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Abstract. Probabilistic methods are useful to estimate the uncertainty in spatial meteorological fields (e.g., the
uncertainty in spatial patterns of precipitation and temperature across large domains). In ensemble probabilis-
tic methods, “equally plausible” ensemble members are used to approximate the probability distribution, hence
the uncertainty, of a spatially distributed meteorological variable conditioned to the available information. The
ensemble members can be used to evaluate the impact of uncertainties in spatial meteorological fields for a myr-
iad of applications. This study develops the Ensemble Meteorological Dataset for North America (EMDNA).
EMDNA has 100 ensemble members with daily precipitation amount, mean daily temperature, and daily tem-
perature range at 0.1◦ spatial resolution (approx. 10 km grids) from 1979 to 2018, derived from a fusion of
station observations and reanalysis model outputs. The station data used in EMDNA are from a serially com-
plete dataset for North America (SCDNA) that fills gaps in precipitation and temperature measurements using
multiple strategies. Outputs from three reanalysis products are regridded, corrected, and merged using Bayesian
model averaging. Optimal interpolation (OI) is used to merge station- and reanalysis-based estimates. EMDNA
estimates are generated using spatiotemporally correlated random fields to sample from the OI estimates. Eval-
uation results show that (1) the merged reanalysis estimates outperform raw reanalysis estimates, particularly in
high latitudes and mountainous regions; (2) the OI estimates are more accurate than the reanalysis and station-
based regression estimates, with the most notable improvements for precipitation evident in sparsely gauged
regions; and (3) EMDNA estimates exhibit good performance according to the diagrams and metrics used for
probabilistic evaluation. We discuss the limitations of the current framework and highlight that further research
is needed to improve ensemble meteorological datasets. Overall, EMDNA is expected to be useful for hydrolog-
ical and meteorological applications in North America. The entire dataset and a teaser dataset (a small subset of
EMDNA for easy download and preview) are available at https://doi.org/10.20383/101.0275 (Tang et al., 2020a).
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1 Introduction

Precipitation and temperature data are fundamental meteo-
rological variables for a wide variety of geoscientific appli-
cations (Eischeid et al., 2000; Trenberth et al., 2003; Wu et
al., 2014; Yin et al., 2018). Accurately estimating spatial me-
teorological fields is still challenging despite the availability
of many measurement or estimation approaches (e.g., me-
teorological stations, weather radars, and satellite sensors)
and the availability of many atmospheric models (Kirstetter
et al., 2015; Sun et al., 2018; Hu et al., 2019; Newman et
al., 2019a). There is consequently substantial uncertainty in
analyses of spatially distributed meteorological variables.

The uncertainty in spatial meteorological estimates de-
pends on both the measurements available and the climate
of the region of study. Whilst meteorological stations pro-
vide the most reliable observations at the point scale, spatial
meteorological estimates based on station data can be uncer-
tain because of both sparse station networks in remote re-
gions and because of measurement errors caused by factors
such as evaporation or wetting loss and undercatch of pre-
cipitation (Sevruk, 1984; Goodison et al., 1998; Nešpor and
Sevruk, 1999; Yang et al., 2005; Scaff et al., 2015; Kochen-
dorfer et al., 2018). Interpolating station data to a regular grid
can introduce additional uncertainties, especially in regions
where there are strong spatial gradients in meteorological
fields. The accuracy of precipitation estimated from ground
radars is affected by factors such as beam blockage, signal
attenuation, ground clutter, and uncertainties in the repre-
sentativeness of radar variables to surface rainfall (Dinku et
al., 2002; Kirstetter et al., 2015). Moreover, the spatial and
temporal coverage of ground radars is limited to large popu-
lated areas in most regions of the world. Satellite sensors pro-
vide quasi-global estimates of meteorological variables, but
their utility can be limited by short sampling periods with
insufficient coverage and return frequency, data latency, in-
direct measurements, imperfect retrieval algorithms, and in-
strument limitations (Adler et al., 2017; Tang et al., 2016,
2020b). Reanalysis models, which provide long-term global
simulations, also contain biases and uncertainties caused by
imperfect model representations of physical processes, ob-
servational constraints, and the model resolution (Donat et
al., 2014; Parker, 2016).

In recent years, numerous deterministic gridded precipita-
tion and temperature datasets based on observed or simulated
data from single or multiple sources have become publicly
available (Maurer et al., 2002; Huffman et al., 2007; Mahfouf
et al., 2007; Daly et al., 2008; Di Luzio et al., 2008; Haylock
et al., 2008; Livneh et al., 2013; Weedon et al., 2014; Fick
and Hijmans, 2017; Beck et al., 2019; Ma et al., 2020; Harris
et al., 2020). Since the uncertainties vary in space and time,
deterministic products do not always agree with each other
(Donat et al., 2014; Henn et al., 2018; Sun et al., 2018; New-
man et al., 2019a; Tang et al., 2020b). The uncertainties can
propagate to applications such as hydrological modeling and

climate analysis (Clark et al., 2006; Hong et al., 2006; Slater
and Clark, 2006; Mears et al., 2011; Rodell et al., 2015;
Aalto et al., 2016). Proper understanding of the uncertain-
ties can benefit the objective application of meteorological
analyses and further improve existing products, yet few grid-
ded datasets provide such uncertainty estimates (Cornes et
al., 2018; Frei and Isotta, 2019).

Probabilistic datasets provide alternatives to deterministic
datasets for quantitative precipitation and temperature esti-
mation (Kirstetter et al., 2015; Mendoza et al., 2017; Frei
and Isotta, 2019). Recently, several ensemble meteorolog-
ical datasets have become available. For example, Morice
et al. (2012) develop the observation-based HadCRUT4
global temperature datasets with 100 members. Caillouet et
al. (2019) develop the Spatially COherent Probabilistic Ex-
tended Climate dataset (SCOPE Climate) with 25 members
in France. Newman et al. (2015, 2019b, 2020) continually
extend the probabilistic estimation methodology proposed by
Clark and Slater (2006) and produce ensemble precipitation
and temperature datasets in the contiguous USA (CONUS),
the Hawaii islands, and Alaska and Yukon, respectively.
Moreover, several widely used deterministic datasets now
have ensemble versions in view of the advantages of prob-
abilistic estimates. Cornes et al. (2018) developed the en-
semble version (100 members) of the Haylock et al. (2008)
Europe-wide E-OBS temperature and precipitation datasets.
Khedhaouiria et al. (2020) developed the experimental High-
Resolution Ensemble Precipitation Analysis (HREPA) for
Canada and the northern part of the CONUS with 24 mem-
bers, which can be regarded as an experimental ensemble
version of the Canadian Precipitation Analysis (CaPA; Mah-
fouf et al., 2007; Fortin et al., 2015).

Our objective is to develop an Ensemble Meteorological
Dataset for North America (EMDNA) from 1979 to 2018.
To improve the quality of estimates in sparsely gauged re-
gions, station data and reanalysis outputs are merged to
generate gridded precipitation and temperature estimates.
Then, ensemble estimates are produced using the probabilis-
tic method described by Clark and Slater (2006) and New-
man et al. (2015, 2019b, 2020). EMDNA has 100 members
and contains daily precipitation amount, mean daily tempera-
ture (Tmean), and daily temperature range (Trange) at 0.1◦ spa-
tial resolution. Minimum and maximum temperature can be
calculated from Tmean and Trange. It is expected that EMDNA
will be useful for a variety of applications in North America.

2 Datasets

Station observations are often subject to temporal disconti-
nuities caused by missing values and short record lengths
(Kemp et al., 1983). This study uses station precipitation
and minimum and maximum temperature data from the Se-
rially Complete Dataset for North America (SCDNA; Tang
et al., 2020c), which is an open-access dataset on Zenodo
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Figure 1. The color of each 0.1◦ grid indicates the radius to find (a) 1, (b) 20, and (c) 30 neighboring stations for precipitation (a–c) and
temperature (d–f).

(https://doi.org/10.5281/zenodo.3735533). Serially complete
datasets improve the quality of spatial interpolation estimates
compared to raw station observations with data gaps (Long-
man et al., 2020; Tang et al., 2021). Tmean and Trange are
calculated from minimum and maximum temperature data.
In SCDNA, raw measurements undergo strict quality control
checks, and data gaps are filled by combining estimates from
multiple strategies (including quantile mapping, spatial in-
terpolation, machine learning, and multi-strategy merging).
SCDNA uses reanalysis estimates as the auxiliary data to en-
sure temporal completeness in sparsely gauged regions. The
production of SCDNA has nine steps: (1) matching reanaly-
sis estimates and station data, (2) selecting qualified neigh-
boring stations, (3) building empirical cumulative density
functions (CDFs), (4) estimation based on 16 strategies for
each day of the year, (5) independent validation, (6) merg-
ing estimates from the 16 strategies, (7) climatological bias
correction, (8) evaluation of SCDNA, and (9) final quality
control (Tang et al., 2020c). SCDNA covers the period from
1979 to 2018 and has 24 615 precipitation stations and 19 579
temperature stations. We select precipitation and tempera-
ture, because they are used in many hydrometeorological
studies and are measured by a large number of meteorolog-
ical stations, while other variables (e.g., humidity and wind

speed) are only measured by a much smaller collection of
stations.

Station-based gridded meteorological estimates usually
rely on a certain number of neighboring stations surrounding
the target grid cell. For most regions in CONUS, the search
radius to find 20 or 30 neighboring stations (lower and up-
per limits for station-based gridded estimates in Sect. 3.1) is
smaller than 100 km (Fig. 1). For the regions north of 50◦ N
or south of 20◦ N, however, the search radius required to find
20 or 30 neighboring stations is much larger and even ex-
ceeds 1000 km in the Arctic Archipelago. The sparse station
network at higher latitudes motivates our decision to opti-
mally combine station data with reanalysis products.

The reanalysis products used in this study include the fifth
generation of European Centre for Medium-Range Weather
Forecasts (ECMWF) atmospheric reanalyses of the global
climate (ERA5; Hersbach et al., 2020), the Modern-Era Ret-
rospective analysis for Research and Applications, Version
2 (MERRA-2; Gelaro et al., 2017), and the Japanese 55-
year reanalysis (JRA-55; Kobayashi et al., 2015). The three
widely used products are chosen because of their high spa-
tiotemporal resolutions and suitable time length. The spatial
resolutions of ERA5, MERRA-2, and JRA-55 are 0.25◦×
0.25◦, 0.5◦× 0.625◦, and ∼ 55 km, respectively. Their start
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years are 1979, 1980, and 1958, respectively. Therefore,
only ERA5 and JRA-55 are used for 1979 throughout this
study. Although reanalysis models assimilate observations
from various sources, they differ from station measurements
in many aspects (Parker, 2016) and often contain large un-
certainties as shown by assessment and multi-source merg-
ing studies (e.g., Donat et al., 2014; Lader et al., 2016; Beck
et al., 2017, 2019; Tang et al., 2020b). The dependence of re-
analysis estimates on station data may have a negative effect
on the merging of reanalysis products (Sect. 3.2), because the
reanalysis dataset which assimilates more station data could
be given higher weight. The potential dependence, however,
is not considered in this study because of the limited un-
derstanding of the dependence between reanalysis estimates
and station observations. Moreover, none of the reanalysis
datasets assimilate precipitation data from stations.

The elevation data are sourced from the 3 arcsec resolu-
tion Multi-Error-Removed Improved-Terrain digital eleva-
tion model (MERIT DEM; Yamazaki et al., 2017).

3 Methodology

The estimate of a variable at a specific location and time
step can be regarded as a random value following a proba-
bility distribution. The probability density functions (PDFs)
of variables such as Tmean and Trange can be approximated us-
ing the normal distribution. Their value x for a target location
and time step is expressed as

x ∼N (µσ 2), (1)

where µ is the mean value, and σ is the standard deviation.
Probabilistic estimates of Tmean or Trange can be realized by
sampling from this distribution. In a spatial meteorological
dataset, the distribution parameters vary with space and time,
and the spatial variability is related to the nature of variables
and gridding (interpolation) methods. The performance of
gridding methods is critical, because accurate estimation of
µ can reduce systematic bias and smaller σ means narrower
spread.

Precipitation is different from Tmean and Trange because it
can be intermittent from local to synoptic scales, and its dis-
tribution is both highly skewed and bounded at zero. Follow-
ing Papalexiou (2018) and Newman et al. (2019b), the CDF
of precipitation can be expressed as below:

FX(x)= (1−p0)FX|> 0(x)+p0, for x ≥ 0, (2)

where FX(x) is the CDF for x ≥ 0, FX|X> 0(x) is the CDF
for x > 0, and p0 is the probability of zero precipitation.
The probability of precipitation (PoP) is 1−p0. The CDF
FX|X> 0(x) is often approximated using the normal distribu-
tion after applying suitable transformation functions to ob-
served precipitation. Clark and Slater (2006) perform the nor-
mal quantile transformation using an empirical CDF from

station observations. Newman et al. (2015) apply a power-
law transformation. Newman et al. (2019b) adopts the Box–
Cox transformation, that is,

x′ =
xλ− 1
λ

, (3)

where λ is set to 1/3 following Newman et al. (2019b) and
Fortin et al. (2015). Equation (1) applies to x′, enabling the
probabilistic estimation of precipitation. Unlike Newman et
al. (2019b) that uses transformed precipitation throughout
the production, this study only uses Box–Cox transformation
when the assumption of normality is necessary (Sect. 3.2.4
and 3.3) to reduce the error introduced by the back transfor-
mation. The limitations and alternative choices of precipita-
tion transformation are discussed in Sect. 5.2.

In summary, seven space- and time-varying parameters (µ
and σ for three variables and PoP) should be obtained to re-
alize probabilistic estimation. Our method to develop prob-
abilistic meteorological estimates is summarized in Fig. 2a.
We apply four main steps to produce EMDNA: (1) station-
based regression estimates (Sect. 3.1); (2) the regridding,
downscaling, bias correction, and merging of three reanalysis
products (Sect. 3.2); (3) optimal interpolation-based merg-
ing of reanalysis and station-based regression outputs and
the bias correction of the resulting precipitation estimates
(Sect. 3.3); and (4) the production of probabilistic estimates
in the form of spatial meteorological ensembles (Sect. 3.4).

3.1 Regression estimates from station data

Clark and Slater (2006) and Newman et al. (2015, 2019b)
use locally weighted linear regression and logistic regression
to obtain gridded temperature and gridded precipitation es-
timates which are used as parameters in Eq. (1). However,
for high-latitude regions in North America where stations are
scarce (Fig. 1), such gridded estimates based only on sta-
tion data could contain large uncertainties (Fig. 2b) due to
the long distances needed to assemble a sufficient sample of
stations to form the regressions. This study uses optimal in-
terpolation (OI) to merge data from stations and reanalysis
models. In this section, we only obtain regression estimates
and their errors at the locations of stations, which are used as
inputs to OI in Sect. 3.3.

3.1.1 Locally weighted linear regression

Daily precipitation amount, Tmean, and Trange are estimated
for all stations based on the locally weighted linear regres-
sion (also known as the geographically weighted regression).
Let xo be the station observation for variable X (precipita-
tion, Tmean, and Trange), then the regression estimate x̂ for the
target point and time step is obtained as below:

xo = x̂+ ε = β0+
∑n

i=1
Aiβi + ε, (4)
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Figure 2. (a) The flowchart outlining the main steps for producing EMDNA. P represents precipitation and T represents temperature.
(b–e) demonstrate output examples from (a-1 to a-4), respectively. (b) Latitudinal distribution of the root mean square error (RMSE) for
temperature and normalized RMSE (NRMSE) for precipitation (Sect. 3.1). (c) Example showing the mean temperature of MERRA-2 be-
fore and after regridding (Sect. 3.2). (d) The correction ratios calculated using precipitation climatology from the bias-corrected CHELSA
(Sect. 3.3). (e) Example of the ensemble-based distributions of precipitation and temperature estimates from EMDNA (Sect. 3.4).

where Ai is the ith time-invariant topographic attribute (or
predictor variables), β0 and βi are regression coefficients es-
timated using ordinary least squares, and ε is the residual
(or error term). The topographic attributes are latitude, lon-
gitude, and elevation for Tmean and Trange. For precipitation,
two more topographic attributes (west-east and south-north
slopes) are used to account for windward and leeward slope
precipitation differences. An isotropic Gaussian low-pass fil-
ter is used to smooth DEM before calculating slopes, which
can reduce the influence of noise in a high-resolution DEM
on the large-scale topographic effect of precipitation (New-
man et al., 2015). Ideally, the scale of this smoothing reflects
the scale at which terrain most directly influences precipi-

tation or temperature spatial patterns; in this case the filter
bandwidth is 180 km.

For a target station point, x̂ is obtained based on data from
neighboring stations. Newman et al. (2015, 2019b) used 30
neighboring stations, without controlling for maximum sta-
tion distance. The very low station density in high-latitude
regions makes this configuration infeasible; hence, this study
adopts a relatively flexible criterion for selecting neighboring
stations: (1) finding at most 30 stations within a fixed search
radius (400 km) and (2), if fewer than 20 stations are found,
extending the search radius until 20 stations are found. The
lower threshold is set to 20 to ensure that linear or logistic re-
gression is robust. To incorporate local dependence, a tricube
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weighting function is used to calculate the weight wi,j be-
tween the target station i and the neighboring station j .

wi,j =

[
1−

(
di,j

dmax

)3
]3

, (5)

where di,j is the distance between i and j , and dmax depends
on the maximum distance (dmax

i,j ) between i and all its neigh-
boring stations. If dmax

i,j is smaller than 100 km, dmax is set
to 100 km; otherwise, dmax is set to dmax

i,j + 1 km (Newman
et al., 2015, 2019b). The cubic weight function is smoother
compared to functions such as exponential functions and in-
verse distance functions, indicating that wi,j degrades with
distance in a relatively slow way, which generally leads to
smooth spatial variations of variables. The comparison of
different weight functions could be a direction for future
research. Regression coefficients are estimated by weighted
least squares method (described in Appendix A).

We found that a small number of observation stations show
a climatology that is notably statistically different from sur-
rounding stations, which could cause an adverse effect on
gridded estimates, particularly in sparsely gauged regions.
Strategies to identify and exclude such stations are summa-
rized in Appendix B.

3.1.2 Locally weighted logistic regression

PoP is estimated using the locally weighted logistic regres-
sion by fitting binary precipitation occurrence to topographic
attributes:

PoP=
1

1+ exp(−β0+
∑n
i=1Aiβi)

. (6)

The topographic attributes (Ai) are the same as those
used by precipitation regression. Appendix A describes the
method to estimate regression coefficients.

The errors of precipitation, temperature, and PoP estimates
for all stations are calculated as the difference between re-
gression estimates and station observations using the leave-
one-out cross-validation procedure. The leave-one-out eval-
uation could be affected by the distributions of stations in
some cases. For example, two stations with very close dis-
tance may both show very high accuracy in the leave-one-out
evaluation (this is a problem for all station-based evaluation
methods).

3.2 Regridding, correction, and merging of reanalysis
datasets

The three reanalysis datasets (ERA5, MERRA-2, and JRA-
55) have different spatial resolutions and contain systematic
biases. In this section, we discuss steps taken to (1) regrid
all reanalysis datasets to the resolution of EMDNA (0.1◦),
(2) perform a correction to remove the systematic bias in
original estimates, and (3) merge the three reanalysis datasets

to produce a background field that improves over any indi-
vidual reanalysis dataset, in support of the reanalysis–station
merging described in Sect. 3.3.

3.2.1 Regridding of reanalysis datasets

Precipitation, Tmean, and Trange are regridded to 0.1◦ using lo-
cally weighted regression (Fig. 2c). Latitude, longitude, and
elevation are used as predictor variables for simplicity. Pre-
cipitation or temperature lapse rates are implicitly consid-
ered by involving elevation in the regression. Raw reanalysis
data from a 5× 5 space window (i.e., 25 coarse-resolution
grids) centered by the 0.1◦ target grid are used to perform
the regression. Each grid is represented using its center point.
This regridding method has been proven effective in previous
studies (Xu et al., 2015; Duan and Li, 2016; Lu et al., 2020).
Reanalysis estimates are also regressed to the locations of all
stations to facilitate evaluation and weight estimation in the
following steps, which can avoid the scale mismatch caused
by using point-scale observations to evaluate 0.1◦ gridded es-
timates (Tang et al., 2018a).

We also tested other regridding methods such as the near-
est neighbor, bilinear interpolation, and temperature lapse
rate-based downscaling (Tang et al., 2018b). Results (not
shown) indicated that their performance is generally inferior
to the locally weighted regression with respect to several ac-
curacy metrics.

3.2.2 Probability of precipitation estimation

Reanalysis precipitation can exhibit large biases in the num-
ber of wet days, because the models often generate many
light precipitation events. To overcome this limitation, we
designed two methods for determining the occurrence of re-
analysis precipitation. The first is to use positive thresholds
to determine precipitation occurrence. The threshold was es-
timated in two ways, namely by forcing reanalysis precip-
itation (1) to have the same number of wet days with sta-
tion data or (2) to achieve the highest critical success index
(CSI). Gridded thresholds can be obtained through interpo-
lation and used to discriminate between precipitation events
or non-events. However, this method can only obtain binary
occurrence instead of continuous PoP between zero and one.
The second method is based on univariate logistic regression.
The amount of reanalysis precipitation is used as the predic-
tor and the binary occurrence from station data is used as the
predictand. The logistic regression is implemented for each
reanalysis product in the same way as Sect. 3.1.2. The com-
parison between the threshold-based method and the logistic
regression-based method shows the latter achieves higher ac-
curacy. Therefore, we adopt the univariate logistic regression
to estimate PoP for each reanalysis product in this study. The
possible bias caused by station measurements is not consid-
ered.
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3.2.3 Bias correction of reanalysis datasets

Considering reanalysis products contain systematic biases
(Clark and Hay, 2004; Mooney et al., 2011; Beck et al.,
2017; Tang et al., 2018b, 2020b), the linear scaling method
(also known as multiplicative/additive correction factor;
Teutschbein and Seibert, 2012) is used to correct reanalysis
precipitation, Tmean, and Trange estimates. Reanalysis PoP is
not corrected, because station information has been incorpo-
rated in the logistic regression. Let xr be the reanalysis esti-
mate for variable X, then the corrected estimate for a target
grid/point i is calculated as

x∗r,i =


xr,i +

∑m
j=1wi,j (xo,j−xr,j )∑m

j=1wi,j
additive correction,

xr,i

∑m
j=1wi,j

xo,j
xr,j∑m

j=1wi,j
multiplicative correction,

(7)

where x∗r,i is the corrected reanalysis estimate, wi,j is the
distance-based weight (Eq. 5), and xo,j and xr,j are the cli-
matological mean for each month (e.g., all January months
from 1979 to 2018) from station observations and reanalysis
estimates for the j th neighboring station, respectively. The
additive correction is used for Tmean and Trange, and the mul-
tiplicative correction is used for precipitation. The number
of neighboring stations (m) is set to 10, which is smaller
than that used for linear or logistic regression (Sect. 3.1)
but should be enough for bias correction. The upper bound
of xo,j

xr,j
is set to 10 to avoid overcorrection in some cases

(Hempel et al., 2013).
Linear scaling can be performed at monthly (Arias-

Hidalgo et al., 2013; Herrnegger et al., 2018; Willkofer et
al., 2018) or daily (Vila et al., 2009; Habib et al., 2014)
timescales by replacing xo,j and xr,j by the monthly mean
(e.g., January in 1 year) or daily values. We compared the
performance of corrections at different scales and found that
monthly- or daily-scale corrections acquire more accurate es-
timates than the climatological correction. The climatologi-
cal correction was adopted because (1) it preserves the abso-
lute/relative trends better than daily or monthly corrections,
and (2) the OI merging (Sect. 3.3) adjusts daily variability of
estimates, which compensates for the limitation of climato-
logical correction and makes daily- or monthly-scale correc-
tion unnecessary.

Quantile mapping is another widely used correction
method (Wood et al., 2004; Cannon et al., 2015). We com-
pared quantile mapping and linear scaling and found that
they are similar in statistical accuracy, while quantile map-
ping achieves better probability distributions with much
smaller Hellinger distance (Hellinger, 1909), which is a met-
ric used to quantify the similarity between estimated and ob-
served probability distributions. Nevertheless, quantile map-
ping could result in spatial smoothing of precipitation and
temperature, particularly in high-latitude regions where sta-

tions are few. For example, Ellesmere Island, the northern-
most island of the Canadian Arctic Archipelago, usually
shows lower temperature in inland regions. However, quan-
tile mapping will erase this gradient because reanalysis grids
for this island are corrected based on stations on the coast.
To ensure the authenticity of spatial distributions, quantile
mapping is not used in this study.

3.2.4 Merging of reanalysis datasets

The three reanalysis products are merged using the Bayesian
Model Averaging (BMA; Hoeting et al., 1999), which has
proved to be effective in fusing multi-source datasets (Chen
et al., 2015; Ma et al., 2018a, b). According to the law of total
probability, the PDF of the BMA estimate can be written as

p(E)=
∑3

r=1
p
(
E|x∗r , xo

)
·p
(
x∗r |xo

)
, (8)

where E is the ensemble estimate, x∗r (r = 1, 2, 3) is
the bias-corrected estimate from three reanalysis products,
p
(
E|x∗r , xo

)
is the predicted PDF based only on a specific

reanalysis product, and p
(
x∗r |xo

)
is the posterior probabil-

ity of reanalysis products given the station observation xo.
The posterior probability p

(
x∗r |xo

)
can be identified as the

fractional BMA weight wr with
3∑
r=1

wr = 1. BMA prediction

can be written as the weighted sum of individual reanalysis
products.

For Tmean and Trange, p
(
E|x∗r , xo

)
can be regarded as

the normal distribution g (E|θr ) defined by the parameter
θr = {µr , σ

2
r , where µr is the mean and σ 2

r is the variance
(Duan and Phillips, 2010). For precipitation, if we apply
Box–Cox transformation (Eq. 3) to positive events (> 0) and
exclude zero events, its distribution is approximately normal,
and p

(
E|x∗r , xo

)
can be represented using g (E|θr ). There-

fore, Eq. (8) can be written as

p(E)=
∑3

r=1
wr · g (E|θr ) , (9)

There are different approaches to inferwr and θr (Schepen
and Wang, 2015). This study uses the log-likelihood function
to estimate the parameters (Duan and Phillips, 2010; Chen et
al., 2015; Ma et al., 2018b). The Expectation-Maximization
algorithm (Raftery et al., 2005) can be applied to estimate
parameters by maximizing the likelihood function. BMA
weights are obtained for all stations and each month. Grid-
ded weights are obtained using the inverse distance weight-
ing interpolation.

Merging multiple datasets could affect the probability dis-
tributions and extreme characteristics of original datasets.
This is not a major concern, because the merged reanal-
ysis data are further adjusted by station data in OI merg-
ing (Sect. 3.3), which is a later step in the EMDNA pro-
cess. Also, the probabilistic estimation of ensemble members
(Sect. 3.4) has a large effect on estimates of extreme events.
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Gridded errors of BMA-merged estimates are necessary to
enable optimal interpolation (Sect. 3.3). The error estimation
is realized using a two-layer cross-validation (Appendix C).

3.3 Optimal Interpolation-based merging of reanalysis
and station data

3.3.1 Optimal Interpolation

OI has proven to be effective in merging multiple datasets
(Sinclair and Pegram, 2005; Xie and Xiong, 2011) and has
been applied in operational products such as CaPA (Mahfouf
et al., 2007; Fortin et al., 2015) and the China Merged Pre-
cipitation Analysis (CMPA; Shen et al., 2014, 2018). Let xA
be the OI analysis estimate. The OI analysis estimate (xA,i)
for a target grid/point i and time step is obtained by adding
an increment to the first guess of the background (xB,i). The
increment is a weighted sum of the difference between ob-
servation and background values at neighboring stations.

xA,i = xB,i +
∑m

j=1
wj
(
xO,j − xB,j

)
, (10)

where xO,j , xB,j , and wj are the observed value (subscript
“O”), background value (subscript “B”), and weight for the
j th neighboring station. Let xT be the true value, then the er-
rors of observed and background values are εO,j = xO,j −

xT,j and εB,j = xB,j − xT,j (or εB,i = xB,i − xT,i), respec-
tively. Assuming that (1) the observation and background er-
rors are unbiased with an expectation of zero and (2) there is
no correlation between background and observation errors,
the weights that minimize the variance of the analysis errors
can be obtained by solving

w (R+B)= b, (11)

where w is the vector of wj (j = 1,2, . . .,m); R and B are
m×m covariance matrices of εO,j and εB,j , respectively; and
b is the m× 1 vector of covariance between εB,i and εB,j .
The background provided by reanalysis models assimilates
observations in the production and is corrected in a way us-
ing station data (described in Sect. 3.2.3), which may affect
the soundness of the second assumption. The effect of this
slight violation, however, is rather small according to our re-
sults and previous studies (Xie and Xiong, 2011; Shen et al.,
2014b, 2018).

Different approaches can be used to implement OI. For
example, Fortin et al. (2015) used raw station observations
as xO, and assumed that the background error is a function
of error variance and correlation length, and the observation
error is a function of error variance. The variances and cor-
relation length are obtained by fitting a theoretical variogram
using station observations. Xie and Xiong (2011) and Shen et
al. (2014) use station-based gridded estimates as xO, and as-
sume that the background error variance is a function of pre-
cipitation intensity, the cross-correlation of background er-
rors is a function of distance, and the observation error vari-

ance is a function of precipitation intensity and gauge den-
sity. The parameters of those functions are estimated based
on station data in densely gauged regions.

In this study, we adopt a novel design that calculates
weights based on error estimation, a feature that is enabled
by the probabilistic nature of the observational dataset. Re-
gression estimates and their errors at station points (Sect. 3.1)
are used as xO and εO, respectively. BMA-merged reanalysis
estimates and their errors (Sect. 3.2) are used as xB and εB,
respectively. We do not use gridded regression estimates be-
cause (1) xO,j − xB,j will show weak variation if neighbor-
ing stations are replaced by neighboring grids, and (2) esti-
mates of weights w could be unrealistic because of the spa-
tial smoothing of interpolated regression errors. The advan-
tages of this design are (1) weights and inputs closely match
each other and (2) weights in sparsely gauged regions are not
determined by parameters fitted in densely gauged regions.
In regions with few stations, the errors of regression esti-
mates could be larger than reanalysis estimates, resulting in
a smaller contribution from regression estimates and a larger
contribution from reanalysis estimates, which is the comple-
mentary effect we expect by involving reanalysis datasets in
EMDNA.

The Box–Cox transformation is applied to precipitation
estimates. Then, precipitation, PoP, Tmean, and Trange esti-
mates provided by OI are used as µ and PoP required for
generating meteorological ensembles.

3.3.2 Error of OI-merged estimates

Variance is a necessary parameter to enable ensemble estima-
tion. The variance σ 2 is represented using the mean squared
error of OI estimates in this study. First, the error of OI analy-
sis estimates (εA = xA−xo) is obtained for all stations using
the leave-one-out strategy. Then, the σ 2

i for the ith grid is ob-
tained as a weighted sum of squared errors from neighboring
stations:

σ 2
i =

∑m
j=1wi,j (εA,j )2∑m

j=1wi,j
, (12)

where εA,j is the difference between the station observation
and OI estimate at the j th neighboring station, andwi,j is the
weight (Eq. 5).

3.3.3 Correction of precipitation undercatch

Considering station precipitation data usually contain mea-
surement errors such as wind-induced undercatch particu-
larly in high-latitude and mountainous regions, OI-merged
precipitation is further adjusted using the Precipitation Bias
Correction (PBCOR) dataset produced by Beck et al. (2020).
The PBCOR climatology infers the long-term precipitation
(without rain–snow separation) using a Budyko curve and
streamflow observations collected from seven national and
international sources, among which the Global Runoff Data
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Centre (GRDC), the U.S. Geological Survey (USGS), and
the Water Survey of Canada Hydrometric Data (HYDAT)
are data sources in North America. The streamflow stations
are scarce in high-latitude regions and absent in Greenland.
Three corrected datasets are provided, including WorldClim,
version 2 (WorldClim V2; Fick and Hijmans, 2017), the Cli-
mate Hazards Group Precipitation Climatology, version 1
(CHPclim V1; Funk et al., 2015), and Climatologies at High
Resolution for the Earth’s Land Surface Areas, version 1.2
(CHELSA V1.2; Karger et al., 2017). The water balance-
based method of Beck et al. (2020) considers all measure-
ment errors (e.g., undercatch and wetting/evaporation loss)
as a whole, and undercatch is the major error source in many
regions. Note that the rain gauge catch error includes both
undercatch and overcatch. The potential overcatch could be
caused by splash of rain or blow snow collected on the wind
shield (Folland, 1988; Zhang et al., 2019). Since overcatch
is less common compared to undercatch and since the PB-
COR dataset does not consider overcatch, the bias correction
in this study only addresses the undercatch problem. More-
over, the water balance estimates of precipitation undercatch
do not consider non-contributing areas of river basins (e.g.,
endorheic subcatchments), which are common in the Cana-
dian Prairies and the northern Great Plains in the USA.

Although the three datasets show similar precipitation dis-
tributions after bias correction, CHELSA V1.2 is used be-
cause its period (1979–2013) is most similar to our study
period (1979–2018). The correction of OI-merged precipi-
tation is performed in two steps: (1) the ratio between bias-
corrected CHELSA V1.2 and OI-merged long-term monthly
precipitation is calculated at the 0.1◦ resolution during 1979–
2013, and (2) daily OI-merged precipitation estimates during
1979–2018 are scaled using the corresponding monthly ra-
tio map. The bias correction notably increases precipitation
in northern Canada and Alaska (Fig. 2d), where precipita-
tion undercatch is often significant due to the large propor-
tion of snowfall. The uncertainties of gridded estimates are
typically larger in high-latitude sparsely gauged regions and
topographically elevated regions, which is partly related to
the increased proportion of snowfall and hence larger gauge
catch errors.

3.4 Ensemble generation

3.4.1 Spatiotemporally correlated random fields

Spatially correlated random fields (SCRFs) are used to sam-
ple from the probability distributions of precipitation and
temperature. The SCRFs are produced using the following
three steps. First, the spatial correlation structure is gener-
ated based on an exponential correlation function:

ci,j = exp
(
−
di,j

Clen

)
(13)

where di,j is the distance between grids i and j , and Clen
is the spatial correlation length determined for each clima-
tological month based on regression using station data for
precipitation, Tmean, and Trange, separately. The spatial corre-
lation structure is generated using the conditional distribution
approach. Every point is conditioned to previously generated
points which are determined using a nested simulation strat-
egy to improve the calculation efficiency (Clark and Slater,
2006).

Second, the spatially correlated random field (Rt ) for the
t th time step is generated by sampling from the normal distri-
bution with the mean value and standard deviation depending
on the random numbers of previously generated grids (Clark
and Slater, 2006).

Third, the SCRF is generated by incorporating spatial and
temporal correlation relationships. Let ρTM and ρTR be the
lag-1 autocorrelation for Tmean and Trange, respectively; ρCR
be the cross-correlation between Trange and precipitation; and
Rt−1,TM, Rt−1,TR, and Rt−1,PR be the SCRF for the (t−1)th
time step for Tmean, Trange, and precipitation, respectively,
then the SCRF for the t th time step following Newman et
al. (2015) is written as

Rt,TM = ρTMRt−1,TM+

√
1− ρ2

TMRt−1,TM,

Rt,TR = ρTRRt−1,TR+

√
1− ρ2

TRRt−1,TR,

Rt,PR = ρCRRt,TR+

√
1− ρ2

CRRt−1,PR,

(14)

3.4.2 Probabilistic estimation

Probabilistic estimates are produced using the probability
distribution N (µσ 2) in Eq. (1) and R in Eq. (14). For Tmean
and Trange, the SCRF (RTM and RTR) is directly used as the
standard normal deviate (RX). The estimate (xe) for the en-
semble member e is written as

xe = µ+RX · σ. (15)

For precipitation, an additional step is to judge whether an
event occurs or not according to OI-merged PoP and the es-
timated probability from the SCRF. Let FN(x) be the CDF of
the standard normal distribution, then FN(RPR) is the cumu-
lative probability corresponding to the random number RPR.
If FN(RPR) is larger than p0, then the scaled cumulative prob-
ability of precipitation (pcs) is calculated as

pcs =
FN(RPR)−p0

1−p0
. (16)

The probabilistic estimate for precipitation can be ex-
pressed as

xe =

{
0 if FN (RPR)≤ p0,

µ+F−1
N (pcs) · σ if FN (RPR)> p0.

(17)
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3.5 Evaluation of probabilistic estimates

Independent stations that are not used in SCDNA are used to
evaluate EMDNA, because the leave-one-out strategy is too
time-consuming to evaluate probabilistic estimates. GHCN-
D (Global Historical Climate Network Daily) stations with
precipitation or temperature records less than 8 years are ex-
tracted, because SCDNA restricts attention to stations with
at least 8-year records. In total, 15 018 precipitation stations
and 2455 temperature stations are available for independent
testing.

The Brier skill score (BSS; Brier, 1950) is used to evaluate
probabilistic precipitation estimates. The continuous ranked
probability skill score (CRPSS) is used to evaluate proba-
bilistic temperature estimates. Their definitions are described
in Appendix D.

Furthermore, the reliability and discrimination diagrams
are used to assess the behavior of probabilistic precipita-
tion estimates. The reliability diagram shows the condi-
tional probability of an observed event (precipitation above
a threshold) given the probability of probabilistic precipita-
tion estimates. In a reliability diagram, a perfect match has
all points located on the 1–1 line. The discrimination dia-
gram shows the PDF of probabilistic precipitation estimates
for different observed categories. For precipitation, two cate-
gories are defined: events or non-events, i.e., observed pre-
cipitation above or below a threshold. The difference be-
tween PDF curves of events or non-events represents the
degree of discrimination. Larger discrimination is preferred.
The PDF for non-event (event) should be maximized at the
probability of zero (one).

4 Results

4.1 Comparison between raw and merged reanalysis
estimates

The three raw reanalysis estimates are regridded, corrected
for bias, and merged. In this section, we directly compare raw
and BMA-merged estimates. The evaluation is performed for
all stations using the two-layer cross-validation strategy. The
correlation coefficient (CC), root mean square error (RMSE),
and normalized RMSE (NRMSE) are used as evaluation met-
rics. RMSE is sued for Tmean, and NRMSE is used for precip-
itation and Trange to remove patterns caused by climatology.

For precipitation, the three reanalysis products show the
highest CC in CONUS and the lowest CC in Mexico (Fig. 3).
The slight spatial discontinuity of CC along the Canada–
USA border and the USA–Mexico border (Fig. 3 and 6) is
caused by the inconsistent reporting time of stations. Daily
precipitation from reanalysis products is accumulated from
00:00 to 24:00 UTC, while stations from different countries
or regions usually have different UTC accumulation periods
(Beck et al., 2019; Tang et al., 2020a). NRMSE is higher

in central CONUS and Mexico compared to other regions.
Overall, ERA5 outperforms MERRA-2 followed by JRA-55.

BMA-merged precipitation estimates show higher accu-
racy than all reanalysis products (Fig. 3). The improvement
of CC and NRMSE is the most evident in the Rocky Moun-
tains, while for MERRA-2 the improvement is also obvious
in central CONUS. ERA5 is the closest to BMA estimates
concerning CC and NRMSE. The improvement of BMA es-
timates against ERA5 is more prominent in the high-latitude
regions. Specifically, the mean CC increases by 0.05 and 0.07
in regions south of and north of 55◦ N, respectively. The cor-
responding decrease of mean NRMSE is 0.15 and 0.21, re-
spectively.

The CC of reanalysis Tmean estimates is close to one in
most regions of North America (Fig. 4) and still above 0.9
in Mexico where the CC is the lowest. According to RMSE,
Tmean estimates have the largest error in western North Amer-
ica, because coarse-resolution raw reanalysis estimates can-
not reproduce the variability of temperature caused by ele-
vation variations. The rank of three reanalysis products for
Tmean is the same as that for precipitation with ERA5 being
the best one. BMA estimates show higher CC than reanaly-
sis products particularly in Mexico, while the improvement
of RMSE is the most notable in the Rocky Mountains. For a
few stations, the RMSE of BMA estimates is slightly worse
than raw reanalysis estimates (Fig. 4) because the downscal-
ing of reanalysis temperature could occasionally magnify the
error in low-altitude regions (Tang et al., 2018b).

For Trange, BMA estimates show much larger improve-
ment than Tmean, while the differences of CC and NRMSE
are relatively evenly distributed (Fig. 5). The improvement of
BMA estimates against JRA-55 estimates is especially large.
In general, BMA is effective in improving the accuracy of
reanalysis precipitation and temperature estimates.

4.2 The performance of optimal interpolation

Optimal interpolation is used to combine station-based es-
timates with reanalysis estimates. The performance of OI-
merged precipitation and temperature estimates is com-
pared to the background (BMA-merged reanalysis estimates;
Fig. 6) and observation (station-based regression estimates;
Fig. 7) inputs. To better show the spatial variations of
the improvement of OI estimates, RMSE for precipitation
and Trange is normalized using the mean value (termed as
NRMSE), while Tmean is evaluated using RMSE.

Overall, OI estimates are more accurate than merged re-
analysis or station regression estimates for all variables
across North America. Comparing OI estimates to reanalysis
estimates, for precipitation, Tmean, and Trange, the mean CC is
improved by 0.24, 0.02, and 0.15, respectively, and the mean
RMSE is reduced by 1.88 mm d−1, 0.52◦, and 0.87◦, respec-
tively. The improvement of OI estimates against station esti-
mates is smaller with the mean CC increasing by 0.06, 0.01,
and 0.05, and the mean RMSE decreasing by 0.56 mm d−1,
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Figure 3. The spatial distributions and histograms of CC (the first row) and NRMSE (the second row) based on raw reanalysis precipitation
estimates (ERA5, MERRA-2, and JRA-55). The improvement of BMA-merged estimates against raw reanalysis estimates is shown in the
third and fourth rows. The maps are at the 0.5◦ resolution, and the value of each 0.5◦ grid point is the median metric of all stations located
within the grid.

0.18◦, and 0.29◦ for precipitation, Tmean, and Trange, respec-
tively.

OI can utilize the complementarity between station and re-
analysis estimates. For example, according to CC, the im-
provement of OI estimates against reanalysis estimates is
larger in the eastern than the western CONUS, while the
improvement against station estimates is larger in western
than eastern CONUS. This means that although station es-
timates generally show higher accuracy than reanalysis esti-
mates, station estimates face more severe quality degradation
in mountainous regions. Moreover, the latitudinal curves of
CC and NRMSE in Figs. 6 and 7 indicate that the improve-
ment of OI estimates against reanalysis estimates decreases
as the latitude increases from southern CONUS to north-

ern Canada, while the improvement against station estimates
shows a reverse trend.

For Tmean, the CC improvement for OI estimates is the
largest in Mexico and decreases from low to high latitudes,
while based on RMSE, the improvement increases with lat-
itude. For Trange, the latitudinal variation exhibits a similar
pattern with precipitation for regions north of 50◦ N, with
larger (smaller) improvement in higher latitudes against sta-
tion (reanalysis) estimates. For regions south of 50◦ N, the
improvement of CC and NRMSE against station estimates
shows different trends.

Station-based estimates often have lower accuracy in re-
gions with scarce stations (i.e., high-latitude North Amer-
ica), while reanalysis estimates could have less dependence
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Figure 4. Same as Fig. 3 but for mean temperature.

on station densities due to the compensation of physically
based models. Therefore, OI merging is particularly useful
in sparsely gauged regions.

4.3 Evaluation of probabilistic estimates

The distributions of the OI and ensemble precipitation, Tmean,
and Trange estimates in June 2016 are shown in Fig. 8. Com-
pared with OI precipitation estimates, ensemble precipitation
estimates show generally consistent but less smooth distribu-
tions because of the relatively short spatial correlation length
in the warm season. For Tmean and Trange, OI and ensemble
estimates show very similar spatial distributions. Precipita-
tion shows the largest standard deviation, while Tmean shows
the smallest, because the standard deviation is determined by
the errors of OI estimates.

The PoP from station observations and ensemble esti-
mates is compared based on stations with at least 5-year-long
records from 1979 to 2018 (Fig. 9). The comparison cannot
represent climatological PoP (Newman et al., 2019b) due to
short time length of independent stations (Sect. 3.5). Over-
all, EMDNA estimates show similar PoP distributions with
station observations. The PoP in Canada is slightly overesti-
mated because (1) the quality of EMDNA is lower in regions
with fewer stations, and (2) point-scale station observations
could underestimate the PoP at a larger scale (e.g., 0.1◦ grids)
as shown by Tang et al. (2018a).

The discrimination diagram (Fig. 10) shows that ensem-
ble precipitation assigns the highest occurrence frequency at
the lowest estimated probability for non-precipitation events,
and the performance becomes better as the threshold in-
creases from 0 to 50 mm. For precipitation events, ensemble
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Figure 5. Same as Fig. 3 but for daily temperature range.

estimates show the highest frequency at the highest estimated
probability for the thresholds of 0, 10, and 25 mm, while as
the threshold increases, the frequency curve becomes skewed
to the lower estimated probability. This problem is also seen
in Clark and Slater (2006) and Newman et al. (2015). En-
semble precipitation shows good reliability for all precipita-
tion thresholds with the points located at or close to the 1–1
line (Fig. 10). At low and high estimated probabilities of oc-
currence, ensemble precipitation shows slight wet bias. The
reliability performance does not show clear dependence with
thresholds.

The BSS for precipitation and CRPSS for Tmean and Trange
are shown in Fig. 11. In most cases, ensemble precipita-
tion shows the highest frequency when BSS is above 0.5.
As the precipitation threshold increases, the BSS values de-
crease. The median BSS values are 0.62, 0.54, and 0.46 for

the thresholds of 0, 10, and 20 mm d−1, respectively. We note
that a small number of cases show BSS values smaller than
zero, indicating that the ensemble estimated probability is
worse than climatological probability. A low BSS value usu-
ally occurs in regions where precipitation is hard to estimate
(e.g., Rocky Mountains), resulting in inaccurate parameters
of Eq. (1).

The BSS for all thresholds shows a clear increasing trend
from 1979 to 2018 (Fig. 11b), because the observed pre-
cipitation samples from SCDNA increase during this period
(Fig. 2 in Tang et al., 2020c). The increasing trend of BSS
is particularly prominent from 2003 to 2009, during which
precipitation samples in the USA experience the greatest in-
crease (Tang et al., 2020c). The results show that although
infilled station data contribute to higher station densities, ob-
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Figure 6. The differences of (a) CC and (b) NRMSE (normalized RMSE) between OI-merged precipitation estimates and BMA-merged
reanalysis precipitation estimates. The latitudinal distributions of metrics are attached on the left side, showing the median value for 0.5◦

latitude bands. Panels (c–d) are the same as (a–b) but for mean temperature, and RMSE is not normalized. Panels (e–f) are the same as (a–b)
but for daily temperature range.

servation samples still have a significant effect on gridded
data estimation.
Tmean shows high CRPSS for most cases with the fre-

quency peak occurring at ∼ 0.8. The CRPSS of Trange is
much lower with the peak occurring at ∼ 0.6. The median
CRPSS for Tmean and Trange is 0.74 and 0.51, respectively.
Trange shows lower CRPSS probably because the bias direc-
tion (i.e., overestimation or underestimation) of daily mini-
mum and maximum temperature could be different, result-
ing in the larger bias of Trange than Tmean. Analyses show
that among stations with negative CRPSS, most are located
in Mexico due to the degraded quality of temperature esti-
mates (Sect. 4.1 and 4.2). The long-term variation of CRPSS
is not shown, because independent temperature stations are
insufficient to support validation between 1986 and 2010.

5 Discussion

This study presents the framework for producing an ensem-
ble precipitation and temperature dataset over North Amer-
ica. Although we have tested multiple choices of methods
(Sect. 3) and overall the product shows good performance
(Sect. 4), the methodology still has limitations that need to
be improved through continued efforts.

5.1 Implementation of OI

OI is used to merge reanalysis outputs and station data. To
implement OI-based merging, a critical step is to estimate
the weights. Previous studies usually adopt empirical error or
variogram functions and fit the parameters using station ob-
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Figure 7. Similar with Fig. 6, but the differences are between OI-merged precipitation estimates and station-based regression precipitation
estimates.

servations (e.g., CaPA, Fortin et al., 2015, and CMPA, Shen
et al., 2018); then the parameters are constant for the whole
study area in the actual application.

In this study, we proposed a novel design, which uses
station-based regression estimates as the observation field
and calculates weights by directly solving the weight func-
tions based on observation and background errors. Compared
with methods that use station data as the observation field,
our method is characterized by inferior estimation of the ob-
servation field but realistic estimation of weights. The close
linkage between the observation field and the weights could
benefit OI estimates, but comparing different OI implemen-
tations is still meaningful and necessary considering that OI
has been widely used and is the core algorithm of some op-
erational products.

Furthermore, regression estimates show worse perfor-
mance in regions with fewer stations. More advanced in-

terpolation methods that can utilize climatology information
and comprehensively consider topographic and atmospheric
conditions (Daly et al., 2008; Newman et al., 2019b; New-
man and Clark, 2020) should be examined in future studies.

5.2 Probabilistic estimation

Power transformations (e.g., Box–Cox and root or cubic
square) with fixed parameters have proven to be useful in
precipitation estimation and dataset production (Fortin et al.,
2015, 2018; Cornes et al., 2018; Khedhaouiria et al., 2020;
Newman et al., 2020). The Box–Cox transformation with a
constant parameter is applied following Fortin et al. (2015)
and Newman et al. (2019b, 2020). A fixed parameter, how-
ever, cannot ensure that transformed precipitation is normally
distributed everywhere as is desirable.
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Figure 8. The distributions of average values from precipitation (the first column), mean daily temperature (the second column), and daily
temperature range (the third column) averaged over the period 1–30 June 2016. The first to third rows represent estimates from OI-merged
inputs, ensemble member 1, and ensemble member 100. The fourth row represents the standard deviation of all the 100 members for 1 month
(June 2016).

We tested a series of additional parametric and non-
parametric transformations based on power functions, log-
arithmic functions, or a mix of both and optimized the para-
metric transformation functions (including Box–Cox) for ev-
ery grid by minimizing the objective function which is the
sum of squared L-skewness and L-kurtosis (Papalexiou and
Koutsoyiannis, 2013). Theoretically, compared to a Box–
Cox transformation with a fixed parameter, the optimized

functions can obtain precipitation series closer to the normal
distribution which should benefit probabilistic estimation,
while the evaluation results show that the Box–Cox transfor-
mation with a fixed parameter is better at probabilistic esti-
mation than optimized functions. We suggest there are three
reasons for this: (1) the standard deviation in Eq. (1) is ob-
tained by interpolating OI errors (Sect. 3.2.2) from neighbor-
ing stations, whereas the optimized transformation parame-
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Figure 9. The probability of precipitation (PoP) from (a) station observations and (b) concurrent EMDNA ensemble estimates with their
differences shown in (c). Stations with at least 5-year-long records from 1979 to 2018 are involved in the comparison.

Figure 10. The discrimination and reliability diagrams based on
ensemble precipitation estimates. Four rain–no-rain thresholds (0,
10, 25, 50 mm) are used.

Figure 11. (a) The frequency distributions of the Brier skill score
(BSS) for precipitation corresponding to rain–no-rain thresholds
from 0 to 25 mm d−1. (b) The distributions of BSS for precipitation
from 1979 to 2018. For each year, the median value of all stations is
used. (c) The frequency distributions of the continuous ranked prob-
ability skill score (CRPSS) for daily mean temperature and daily
temperature range.
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ters could be different at those stations; (2) zero precipitation
is excluded during optimization to avoid invalid transforma-
tion or optimization, which reduces the number of stations
for every time step and thus degrades the quality of the spa-
tial interpolation; and (3) the errors caused by back transfor-
mation could be large if the optimized transformation is too
powerful. More efforts are needed to resolve this problem.

There are other potential directions for improvement. For
example, SCRF is generated from Gaussian distributions,
while other choices such as copulas functions (Papalexiou
and Serinaldi, 2020) show potential in probabilistic estima-
tion. The spatial correlation length is constant for the whole
study area following Newman et al. (2015, 2019b), which
may introduce uncertainties for a large domain. Overall,
studies related to the production of ensemble meteorologi-
cal datasets are still insufficient, particularly for large areas.
More studies are needed to clarify the critical issues in large-
scale probabilistic estimation and explore the effect of pa-
rameter/method choices on probabilistic estimates.

5.3 Alternate data sources

The quality of source data (station observations and re-
analysis models) primarily determines the quality of out-
put datasets. The density of stations has a critical effect on
the accuracy of the observation field and probabilistic esti-
mates. While SCDNA collects data from multiple datasets,
efforts are ongoing to expand the database by involving sta-
tion sources such as provincial station networks in Canada.

For reanalysis products, ERA5, MERRA-2, and JRA-55
are regridded using locally weighted linear regression to
meet the target resolution. There are some choices for future
improvement, such as (1) adopting and/or developing bet-
ter downscaling methods or (2) utilizing outputs from high-
resolution reanalysis products or forecasting models such as
ERA5-Land (Muñoz-Sabater et al., 2021) or the Arctic Sys-
tem Reanalysis (Bromwich et al., 2018). Moreover, including
other data sources such as satellite and weather radar esti-
mates is also an opportunity for regions with adequate sam-
ple coverage.

5.4 Precipitation undercatch

Although station precipitation observations are used as the
reference in this study, these values are subject to measure-
ment errors such as wetting loss, wind-induced undercatch,
and trace precipitation. Station temperature measurements
also contain errors due to microclimate and sensor design,
which is generally small and not discussed here. The un-
dercatch of precipitation is particularly severe in high lati-
tudes and mountains due to the stronger wind and frequent
snowfall (Sevruk, 1984; Goodison et al., 1998; Nešpor and
Sevruk, 1999; Yang et al., 2005; Scaff et al., 2015; Kochen-
dorfer et al., 2018). For example, underestimation of precip-
itation could be larger than 100 % in Alaska (Yang et al.,

1998). Bias correction of station precipitation data should
consider many factors such as gauge types, precipitation
phase, and environmental conditions, which would be very
complicated when a large number of sparsely distributed sta-
tions are involved over the whole of North America.

The undercatch correction used in this study relies on
bias-corrected precipitation climatology produced by Beck
et al. (2020), which infers the long-term precipitation us-
ing a Budyko curve and streamflow observations. The bias-
corrected precipitation climatology, however, is less accurate
in northern Canada where streamflow stations are few (Beck
et al., 2020). The streamflow data used by the bias-corrected
climatology also contain uncertainties (Hamilton and Moore,
2012; Kiang et al., 2018) related to factors such as stream-
flow derivation methods (e.g., rate curves) and measurement
instruments. In addition, this correction method aims to con-
strain the total precipitation amount and cannot distinguish
between rainfall and snowfall which show different gauge
catch performance. Data users can realize rain–snow clas-
sification using approaches such as temperature threshold-
based methods and reanalysis model-based snowfall propor-
tion. Moreover, as mentioned earlier, the water balance es-
timates of precipitation undercatch do not consider noncon-
tributing areas of river basins. Whilst various undercatch cor-
rection methods (e.g., Fuchs et al., 2001; Beck et al., 2020;
Newman et al., 2020) exist, further studies are needed to
compare these solutions, considering their effectiveness and
availability of input data in a large domain.

6 Data availability

The EMDNA dataset is available at
https://doi.org/10.20383/101.0275 (Tang et al., 2020a)
in netCDF format. Individual ensemble member; ensemble
mean; and ensemble spread of precipitation, Tmean, and
Trange are provided. Since the 100 members are equally
plausible, users can download fewer members if the storage
space and processing time are limited. The deterministic OI
estimates of precipitation, PoP, Tmean, and Trange produced
in this study are also available in netCDF format. The
high-quality OI estimates merge reanalysis and station data,
which can be useful for applications that do not need ensem-
ble forcings. The data sizes are 3.35 TB for the probabilistic
part and 40.84 GB for the deterministic part.

The ensemble mean of the 100 members for Tmean and
Trange is similar to deterministic OI estimates. For precipita-
tion, the ensemble mean is slightly higher than deterministic
OI estimates due to the back transformation. We recommend
that users select the deterministic dataset instead of the en-
semble mean if their applications do not involve uncertainty
characterization.

A teaser dataset of probabilistic estimates is provided to
facilitate easy preview of EMDNA without downloading the
entire dataset. The teaser dataset covers the region from
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−116.8 to −115.2◦W and 50.7 to 51.9◦ N, the time from
2014 to 2015, and the ensemble members from 1 to 25. The
total data size is smaller than 30 MB. See Appendix E for a
brief introduction.

7 Summary and conclusions

Ensemble meteorological datasets are of great value to hy-
drological and meteorological studies. Given the lack of a
historical ensemble dataset for the entire North America, this
study develops EMDNA by integrating multi-source infor-
mation to overcome the limitation of sparse stations in high-
latitude regions. EMDNA contains precipitation, Tmean, and
Trange estimates at 0.1◦ spatial resolution and daily tempo-
ral resolution from 1979 to 2018 with 100 members. Mul-
tiple methodological choices are examined when determin-
ing critical steps in the production of EMDNA. The ulti-
mate framework is composed of four main steps: (1) gener-
ating station-based interpolation estimates from SCDNA us-
ing locally weighted linear or logistic regression; (2) regrid-
ding, correction, and merging of reanalysis products (ERA5,
MERRA-2, and JRA-55); (3) merging station–reanalysis es-
timates using OI based on a novel method of OI weight calcu-
lation and correcting precipitation undercatch using the PB-
COR dataset; and (4) generating ensemble estimates by sam-
pling from the estimated probability distributions with the
perturbations provided by SCRF.

The performance of each step is comprehensively evalu-
ated using multiple methods. The results show that the de-
sign of the framework is effective. In short, we find that
(1) station-based interpolation estimates are less accurate in
regions with sparse stations (e.g., high latitudes) and com-
plex terrain; (2) BMA-merged reanalysis estimates show no-
table improvement against raw reanalysis estimates, partic-
ularly for precipitation and Trange and over high-latitude re-
gions; (3) OI achieves more accurate estimates than interpo-
lation and reanalysis estimates from (1) and (2), respectively,
and the complementary effect between reanalysis and inter-
polation estimates contributes to the large improvement of OI
estimates in sparsely gauged regions; and (4) ensemble pre-
cipitation estimates show good discrimination and reliability
performance for all thresholds, and the BSS values for en-
semble precipitation and CRPSS values for ensemble Tmean
and Trange are high in most cases. BSS values of ensemble
precipitation increase from 1979 to 2018 due to the increase
in the number of stations.

Overall, EMDNA (version 1) will be useful for many ap-
plications in North America such as regional or continen-
tal hydrological modeling. Meanwhile, we recognize that the
current framework is not perfect and have provided sugges-
tions for the future directions for large-scale ensemble esti-
mation of meteorological variables. Continuing efforts from
the community are needed to promote the development of
probabilistic estimation methods and datasets. Development
of datasets at higher resolutions (e.g., 1 km and hourly) is
also an important direction to enable more sophisticated hy-
drometeorological studies (e.g., Sampson et al., 2020).
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Appendix A: Regression coefficients

The coefficients for locally weighted linear regression are
estimated using weighted least squares. Given a station i

with m neighboring stations, let A= [1,A1, . . .,An] be the
m× n+ 1 attribute matrix, let x= (x1x2, . . .,xm) be the sta-
tion observations from neighboring stations, and let wi =(
wi,1,wi,2, . . .,wi,m

)
be the weight vector with distance-

based weights computed from Eq. (5). The regression coeffi-
cients β = (β0,β1, . . .,βn) for Eq. (4) are estimated from the
weighted normal equation as

β = (ATWA)−1ATWx, (A1)

where the m×m weight matrix W= Imwi is a diagonal ma-
trix obtained by multiplying the m×m identity matrix Im
with the weight vector wi .

The regression coefficients for logistic regression (Eq. 6)
are estimated iteratively as

βnew
= βold

+
(
ATWVA

)−1ATW(P 0−π ), (A2)

π =
1

1+ exp(−Aβold)
, (A3)

V= Imπ (1−π ), (A4)

where P 0 is a vector of binary precipitation occurrence for
neighboring stations, π is the vector of estimated PoP for
neighboring stations, and V is the diagonal variance matrix
for PoP. The regression coefficients βold are initialized as a
vector of ones.

Appendix B: Anomalous stations

To exclude climatologically anomalous stations, for tempera-
ture (Tmean or Trange), we calculate (1) the absolute difference
in the climatological mean between the target station and the
average value of its 10 neighboring stations (referred to as
Diff-1) and (2) the absolute difference in the climatological
mean between station observation and regression estimates
(referred to as Diff-2). A temperature station will be excluded
if its Diff-1 is larger than the 95 % percentile and its Diff-2
larger than the 99 % percentile of all stations simultaneously.
The threshold of percentiles for Diff-1 is lower to better iden-
tify some climatologically anomalous stations.

For precipitation, the ratio (Ratio-1 and Ratio-2) is ob-
tained in the same way with the Diff-1 and Diff-2 of tem-
perature. A two-tailed check is used for precipitation com-
pared with the one-tailed check for temperature. A precip-
itation station will be excluded if its Ratio-1 is larger (or
smaller) than the 99.9 % (1 %) percentile and its Ratio-2
larger (or smaller) than the 99.9 % (1 %) percentile simul-
taneously. This check has more tolerance for heavy precipi-
tation but tries to exclude more extremely dry stations.

As a result,∼ 1.5 % precipitation and temperature stations
are rejected, after which algorithms described in Sect. 3.1.1

and 3.1.2 are rerun. Stations can be anomalous because they
are badly operated or simply because they are unique in terms
of topography or climate. The usage of Diff-2 or Ratio-2
is helpful to avoid excluding unique stations. But for cases
where the regression is ineffective, the unique stations can
still be wrongly excluded. Although the effect on final esti-
mates could be rather small, better strategies could be used
in future studies.

Appendix C: Error of BMA-merged reanalysis
estimates

The errors of BMA-merged estimates are first estimated for
all stations and then interpolated to grids. Considering sta-
tion observations cannot be used to evaluate merged esti-
mates once they are used in bias correction or BMA weight
estimation, a two-layer cross-validation strategy is designed.
In the first layer, we treat i as the target station and find its
m(j1 = 1,2, . . .,m; i 6∈ j1) neighboring stations. In the sec-
ond layer, we treat each j1 as a target station and (1) find
m(j2 = 1,2, . . .,m; i 6∈ j2) neighboring stations for each j1,
(2) calculate linear scaling correction factors for all j2, (3) es-
timate the correction factor for the target j1 by interpolat-
ing factors at all j2 stations using inverse distance weighting,
(4) correct estimates at j1 using the correction factor, (5) cal-
culate BMA weights of three reanalysis products for all j1
stations, (6) interpolate BMA weights from all j1 stations
to the target station i and merge the three reanalysis prod-
ucts for i, and (7) calculate the difference between merged
reanalysis estimates and station observations for i. This two-
layer design may seem convoluted but is necessary to ensure
that the error estimation is realistic. j1 and j2 could be partly
overlapped due to their close locations but should not cause
a large effect on the error estimation for i because data for i
are only used in (7) in this design. The station-based errors
are interpolated to all grids using inverse distance weighting.

Appendix D: Metrics for probabilistic evaluation

BSS is calculated based on the Brier Score (BS):

BSS= 1−
BS

BSclim
, (D1)

BS=
1
n

∑n

i=1
(PoPens−PoPobs)2, (D2)

where PoPens is the estimated probability of ensemble pre-
cipitation, PoPobs is the observed binary precipitation occur-
rence, n is the sample number, and BSclim is the climato-
logical BS by assigning the climatological probability to all
samples. When the two series match, the value of BSS will
be equal to one.
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CRPSS is calculated based on the continuous ranked prob-
ability score (CRPS; Hersbach, 2000):

CRPSS= 1−
CRPS

CRPSclim
, (D3)

CRPS=

∞∫
−∞

(F (x)−H (x ≥ xo))2dx, (D4)

where F (x) is the CDF of the ensemble temperature estimate
x, xo is the observed temperature,H (x ≥ xo) is the Heaviside
step function with the value being one if the condition x ≥
xo is satisfied and zero if not satisfied, and CRPSclim is the
climatological CRPS. CRPS measures the distance between
the CDF of probabilistic estimates and observations. For a
perfect match, the value of CRPSS would be one.

Appendix E: Teaser dataset

The teaser dataset is a subset of EMDNA probabilistic es-
timates for a small region (−116.8 to −115.2◦W, 50.7 to
51.9◦ N) and a short period (2014–2015) with only 25 en-
semble members. Users can easily download and preview
the teaser dataset (< 30 MB) before downloading the entire
EMDNA dataset (∼ 3 TB or ∼ 40 GB) as shown in Sect. 6.
The region covers the Bow River basin above Banff, Canada,
which is located in the Canadian Rockies (Fig. E1). The
spread of ensemble members in this region could be large
due to the complex topography and limited stations.

Figure E1. The distributions of daily precipitation (the first col-
umn), mean daily temperature (the second column), and daily tem-
perature range (the third column) on 29 June 2015. The first to
third rows represent ensemble members 1, 10, and 20, respectively.
The fourth row represents the standard deviation of 25 members for
this day. The black line outlines the Bow River basin above Banff,
Canada.
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