doi.org/10.5194/hess-29-4515-2025, 2025
Short summary
Short summary
We present a new strategy to calibrate large-domain land/hydrology models over diverse regions. Using the Structure for Unifying Multiple Modeling Alternatives (SUMMA) and mizuRoute models, our approach integrates catchment attributes, parameters, and performance metrics to optimize streamflow simulations. Leveraging advances in machine learning for hydrology, we improve calibration and enable regionalization to ungauged basins, which is valuable for national-scale water security studies.
Guoqiang Tang, Andrew W. Wood, Andrew J. Newman, Martyn P. Clark, and Simon Michael Papalexiou
Geosci. Model Dev., 17, 1153–1173, https://doi.org/10.5194/gmd-17-1153-2024, https://doi.org/10.5194/gmd-17-1153-2024, 2024
Short summary
Short summary
Ensemble geophysical datasets are crucial for understanding uncertainties and supporting probabilistic estimation/prediction. However, open-access tools for creating these datasets are limited. We have developed the Python-based Geospatial Probabilistic Estimation Package (GPEP). Through several experiments, we demonstrate GPEP's ability to estimate precipitation, temperature, and snow water equivalent. GPEP will be a useful tool to support uncertainty analysis in Earth science applications.
Guoqiang Tang, Martyn P. Clark, Andrew J. Newman, Andrew W. Wood, Simon Michael Papalexiou, Vincent Vionnet, and Paul H. Whitfield
Earth Syst. Sci. Data, 12, 2381–2409, https://doi.org/10.5194/essd-12-2381-2020, https://doi.org/10.5194/essd-12-2381-2020, 2020
Short summary
Short summary
Station observations are critical for hydrological and meteorological studies, but they often contain missing values and have short measurement periods. This study developed a serially complete dataset for North America (SCDNA) from 1979 to 2018 for 27 276 precipitation and temperature stations. SCDNA is built on multiple data sources and infilling/reconstruction strategies to achieve high-quality estimates which can be used for a variety of applications.
Rajani Kumar Pradhan, Yannis Markonis, Francesco Marra, Efthymios I. Nikolopoulos, Simon Michael Papalexiou, and Vincenzo Levizzani
Hydrol. Earth Syst. Sci., 29, 4929–4949, https://doi.org/10.5194/hess-29-4929-2025, https://doi.org/10.5194/hess-29-4929-2025, 2025
Short summary
Short summary
This study compared global satellite and reanalysis precipitation datasets to assess diurnal variability. We found that all datasets capture key diurnal precipitation patterns, with maximum precipitation in the afternoon over land and early morning over the ocean. However, there are differences in the exact timing and amount of precipitation. This suggests that it is better to use a combination of datasets for potential applications rather than relying on a single dataset.
Mozhgan A. Farahani, Andrew W. Wood, Guoqiang Tang, and Naoki Mizukami
Hydrol. Earth Syst. Sci., 29, 4515–4537, https://doi.org/10.5194/hess-29-4515-2025, https://doi.org/10.5194/hess-29-4515-2025, 2025
Short summary
Short summary
We present a new strategy to calibrate large-domain land/hydrology models over diverse regions. Using the Structure for Unifying Multiple Modeling Alternatives (SUMMA) and mizuRoute models, our approach integrates catchment attributes, parameters, and performance metrics to optimize streamflow simulations. Leveraging advances in machine learning for hydrology, we improve calibration and enable regionalization to ungauged basins, which is valuable for national-scale water security studies.
Simon Moulds, Louise Slater, Louise Arnal, and Andrew W. Wood
Hydrol. Earth Syst. Sci., 29, 2393–2406, https://doi.org/10.5194/hess-29-2393-2025, https://doi.org/10.5194/hess-29-2393-2025, 2025
Short summary
Short summary
Seasonal streamflow forecasts are an important component of flood risk management. Here, we train and test a machine learning model to predict the monthly maximum daily streamflow up to 4 months ahead. We train the model on precipitation and temperature forecasts to produce probabilistic hindcasts for 579 stations across the UK for the period 2004–2016. We show skilful results up to 4 months ahead in many locations, although, in general, the skill declines with increasing lead time.
Wouter J. M. Knoben, Ashwin Raman, Gaby J. Gründemann, Mukesh Kumar, Alain Pietroniro, Chaopeng Shen, Yalan Song, Cyril Thébault, Katie van Werkhoven, Andrew W. Wood, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 29, 2361–2375, https://doi.org/10.5194/hess-29-2361-2025, https://doi.org/10.5194/hess-29-2361-2025, 2025
Short summary
Short summary
Hydrologic models are needed to provide simulations of water availability, floods, and droughts. The accuracy of these simulations is often quantified with so-called performance scores. A common thought is that different models are more or less applicable to different landscapes, depending on how the model works. We show that performance scores are not helpful in distinguishing between different models and thus cannot easily be used to select an appropriate model for a specific place.
Mari R. Tye, Ming Ge, Jadwiga H. Richter, Ethan D. Gutmann, Allyson Rugg, Cindy L. Bruyère, Sue Ellen Haupt, Flavio Lehner, Rachel McCrary, Andrew J. Newman, and Andy Wood
Hydrol. Earth Syst. Sci., 29, 1117–1133, https://doi.org/10.5194/hess-29-1117-2025, https://doi.org/10.5194/hess-29-1117-2025, 2025
Short summary
Short summary
There is a perceived mismatch between the spatial scales on which global climate models can produce data and those needed for water management decisions. However, poor communication of specific metrics relevant to local decisions is also a problem. We assessed the credibility of a set of water management decision metrics in the Community Earth System Model v2 (CESM2). CESM2 shows potentially greater use of its output in long-range water management decisions.
Kevin R. Shook, Paul H. Whitfield, Christopher Spence, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 28, 5173–5192, https://doi.org/10.5194/hess-28-5173-2024, https://doi.org/10.5194/hess-28-5173-2024, 2024
Short summary
Short summary
Recent studies suggest that the velocities of water running off landscapes in the Canadian Prairies may be much smaller than generally assumed. Analyses of historical flows for 23 basins in central Alberta show that many of the rivers responded more slowly and that the flows are much slower than would be estimated from equations developed elsewhere. The effects of slow flow velocities on the development of hydrological models of the region are discussed, as are the possible causes.
Shervan Gharari, Paul H. Whitfield, Alain Pietroniro, Jim Freer, Hongli Liu, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 28, 4383–4405, https://doi.org/10.5194/hess-28-4383-2024, https://doi.org/10.5194/hess-28-4383-2024, 2024
Short summary
Short summary
This study provides insight into the practices that are incorporated into discharge estimation across the national Canadian hydrometric network operated by the Water Survey of Canada (WSC). The procedures used to estimate and correct discharge values are not always understood by end-users. Factors such as ice cover and sedimentation limit accurate discharge estimation. Highlighting these challenges sheds light on difficulties in discharge estimation and the associated uncertainty.
Louise Arnal, Martyn P. Clark, Alain Pietroniro, Vincent Vionnet, David R. Casson, Paul H. Whitfield, Vincent Fortin, Andrew W. Wood, Wouter J. M. Knoben, Brandi W. Newton, and Colleen Walford
Hydrol. Earth Syst. Sci., 28, 4127–4155, https://doi.org/10.5194/hess-28-4127-2024, https://doi.org/10.5194/hess-28-4127-2024, 2024
Short summary
Short summary
Forecasting river flow months in advance is crucial for water sectors and society. In North America, snowmelt is a key driver of flow. This study presents a statistical workflow using snow data to forecast flow months ahead in North American snow-fed rivers. Variations in the river flow predictability across the continent are evident, raising concerns about future predictability in a changing (snow) climate. The reproducible workflow hosted on GitHub supports collaborative and open science.
Tek Kshetri, Amir Khatibi, Yiwen Mok, Shahabul Alam, Hongli Liu, and Martyn P. Clark
EGUsphere, https://doi.org/10.5194/egusphere-2023-3049, https://doi.org/10.5194/egusphere-2023-3049, 2024
Preprint withdrawn
Short summary
Short summary
This study reveals a crucial discovery: when tweaking model parameters, similar performance metrics might mislead—different parameter settings can yield comparable results in snow depth predictions. This "equifinality" challenges past studies, suggesting that evaluating model tweaks based on performance alone might not reflect actual variations in snow depth forecasts.
Guoqiang Tang, Andrew W. Wood, Andrew J. Newman, Martyn P. Clark, and Simon Michael Papalexiou
Geosci. Model Dev., 17, 1153–1173, https://doi.org/10.5194/gmd-17-1153-2024, https://doi.org/10.5194/gmd-17-1153-2024, 2024
Short summary
Short summary
Ensemble geophysical datasets are crucial for understanding uncertainties and supporting probabilistic estimation/prediction. However, open-access tools for creating these datasets are limited. We have developed the Python-based Geospatial Probabilistic Estimation Package (GPEP). Through several experiments, we demonstrate GPEP's ability to estimate precipitation, temperature, and snow water equivalent. GPEP will be a useful tool to support uncertainty analysis in Earth science applications.
Mijael Rodrigo Vargas Godoy, Yannis Markonis, Oldrich Rakovec, Michal Jenicek, Riya Dutta, Rajani Kumar Pradhan, Zuzana Bešťáková, Jan Kyselý, Roman Juras, Simon Michael Papalexiou, and Martin Hanel
Hydrol. Earth Syst. Sci., 28, 1–19, https://doi.org/10.5194/hess-28-1-2024, https://doi.org/10.5194/hess-28-1-2024, 2024
Short summary
Short summary
The study introduces a novel benchmarking method based on the water cycle budget for hydroclimate data fusion. Using this method and multiple state-of-the-art datasets to assess the spatiotemporal patterns of water cycle changes in Czechia, we found that differences in water availability distribution are dominated by evapotranspiration. Furthermore, while the most significant temporal changes in Czechia occur during spring, the median spatial patterns stem from summer changes in the water cycle.
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023, https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Short summary
Hybrid forecasting systems combine data-driven methods with physics-based weather and climate models to improve the accuracy of predictions for meteorological and hydroclimatic events such as rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. We review recent developments in hybrid forecasting and outline key challenges and opportunities in the field.
Andrew M. Ireson, Raymond J. Spiteri, Martyn P. Clark, and Simon A. Mathias
Geosci. Model Dev., 16, 659–677, https://doi.org/10.5194/gmd-16-659-2023, https://doi.org/10.5194/gmd-16-659-2023, 2023
Short summary
Short summary
Richards' equation (RE) is used to describe the movement and storage of water in a soil profile and is a component of many hydrological and earth-system models. Solving RE numerically is challenging due to the non-linearities in the properties. Here, we present a simple but effective and mass-conservative solution to solving RE, which is ideal for teaching/learning purposes but also useful in prototype models that are used to explore alternative process representations.
Ulises M. Sepúlveda, Pablo A. Mendoza, Naoki Mizukami, and Andrew J. Newman
Hydrol. Earth Syst. Sci., 26, 3419–3445, https://doi.org/10.5194/hess-26-3419-2022, https://doi.org/10.5194/hess-26-3419-2022, 2022
Short summary
Short summary
This paper characterizes parameter sensitivities across more than 5500 grid cells for a commonly used macroscale hydrological model, including a suite of eight performance metrics and 43 soil, vegetation and snow parameters. The results show that the model is highly overparameterized and, more importantly, help to provide guidance on the most relevant parameters for specific target processes across diverse climatic types.
Inne Vanderkelen, Shervan Gharari, Naoki Mizukami, Martyn P. Clark, David M. Lawrence, Sean Swenson, Yadu Pokhrel, Naota Hanasaki, Ann van Griensven, and Wim Thiery
Geosci. Model Dev., 15, 4163–4192, https://doi.org/10.5194/gmd-15-4163-2022, https://doi.org/10.5194/gmd-15-4163-2022, 2022
Short summary
Short summary
Human-controlled reservoirs have a large influence on the global water cycle. However, dam operations are rarely represented in Earth system models. We implement and evaluate a widely used reservoir parametrization in a global river-routing model. Using observations of individual reservoirs, the reservoir scheme outperforms the natural lake scheme. However, both schemes show a similar performance due to biases in runoff timing and magnitude when using simulated runoff.
Andrew J. Newman, Amanda G. Stone, Manabendra Saharia, Kathleen D. Holman, Nans Addor, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 5603–5621, https://doi.org/10.5194/hess-25-5603-2021, https://doi.org/10.5194/hess-25-5603-2021, 2021
Short summary
Short summary
This study assesses methods that estimate flood return periods to identify when we would obtain a large flood return estimate change if the method or input data were changed (sensitivities). We include an examination of multiple flood-generating models, which is a novel addition to the flood estimation literature. We highlight the need to select appropriate flood models for the study watershed. These results will help operational water agencies develop more robust risk assessments.
Peter T. La Follette, Adriaan J. Teuling, Nans Addor, Martyn Clark, Koen Jansen, and Lieke A. Melsen
Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021, https://doi.org/10.5194/hess-25-5425-2021, 2021
Short summary
Short summary
Hydrological models are useful tools that allow us to predict distributions and movement of water. A variety of numerical methods are used by these models. We demonstrate which numerical methods yield large errors when subject to extreme precipitation. As the climate is changing such that extreme precipitation is more common, we find that some numerical methods are better suited for use in hydrological models. Also, we find that many current hydrological models use relatively inaccurate methods.
Manuela I. Brunner, Eric Gilleland, and Andrew W. Wood
Earth Syst. Dynam., 12, 621–634, https://doi.org/10.5194/esd-12-621-2021, https://doi.org/10.5194/esd-12-621-2021, 2021
Short summary
Short summary
Compound hot and dry events can lead to severe impacts whose severity may depend on their timescale and spatial extent. Here, we show that the spatial extent and timescale of compound hot–dry events are strongly related, spatial compound event extents are largest at
sub-seasonal timescales, and short events are driven more by high temperatures, while longer events are more driven by low precipitation. Future climate impact studies should therefore be performed at different timescales.
Paul H. Whitfield, Philip D. A. Kraaijenbrink, Kevin R. Shook, and John W. Pomeroy
Hydrol. Earth Syst. Sci., 25, 2513–2541, https://doi.org/10.5194/hess-25-2513-2021, https://doi.org/10.5194/hess-25-2513-2021, 2021
Short summary
Short summary
Using only warm season streamflow records, regime and change classifications were produced for ~ 400 watersheds in the Nelson and Mackenzie River basins, and trends in water storage and vegetation were detected from satellite imagery. Three areas show consistent changes: north of 60° (increased streamflow and basin greenness), in the western Boreal Plains (decreased streamflow and basin greenness), and across the Prairies (three different patterns of increased streamflow and basin wetness).
Manuela I. Brunner, Lieke A. Melsen, Andrew W. Wood, Oldrich Rakovec, Naoki Mizukami, Wouter J. M. Knoben, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 25, 105–119, https://doi.org/10.5194/hess-25-105-2021, https://doi.org/10.5194/hess-25-105-2021, 2021
Short summary
Short summary
Assessments of current, local, and regional flood hazards and their future changes often involve the use of hydrologic models. A reliable model ideally reproduces both local flood characteristics and regional aspects of flooding. In this paper we investigate how such characteristics are represented by hydrologic models. Our results show that both the modeling of local and regional flood characteristics are challenging, especially under changing climate conditions.
Shervan Gharari, Martyn P. Clark, Naoki Mizukami, Wouter J. M. Knoben, Jefferson S. Wong, and Alain Pietroniro
Hydrol. Earth Syst. Sci., 24, 5953–5971, https://doi.org/10.5194/hess-24-5953-2020, https://doi.org/10.5194/hess-24-5953-2020, 2020
Short summary
Short summary
This work explores the trade-off between the accuracy of the representation of geospatial data, such as land cover, soil type, and elevation zones, in a land (surface) model and its performance in the context of modeling. We used a vector-based setup instead of the commonly used grid-based setup to identify this trade-off. We also assessed the often neglected parameter uncertainty and its impact on the land model simulations.
Guoqiang Tang, Martyn P. Clark, Andrew J. Newman, Andrew W. Wood, Simon Michael Papalexiou, Vincent Vionnet, and Paul H. Whitfield
Earth Syst. Sci. Data, 12, 2381–2409, https://doi.org/10.5194/essd-12-2381-2020, https://doi.org/10.5194/essd-12-2381-2020, 2020
Short summary
Short summary
Station observations are critical for hydrological and meteorological studies, but they often contain missing values and have short measurement periods. This study developed a serially complete dataset for North America (SCDNA) from 1979 to 2018 for 27 276 precipitation and temperature stations. SCDNA is built on multiple data sources and infilling/reconstruction strategies to achieve high-quality estimates which can be used for a variety of applications.
Cited articles
Aalto, J., Pirinen, P., and Jylhä, K.: New gridded daily climatology of
Finland: Permutation-based uncertainty estimates and temporal trends in
climate, J. Geophys. Res.-Atmos., 121, 3807–3823,
https://doi.org/10.1002/2015JD024651, 2016.
Adler, R. F., Gu, G. J., Sapiano, M., Wang, J. J., and Huffman, G. J.:
Global Precipitation: Means, Variations and Trends During the Satellite Era
(1979–2014), Surv. Geophys., 38, 679–699,
https://doi.org/10.1007/s10712-017-9416-4, 2017.
Arias-Hidalgo, M., Bhattacharya, B., Mynett, A. E., and van Griensven, A.: Experiences in using the TMPA-3B42R satellite data to complement rain gauge measurements in the Ecuadorian coastal foothills, Hydrol. Earth Syst. Sci., 17, 2905–2915, https://doi.org/10.5194/hess-17-2905-2013, 2013.
Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J., and Wood, E. F.: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling, Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, 2017.
Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., van Dijk,
A. I. J. M., McVicar, T. R., and Adler, R. F.: MSWEP V2 Global 3-Hourly
0.1∘ Precipitation: Methodology and Quantitative Assessment, B.
Am. Meteorol. Soc., 100, 473–500, https://doi.org/10.1175/BAMS-D-17-0138.1,
2019.
Beck, H. E., Wood, E. F., McVicar, T. R., Zambrano-Bigiarini, M.,
Alvarez-Garreton, C., Baez-Villanueva, O. M., Sheffield, J., and Karger, D.
N.: Bias Correction of Global High-Resolution Precipitation Climatologies
Using Streamflow Observations from 9372 Catchments, J. Clim., 33,
1299–1315, https://doi.org/10.1175/JCLI-D-19-0332.1, 2020.
Brier, G. W.: Verification of forecasts expressed in terms of probability,
Mon. Weather Rev., 78, 1–3,
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2, 1950.
Bromwich, D. H., Wilson, A. B., Bai, L., Liu, Z., Barlage, M., Shih, C.-F.,
Maldonado, S., Hines, K. M., Wang, S.-H., and Woollen, J.: The Arctic system
reanalysis, version 2, B. Am. Meteorol. Soc., 99, 805–828, 2018.
Caillouet, L., Vidal, J.-P., Sauquet, E., Graff, B., and Soubeyroux, J.-M.: SCOPE Climate: a 142-year daily high-resolution ensemble meteorological reconstruction dataset over France, Earth Syst. Sci. Data, 11, 241–260, https://doi.org/10.5194/essd-11-241-2019, 2019.
Cannon, A. J., Sobie, S. R., and Murdock, T. Q.: Bias Correction of GCM
Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in
Quantiles and Extremes?, J. Clim., 28, 6938–6959,
https://doi.org/10.1175/JCLI-D-14-00754.1, 2015.
Chen, Y., Yuan, W., Xia, J., Fisher, J. B., Dong, W., Zhang, X., Liang, S.,
Ye, A., Cai, W., and Feng, J.: Using Bayesian model averaging to estimate
terrestrial evapotranspiration in China, J. Hydrol., 528, 537–549,
https://doi.org/10.1016/j.jhydrol.2015.06.059, 2015.
Clark, M. P. and Hay, L. E.: Use of medium-range numerical weather
prediction model output to produce forecasts of streamflow, J.
Hydrometeorol., 5, 15–32, 2004.
Clark, M. P. and Slater, A. G.: Probabilistic Quantitative Precipitation
Estimation in Complex Terrain, J. Hydrometeorol., 7, 3–22,
https://doi.org/10.1175/JHM474.1, 2006.
Clark, M. P., Slater, A. G., Barrett, A. P., Hay, L. E., McCabe, G. J.,
Rajagopalan, B., and Leavesley, G. H.: Assimilation of snow covered area
information into hydrologic and land-surface models, Adv. Water Resour., 29,
1209–1221, https://doi.org/10.1016/j.advwatres.2005.10.001, 2006.
Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M., and Jones,
P. D.: An ensemble version of the E-OBS temperature and precipitation data
sets, J. Geophys. Res.-Atmos., 123, 9391–9409,
https://doi.org/10.1029/2017JD028200, 2018.
Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor,
G. H., Curtis, J., and Pasteris, P. P.: Physiographically sensitive mapping
of climatological temperature and precipitation across the conterminous
United States, Int. J. Climatol., 28, 2031–2064,
https://doi.org/10.1002/joc.1688, 2008.
Di Luzio, M., Johnson, G. L., Daly, C., Eischeid, J. K., and Arnold, J. G.:
Constructing Retrospective Gridded Daily Precipitation and Temperature
Datasets for the Conterminous United States, J. Appl. Meteorol. Climatol.,
47, 475–497, https://doi.org/10.1175/2007JAMC1356.1, 2008.
Dinku, T., Anagnostou, E. N., and Borga, M.: Improving radar-based
estimation of rainfall over complex terrain, J. Appl. Meteorol., 41,
1163–1178, 2002.
Donat, M. G., Sillmann, J., Wild, S., Alexander, L. V., Lippmann, T., and
Zwiers, F. W.: Consistency of Temperature and Precipitation Extremes across
Various Global Gridded In Situ and Reanalysis Datasets, J. Clim., 27,
5019–5035, https://doi.org/10.1175/JCLI-D-13-00405.1, 2014.
Duan, Q. and Phillips, T. J.: Bayesian estimation of local signal and noise
in multimodel simulations of climate change, J. Geophys. Res.-Atmos.,
115, D18123, https://doi.org/10.1029/2009JD013654, 2010.
Duan, S.-B. and Li, Z.-L.: Spatial Downscaling of MODIS Land Surface
Temperatures Using Geographically Weighted Regression: Case Study in
Northern China, IEEE Trans. Geosci. Remote Sens., 54, 6458–6469,
https://doi.org/10.1109/TGRS.2016.2585198, 2016.
Eischeid, J. K., Pasteris, P. A., Diaz, H. F., Plantico, M. S., and Lott, N.
J.: Creating a Serially Complete, National Daily Time Series of Temperature
and Precipitation for the Western United States, J. Appl. Meteorol., 39,
1580–1591, https://doi.org/10.1175/1520-0450(2000)039<1580:CASCND>2.0.CO;2, 2000.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1 km spatial resolution
climate surfaces for global land areas, Int. J. Climatol., 37, 4302–4315,
2017.
Folland, C. K.: Numerical models of the raingauge exposure problem, field
experiments and an improved collector design, Q. J. R. Meteor. Soc., 114,
1485–1516, https://doi.org/10.1002/qj.49711448407, 1988.
Fortin, V., Roy, G., Donaldson, N., and Mahidjiba, A.: Assimilation of radar
quantitative precipitation estimations in the Canadian Precipitation
Analysis (CaPA), J. Hydrol., 531, 296–307,
https://doi.org/10.1016/j.jhydrol.2015.08.003, 2015.
Fortin, V., Roy, G., Stadnyk, T., Koenig, K., Gasset, N., and Mahidjiba, A.:
Ten Years of Science Based on the Canadian Precipitation Analysis: A CaPA
System Overview and Literature Review, Atmos.-Ocean, 56, 178–196,
https://doi.org/10.1080/07055900.2018.1474728, 2018.
Frei, C. and Isotta, F. A.: Ensemble Spatial Precipitation Analysis From
Rain Gauge Data: Methodology and Application in the European Alps, J.
Geophys. Res.-Atmos., 124, 5757–5778,
https://doi.org/10.1029/2018JD030004, 2019.
Fuchs, T., Rapp, J., Rubel, F., and Rudolf, B.: Correction of synoptic
precipitation observations due to systematic measuring errors with special
regard to precipitation phases, Phys. Chem. Earth Pt. B, 26, 689–693, 2001.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S.,
Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The
climate hazards infrared precipitation with stations–a new environmental
record for monitoring extremes, Sci. Data, 2, 150066,
https://doi.org/10.1038/sdata.2015.66, 2015.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Clim., 30,
5419–5454, https://doi.org/10.1175/jcli-d-16-0758.1, 2017.
Goodison, B. E., Louie, P. Y., and Yang, D.: WMO solid precipitation
measurement intercomparison, Report no. 67, World Meteorological Organization, 1998.
Habib, E., Haile, A. T., Sazib, N., Zhang, Y., and Rientjes, T.: Effect of
Bias Correction of Satellite-Rainfall Estimates on Runoff Simulations at the
Source of the Upper Blue Nile, Remote Sens., 6, 6688–6708,
https://doi.org/10.3390/rs6076688, 2014.
Hamilton, A. S. and Moore, R. D.: Quantifying Uncertainty in Streamflow
Records, Can. Water Resour. J., 37, 3–21,
https://doi.org/10.4296/cwrj3701865, 2012.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU
TS monthly high-resolution gridded multivariate climate dataset, Sci. Data,
7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P.
D., and New, M.: A European daily high-resolution gridded data set of
surface temperature and precipitation for 1950–2006, J. Geophys. Res.-Atmos., 113, D20119, https://doi.org/10.1029/2008JD010201, 2008.
Hellinger, E.: Neue begründung der theorie quadratischer formen von
unendlichvielen veränderlichen, J.Reine Angew. Math. Crelles
J., 1909, 210–271, 1909.
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A trend-preserving bias correction – the ISI-MIP approach, Earth Syst. Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013.
Henn, B., Newman, A. J., Livneh, B., Daly, C., and Lundquist, J. D.: An
assessment of differences in gridded precipitation datasets in complex
terrain, J. Hydrol., 556, 1205–1219,
https://doi.org/10.1016/j.jhydrol.2017.03.008, 2018.
Herrnegger, M., Senoner, T., and Nachtnebel, H.-P.: Adjustment of
spatio-temporal precipitation patterns in a high Alpine environment, J.
Hydrol., 556, 913–921, https://doi.org/10.1016/j.jhydrol.2016.04.068, 2018.
Hersbach, H.: Decomposition of the continuous ranked probability score for
ensemble prediction systems, Weather Forecast., 15, 559–570, 2000.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G.,
de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.
Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T.: Bayesian
Model Averaging: A Tutorial, Stat. Sci., 14, 382–401, 1999.
Hong, Y., Hsu, K., Moradkhani, H., and Sorooshian, S.: Uncertainty
quantification of satellite precipitation estimation and Monte Carlo
assessment of the error propagation into hydrologic response, Water Resour.
Res., 42, W08421, https://doi.org/10.1029/2005wr004398, 2006.
Hu, Q., Li, Z., Wang, L., Huang, Y., Wang, Y., and Li, L.: Rainfall Spatial
Estimations: A Review from Spatial Interpolation to Multi-Source Data
Merging, Water, 11, 579, https://doi.org/10.3390/w11030579, 2019.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F.,
Gu, G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM Multisatellite
Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor
Precipitation Estimates at Fine Scales, J. Hydrometeorol., 8, 38–55,
https://doi.org/10.1175/jhm560.1, 2007.
Karger, D. N., Conrad, O., Bohner, J., Kawohl, T., Kreft, H., Soria-Auza, R.
W., Zimmermann, N. E., Linder, H. P., and Kessler, M.: Climatologies at high
resolution for the earth's land surface areas, Sci. Data, 4, 170122,
https://doi.org/10.1038/sdata.2017.122, 2017.
Kemp, W. P., Burnell, D. G., Everson, D. O., and Thomson, A. J.: Estimating
Missing Daily Maximum and Minimum Temperatures, J. Clim. Appl. Meteorol.,
22, 1587–1593, https://doi.org/10.1175/1520-0450(1983)022<1587:EMDMAM>2.0.CO;2, 1983.
Khedhaouiria, D., Bélair, S., Fortin, V., Roy, G., and Lespinas, F.:
High Resolution (2.5 km) Ensemble Precipitation Analysis across Canada, J.
Hydrometeorol., 21, 2023–2039, https://doi.org/10.1175/JHM-D-19-0282.1, 2020.
Kiang, J. E., Gazoorian, C., McMillan, H., Coxon, G., Coz, J. L.,
Westerberg, I. K., Belleville, A., Sevrez, D., Sikorska, A. E.,
Petersen-Øverleir, A., Reitan, T., Freer, J., Renard, B., Mansanarez, V.,
and Mason, R.: A Comparison of Methods for Streamflow Uncertainty
Estimation, Water Resour. Res., 54, 7149–7176,
https://doi.org/10.1029/2018WR022708, 2018.
Kirstetter, P.-E., Gourley, J. J., Hong, Y., Zhang, J., Moazamigoodarzi, S.,
Langston, C., and Arthur, A.: Probabilistic precipitation rate estimates
with ground-based radar networks, Water Resour. Res., 51, 1422–1442,
https://doi.org/10.1002/2014WR015672, 2015.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J.
Meteorol. Soc. Jpn. Ser. II, 93, 5–48,
https://doi.org/10.2151/jmsj.2015-001, 2015.
Kochendorfer, J., Nitu, R., Wolff, M., Mekis, E., Rasmussen, R., Baker, B., Earle, M. E., Reverdin, A., Wong, K., Smith, C. D., Yang, D., Roulet, Y.-A., Meyers, T., Buisan, S., Isaksen, K., Brækkan, R., Landolt, S., and Jachcik, A.: Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE, Hydrol. Earth Syst. Sci., 22, 1437–1452, https://doi.org/10.5194/hess-22-1437-2018, 2018.
Lader, R., Bhatt, U. S., Walsh, J. E., Rupp, T. S., and Bieniek, P. A.:
Two-Meter Temperature and Precipitation from Atmospheric Reanalysis
Evaluated for Alaska, J. Appl. Meteorol. Climatol., 55, 901–922,
https://doi.org/10.1175/JAMC-D-15-0162.1, 2016.
Livneh, B., Rosenberg, E. A., Lin, C., Nijssen, B., Mishra, V., Andreadis,
K. M., Maurer, E. P., and Lettenmaier, D. P.: A Long-Term Hydrologically
Based Dataset of Land Surface Fluxes and States for the Conterminous United
States: Update and Extensions, J. Clim., 26, 9384–9392,
https://doi.org/10.1175/JCLI-D-12-00508.1, 2013.
Longman, R. J., Newman, A. J., Giambelluca, T. W., and Lucas, M.:
Characterizing the Uncertainty and Assessing the Value of Gap-Filled Daily
Rainfall Data in Hawaii, J. Appl. Meteorol. Climatol., 59, 1261–1276,
https://doi.org/10.1175/JAMC-D-20-0007.1, 2020.
Lu, X., Tang, G., Wang, X., Liu, Y., Wei, M., and Zhang, Y.: The Development
of a Two-Step Merging and Downscaling Method for Satellite Precipitation
Products, Remote Sens., 12, 398, https://doi.org/10.3390/rs12030398, 2020.
Ma, Y., Yang, Y., Han, Z., Tang, G., Maguire, L., Chu, Z., and Hong, Y.:
Comprehensive evaluation of Ensemble Multi-Satellite Precipitation Dataset
using the Dynamic Bayesian Model Averaging scheme over the Tibetan plateau,
J. Hydrol., 556, 634–644, https://doi.org/10.1016/j.jhydrol.2017.11.050,
2018a.
Ma, Y., Hong, Y., Chen, Y., Yang, Y., Tang, G., Yao, Y., Long, D., Li, C.,
Han, Z., and Liu, R.: Performance of Optimally Merged Multisatellite
Precipitation Products Using the Dynamic Bayesian Model Averaging Scheme
Over the Tibetan Plateau, J. Geophys. Res.-Atmos., 123, 814–834,
https://doi.org/10.1002/2017jd026648, 2018b.
Ma, Z., Xu, J., Zhu, S., Yang, J., Tang, G., Yang, Y., Shi, Z., and Hong, Y.: AIMERG: a new Asian precipitation dataset (0.1∘/half-hourly, 2000–2015) by calibrating the GPM-era IMERG at a daily scale using APHRODITE, Earth Syst. Sci. Data, 12, 1525–1544, https://doi.org/10.5194/essd-12-1525-2020, 2020.
Mahfouf, J.-F., Brasnett, B., and Gagnon, S.: A Canadian precipitation
analysis (CaPA) project: Description and preliminary results,
Atmos.-Ocean, 45, 1–17, https://doi.org/10.3137/ao.v450101, 2007.
Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., and Nijssen,
B.: A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and
States for the Conterminous United States, J. Clim., 15, 3237-3251, 2002.
Mears, C. A., Wentz, F. J., Thorne, P., and Bernie, D.: Assessing
uncertainty in estimates of atmospheric temperature changes from MSU and
AMSU using a Monte-Carlo estimation technique, J. Geophys. Res.-Atmos.,
116, D08112, https://doi.org/10.1029/2010JD014954, 2011.
Mendoza, P. A., Wood, A. W., Clark, E., Rothwell, E., Clark, M. P., Nijssen, B., Brekke, L. D., and Arnold, J. R.: An intercomparison of approaches for improving operational seasonal streamflow forecasts, Hydrol. Earth Syst. Sci., 21, 3915–3935, https://doi.org/10.5194/hess-21-3915-2017, 2017.
Mooney, P. A., Mulligan, F. J., and Fealy, R.: Comparison of ERA-40,
ERA-Interim and NCEP/NCAR reanalysis data with observed surface air
temperatures over Ireland, Int. J. Climatol., 31, 545–557,
https://doi.org/10.1002/joc.2098, 2011.
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying
uncertainties in global and regional temperature change using an ensemble of
observational estimates: The HadCRUT4 data set, J. Geophys. Res.-Atmos., 117, D08101, https://doi.org/10.1029/2011JD017187, 2012.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: A state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2021-82, in review, 2021.
Nešpor, V. and Sevruk, B.: Estimation of Wind-Induced Error of Rainfall
Gauge Measurements Using a Numerical Simulation, J. Atmos. Ocean.
Tech., 16, 450–464, https://doi.org/10.1175/1520-0426(1999)016<0450:EOWIEO>2.0.CO;2, 1999.
Newman, A. J. and Clark, M. P.: TIER version 1.0: an open-source Topographically InformEd Regression (TIER) model to estimate spatial meteorological fields, Geosci. Model Dev., 13, 1827–1843, https://doi.org/10.5194/gmd-13-1827-2020, 2020.
Newman, A. J., Clark, M. P., Craig, J., Nijssen, B., Wood, A., Gutmann, E.,
Mizukami, N., Brekke, L., and Arnold, J. R.: Gridded Ensemble Precipitation
and Temperature Estimates for the Contiguous United States, J.
Hydrometeorol., 16, 2481–2500, https://doi.org/10.1175/JHM-D-15-0026.1,
2015.
Newman, A. J., Clark, M. P., Longman, R. J., and Giambelluca, T. W.:
Methodological Intercomparisons of Station-Based Gridded Meteorological
Products: Utility, Limitations, and Paths Forward, J. Hydrometeorol., 20,
531–547, https://doi.org/10.1175/JHM-D-18-0114.1, 2019a.
Newman, A. J., Clark, M. P., Longman, R. J., Gilleland, E., Giambelluca, T.
W., and Arnold, J. R.: Use of Daily Station Observations to Produce
High-Resolution Gridded Probabilistic Precipitation and Temperature Time
Series for the Hawaiian Islands, J. Hydrometeorol., 20, 509–529,
https://doi.org/10.1175/JHM-D-18-0113.1, 2019b.
Newman, A. J., Clark, M. P., Wood, A. W., and Arnold, J. R.: Probabilistic
Spatial Meteorological Estimates for Alaska and the Yukon, J. Geophys. Res.-Atmos., 125, e2020JD032696, https://doi.org/10.1029/2020JD032696, 2020.
Papalexiou, S. M.: Unified theory for stochastic modelling of hydroclimatic
processes: Preserving marginal distributions, correlation structures, and
intermittency, Adv. Water Resour., 115, 234–252, 2018.
Papalexiou, S. M. and Koutsoyiannis, D.: Battle of extreme value
distributions: A global survey on extreme daily rainfall, Water Resour.
Res., 49, 187–201, https://doi.org/10.1029/2012WR012557, 2013.
Papalexiou, S. M. and Serinaldi, F.: Random Fields Simplified: Preserving
Marginal Distributions, Correlations, and Intermittency, With Applications
From Rainfall to Humidity, Water Resour. Res., 56, e2019WR026331,
https://doi.org/10.1029/2019WR026331, 2020.
Parker, W. S.: Reanalyses and Observations: What's the Difference?, B.
Am. Meteorol. Soc., 97, 1565–1572,
https://doi.org/10.1175/BAMS-D-14-00226.1, 2016.
Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski, M.: Using
Bayesian Model Averaging to Calibrate Forecast Ensembles, Mon. Weather Rev.,
133, 1155–1174, https://doi.org/10.1175/MWR2906.1, 2005.
Rodell, M., Beaudoing, H. K., L'Ecuyer, T. S., Olson, W. S., Famiglietti, J.
S., Houser, P. R., Adler, R., Bosilovich, M. G., Clayson, C. A., Chambers,
D., Clark, E., Fetzer, E. J., Gao, X., Gu, G., Hilburn, K., Huffman, G. J.,
Lettenmaier, D. P., Liu, W. T., Robertson, F. R., Schlosser, C. A.,
Sheffield, J., and Wood, E. F.: The Observed State of the Water Cycle in the
Early Twenty-First Century, J. Clim., 28, 8289–8318,
https://doi.org/10.1175/JCLI-D-14-00555.1, 2015.
Sampson, A. A., Wright, D. B., Stewart, R. D., and LoBue, A. C.: The role of
rainfall temporal and spatial averaging in seasonal simulations of the
terrestrial water balance, Hydrol. Process., 34, 2531–2542,
https://doi.org/10.1002/hyp.13745, 2020.
Scaff, L., Yang, D., Li, Y., and Mekis, E.: Inconsistency in precipitation measurements across the Alaska–Yukon border, The Cryosphere, 9, 2417–2428, https://doi.org/10.5194/tc-9-2417-2015, 2015.
Schepen, A. and Wang, Q. J.: Model averaging methods to merge operational
statistical and dynamic seasonal streamflow forecasts in Australia, Water
Resour. Res., 51, 1797–1812, https://doi.org/10.1002/2014WR016163, 2015.
Sevruk, B.: International comparison of national precipitation gauges with a
reference pit gauge, WMO Instrum. Obs. Methods Rep. No. 17, 111 pp., 1984.
Shen, Y., Zhao, P., Pan, Y., and Yu, J. J.: A high spatiotemporal
gauge-satellite merged precipitation analysis over China, J. Geophys.
Res.-Atmos., 119, 3063–3075, https://doi.org/10.1002/2013jd020686,
2014a.
Shen, Y., Zhao, P., Pan, Y., and Yu, J.: A high spatiotemporal
gauge-satellite merged precipitation analysis over China, J. Geophys. Res.-Atmos., 119, 3063–3075, https://doi.org/10.1002/2013JD020686, 2014b.
Shen, Y., Hong, Z., Pan, Y., Yu, J., and Maguire, L.: China's 1 km Merged
Gauge, Radar and Satellite Experimental Precipitation Dataset, Remote Sens.,
10, 264, https://doi.org/10.3390/rs10020264, 2018.
Sinclair, S. and Pegram, G.: Combining radar and rain gauge rainfall
estimates using conditional merging, Atmos. Sci. Lett., 6, 19–22,
https://doi.org/10.1002/asl.85, 2005.
Slater, A. G. and Clark, M. P.: Snow Data Assimilation via an Ensemble
Kalman Filter, J. Hydrometeorol., 7, 478–493,
https://doi.org/10.1175/JHM505.1, 2006.
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K.-L.: A
Review of Global Precipitation Data Sets: Data Sources, Estimation, and
Intercomparisons, Rev. Geophys., 56, 79–107, https://doi.org/10.1002/2017rg000574, 2018.
Tang, G., Zeng, Z., Long, D., Guo, X., Yong, B., Zhang, W., and Hong, Y.:
Statistical and Hydrological Comparisons between TRMM and GPM Level-3
Products over a Midlatitude Basin: Is Day-1 IMERG a Good Successor for TMPA
3B42V7?, J. Hydrometeorol., 17, 121–137,
https://doi.org/10.1175/jhm-d-15-0059.1, 2016.
Tang, G., Behrangi, A., Long, D., Li, C., and Hong, Y.: Accounting for
spatiotemporal errors of gauges: A critical step to evaluate gridded
precipitation products, J. Hydrol., 559, 294–306,
https://doi.org/10.1016/j.jhydrol.2018.02.057, 2018a.
Tang, G., Behrangi, A., Ma, Z., Long, D., and Hong, Y.: Downscaling of
ERA-Interim Temperature in the Contiguous United States and Its Implications
for Rain–Snow Partitioning, J. Hydrometeorol., 19, 1215–1233,
https://doi.org/10.1175/jhm-d-18-0041.1, 2018b.
Tang, G., Clark, M. P., Papalexiou, S. M., Newman, A. J., Wood, A. W.,
Brunet, D., and Whitfield, P. H.: EMDNA: Ensemble Meteorological Dataset for
North America [Dataset], FRDR, https://doi.org/10.20383/101.0275, 2020a.
Tang, G., Clark, M. P., Papalexiou, S. M., Ma, Z., and Hong, Y.: Have
satellite precipitation products improved over last two decades? A
comprehensive comparison of GPM IMERG with nine satellite and reanalysis
datasets, Remote Sens. Environ., 240, 111697,
https://doi.org/10.1016/j.rse.2020.111697, 2020b.
Tang, G., Clark, M. P., Newman, A. J., Wood, A. W., Papalexiou, S. M., Vionnet, V., and Whitfield, P. H.: SCDNA: a serially complete precipitation and temperature dataset for North America from 1979 to 2018, Earth Syst. Sci. Data, 12, 2381–2409, https://doi.org/10.5194/essd-12-2381-2020, 2020c.
Tang, G., Clark, M. P., and Papalexiou, S. M.: The use of serially complete
station data to improve the temporal continuity of gridded precipitation and
temperature estimates, J. Hydrometeorol., 22, 1553–1568, 2021.
Teutschbein, C. and Seibert, J.: Bias correction of regional climate model
simulations for hydrological climate-change impact studies: Review and
evaluation of different methods, J. Hydrol., 456–457, 12–29,
https://doi.org/10.1016/j.jhydrol.2012.05.052, 2012.
Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B.: The
Changing Character of Precipitation, B. Am. Meteorol. Soc., 84,
1205–1218, https://doi.org/10.1175/BAMS-84-9-1205, 2003.
Vila, D. A., de Goncalves, L. G. G., Toll, D. L., and Rozante, J. R.:
Statistical Evaluation of Combined Daily Gauge Observations and Rainfall
Satellite Estimates over Continental South America, J. Hydrometeorol., 10,
533–543, https://doi.org/10.1175/2008JHM1048.1, 2009.
Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., and
Viterbo, P.: The WFDEI meteorological forcing data set: WATCH Forcing Data
methodology applied to ERA-Interim reanalysis data, Water Resour. Res., 50,
7505–7514, https://doi.org/10.1002/2014wr015638, 2014.
Willkofer, F., Schmid, F.-J., Komischke, H., Korck, J., Braun, M., and
Ludwig, R.: The impact of bias correcting regional climate model results on
hydrological indicators for Bavarian catchments, J. Hydrol. Reg. Stud., 19,
25–41, https://doi.org/10.1016/j.ejrh.2018.06.010, 2018.
Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P.: Hydrologic
Implications of Dynamical and Statistical Approaches to Downscaling Climate
Model Outputs, Clim. Change, 62, 189–216,
https://doi.org/10.1023/B:CLIM.0000013685.99609.9e, 2004.
Wu, H., Adler, R. F., Tian, Y., Huffman, G. J., Li, H., and Wang, J.:
Real-time global flood estimation using satellite-based precipitation and a
coupled land surface and routing model, Water Resour. Res., 50, 2693–2717,
https://doi.org/10.1002/2013wr014710, 2014.
Xie, P. and Xiong, A.-Y.: A conceptual model for constructing
high-resolution gauge-satellite merged precipitation analyses, J. Geophys.
Res.-Atmos., 116, D21106, https://doi.org/10.1029/2011JD016118, 2011.
Xu, S., Wu, C., Wang, L., Gonsamo, A., Shen, Y., and Niu, Z.: A new
satellite-based monthly precipitation downscaling algorithm with
non-stationary relationship between precipitation and land surface
characteristics, Remote Sens. Environ., 162, 119–140,
https://doi.org/10.1016/j.rse.2015.02.024, 2015.
Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O'Loughlin, F.,
Neal, J. C., Sampson, C. C., Kanae, S., and Bates, P. D.: A high-accuracy
map of global terrain elevations, Geophys. Res. Lett., 44, 5844–5853,
https://doi.org/10.1002/2017GL072874, 2017.
Yang, D., Goodison, B. E., Ishida, S., and Benson, C. S.: Adjustment of
daily precipitation data at 10 climate stations in Alaska: Application of
World Meteorological Organization intercomparison results, Water Resour.
Res., 34, 241–256, https://doi.org/10.1029/97WR02681, 1998.
Yang, D., Kane, D., Zhang, Z., Legates, D., and Goodison, B.: Bias
corrections of long-term (1973-2004) daily precipitation data over the
northern regions, Geophys. Res. Lett., 32, L19501,
https://doi.org/10.1029/2005gl024057, 2005.
Yin, J., Gentine, P., Zhou, S., Sullivan, S. C., Wang, R., Zhang, Y., and
Guo, S.: Large increase in global storm runoff extremes driven by climate
and anthropogenic changes, Nat. Commun., 9, 4389,
https://doi.org/10.1038/s41467-018-06765-2, 2018.
Zhang, Y., Ren, Y., Ren, G., and Wang, G.: Bias Correction of Gauge Data and
its Effect on Precipitation Climatology over Mainland China, J. Appl.
Meteorol. Climatol., 58, 2177–2196,
https://doi.org/10.1175/JAMC-D-19-0049.1, 2019.
Short summary
Probabilistic estimates are useful to quantify the uncertainties in meteorological datasets. This study develops the Ensemble Meteorological Dataset for North America (EMDNA). EMDNA has 100 members with daily precipitation amount, mean daily temperature, and daily temperature range at 0.1° spatial resolution from 1979 to 2018. It is expected to be useful for hydrological and meteorological applications in North America.
Probabilistic estimates are useful to quantify the uncertainties in meteorological datasets....
Altmetrics
Final-revised paper
Preprint