Articles | Volume 13, issue 2
https://doi.org/10.5194/essd-13-237-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-13-237-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Country-level and gridded estimates of wastewater production, collection, treatment and reuse
Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
Michelle T. H. van Vliet
Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
Manzoor Qadir
Institute for Water, Environment and Health (UNU-INWEH), United Nations University, Hamilton, Canada
Marc F. P. Bierkens
Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
Unit Subsurface & Groundwater Systems, Deltares, Utrecht, the Netherlands
Related authors
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Sneha Chevuru, Rens L. P. H. van Beek, Michelle T. H. van Vliet, Jerom P. M. Aerts, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 29, 4219–4239, https://doi.org/10.5194/hess-29-4219-2025, https://doi.org/10.5194/hess-29-4219-2025, 2025
Short summary
Short summary
This study combines the global hydrological model
PCRaster Global Water Balancewith the
World Food Studiescrop model to analyze feedbacks between hydrology and crop growth. It quantifies one-way and two-way interactions, revealing patterns in crop yield and irrigation water use. Dynamic interactions enhance understanding of climate variability impacts on food production, highlighting the importance of two-way model coupling for accurate assessments.
Nicole Gyakowah Otoo, Edwin H. Sutanudjaja, Michelle T. H. van Vliet, Aafke M. Schipper, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 29, 2153–2165, https://doi.org/10.5194/hess-29-2153-2025, https://doi.org/10.5194/hess-29-2153-2025, 2025
Short summary
Short summary
The contribution of groundwater to groundwater-dependent ecosystems (GDEs) is declining as a result of an increase in groundwater abstractions and climate change. This may lead to loss of habitat and biodiversity. This proposed framework enables the mapping and understanding of the temporal and spatial dynamics of GDEs on a large scale. The next step is to assess the global impacts of climate change and water use on GDE extent and health.
Jennie C. Steyaert, Edwin Sutanudjaja, Marc Bierkens, and Niko Wanders
EGUsphere, https://doi.org/10.5194/egusphere-2024-3658, https://doi.org/10.5194/egusphere-2024-3658, 2025
Short summary
Short summary
Using machine learning techniques and remotely sensed reservoir data, we develop a workflow to derive reservoir storage bounds. We put these bounds in a global hydrologic model, PCR-GLOBWB 2, and evaluate the difference between generalized operations (the schemes typically in global models) and this data derived method. We find that modelled storage is more accurate in the data derived operations. We also find that generalized operations over estimate storage and can underestimate water gaps.
Barry van Jaarsveld, Niko Wanders, Edwin H. Sutanudjaja, Jannis Hoch, Bram Droppers, Joren Janzing, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Earth Syst. Dynam., 16, 29–54, https://doi.org/10.5194/esd-16-29-2025, https://doi.org/10.5194/esd-16-29-2025, 2025
Short summary
Short summary
Policy makers use global hydrological models to develop water management strategies and policies. However, it would be better if these models provided information at higher resolution. We present a first-of-its-kind, truly global hyper-resolution model and show that hyper-resolution brings about better estimates of river discharge, and this is especially true for smaller catchments. Our results also suggest that future hyper-resolution models need to include more detailed land cover information.
Jarno Verkaik, Edwin H. Sutanudjaja, Gualbert H. P. Oude Essink, Hai Xiang Lin, and Marc F. P. Bierkens
Geosci. Model Dev., 17, 275–300, https://doi.org/10.5194/gmd-17-275-2024, https://doi.org/10.5194/gmd-17-275-2024, 2024
Short summary
Short summary
This paper presents the parallel PCR-GLOBWB global-scale groundwater model at 30 arcsec resolution (~1 km at the Equator). Named GLOBGM v1.0, this model is a follow-up of the 5 arcmin (~10 km) model, aiming for a higher-resolution simulation of worldwide fresh groundwater reserves under climate change and excessive pumping. For a long transient simulation using a parallel prototype of MODFLOW 6, we show that our implementation is efficient for a relatively low number of processor cores.
Edward R. Jones, Marc F. P. Bierkens, Niko Wanders, Edwin H. Sutanudjaja, Ludovicus P. H. van Beek, and Michelle T. H. van Vliet
Geosci. Model Dev., 16, 4481–4500, https://doi.org/10.5194/gmd-16-4481-2023, https://doi.org/10.5194/gmd-16-4481-2023, 2023
Short summary
Short summary
DynQual is a new high-resolution global water quality model for simulating total dissolved solids, biological oxygen demand and fecal coliform as indicators of salinity, organic pollution and pathogen pollution, respectively. Output data from DynQual can supplement the observational record of water quality data, which is highly fragmented across space and time, and has the potential to inform assessments in a broad range of fields including ecological, human health and water scarcity studies.
Heidi Kreibich, Kai Schröter, Giuliano Di Baldassarre, Anne F. Van Loon, Maurizio Mazzoleni, Guta Wakbulcho Abeshu, Svetlana Agafonova, Amir AghaKouchak, Hafzullah Aksoy, Camila Alvarez-Garreton, Blanca Aznar, Laila Balkhi, Marlies H. Barendrecht, Sylvain Biancamaria, Liduin Bos-Burgering, Chris Bradley, Yus Budiyono, Wouter Buytaert, Lucinda Capewell, Hayley Carlson, Yonca Cavus, Anaïs Couasnon, Gemma Coxon, Ioannis Daliakopoulos, Marleen C. de Ruiter, Claire Delus, Mathilde Erfurt, Giuseppe Esposito, Didier François, Frédéric Frappart, Jim Freer, Natalia Frolova, Animesh K. Gain, Manolis Grillakis, Jordi Oriol Grima, Diego A. Guzmán, Laurie S. Huning, Monica Ionita, Maxim Kharlamov, Dao Nguyen Khoi, Natalie Kieboom, Maria Kireeva, Aristeidis Koutroulis, Waldo Lavado-Casimiro, Hong-Yi Li, Maria Carmen LLasat, David Macdonald, Johanna Mård, Hannah Mathew-Richards, Andrew McKenzie, Alfonso Mejia, Eduardo Mario Mendiondo, Marjolein Mens, Shifteh Mobini, Guilherme Samprogna Mohor, Viorica Nagavciuc, Thanh Ngo-Duc, Huynh Thi Thao Nguyen, Pham Thi Thao Nhi, Olga Petrucci, Nguyen Hong Quan, Pere Quintana-Seguí, Saman Razavi, Elena Ridolfi, Jannik Riegel, Md Shibly Sadik, Nivedita Sairam, Elisa Savelli, Alexey Sazonov, Sanjib Sharma, Johanna Sörensen, Felipe Augusto Arguello Souza, Kerstin Stahl, Max Steinhausen, Michael Stoelzle, Wiwiana Szalińska, Qiuhong Tang, Fuqiang Tian, Tamara Tokarczyk, Carolina Tovar, Thi Van Thu Tran, Marjolein H. J. van Huijgevoort, Michelle T. H. van Vliet, Sergiy Vorogushyn, Thorsten Wagener, Yueling Wang, Doris E. Wendt, Elliot Wickham, Long Yang, Mauricio Zambrano-Bigiarini, and Philip J. Ward
Earth Syst. Sci. Data, 15, 2009–2023, https://doi.org/10.5194/essd-15-2009-2023, https://doi.org/10.5194/essd-15-2009-2023, 2023
Short summary
Short summary
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management. We present a dataset containing data of paired events, i.e. two floods or two droughts that occurred in the same area. The dataset enables comparative analyses and allows detailed context-specific assessments. Additionally, it supports the testing of socio-hydrological models.
Jannis M. Hoch, Edwin H. Sutanudjaja, Niko Wanders, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 27, 1383–1401, https://doi.org/10.5194/hess-27-1383-2023, https://doi.org/10.5194/hess-27-1383-2023, 2023
Short summary
Short summary
To facilitate locally relevant simulations over large areas, global hydrological models (GHMs) have moved towards ever finer spatial resolutions. After a decade-long quest for hyper-resolution (i.e. equal to or smaller than 1 km), the presented work is a first application of a GHM at 1 km resolution over Europe. This not only shows that hyper-resolution can be achieved but also allows for a thorough evaluation of model results at unprecedented detail and the formulation of future research.
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023, https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Short summary
Forecasts on water availability are important for water managers. We test a hybrid framework based on machine learning models and global input data for generating seasonal forecasts. Our evaluation shows that our discharge and surface water level predictions are able to create reliable forecasts up to 2 months ahead. We show that a hybrid framework, developed for local purposes and combined and rerun with global data, can create valuable information similar to large-scale forecasting models.
Mohammad Reza Alizadeh, Jan Adamowski, and Manzoor Qadir
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-297, https://doi.org/10.5194/hess-2022-297, 2022
Preprint withdrawn
Short summary
Short summary
This study aims to support robust policy development in human-water systems with scenario analysis of downscaled shared socio-economic pathways (SSPs) scenarios under deep uncertainty. An integrated dynamic simulation-optimization model is developed to evaluate policy alternatives and their robustness. We found many distinct combinations of outcomes with varying robustness, suggesting that the implementation of a range of development processes can lead to a particular outcome of interest.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Marc F. P. Bierkens, Edwin H. Sutanudjaja, and Niko Wanders
Hydrol. Earth Syst. Sci., 25, 5859–5878, https://doi.org/10.5194/hess-25-5859-2021, https://doi.org/10.5194/hess-25-5859-2021, 2021
Short summary
Short summary
We introduce a simple analytical framework that allows us to estimate to what extent large-scale groundwater withdrawal affects groundwater levels and streamflow. It also calculates which part of the groundwater withdrawal comes out of groundwater storage and which part from a reduction in streamflow. Global depletion rates obtained with the framework are compared with estimates from satellites, from global- and continental-scale groundwater models, and from in situ datasets.
Jan L. Gunnink, Hung Van Pham, Gualbert H. P. Oude Essink, and Marc F. P. Bierkens
Earth Syst. Sci. Data, 13, 3297–3319, https://doi.org/10.5194/essd-13-3297-2021, https://doi.org/10.5194/essd-13-3297-2021, 2021
Short summary
Short summary
In the Mekong Delta (Vietnam) groundwater is important for domestic, agricultural and industrial use. Increased pumping of groundwater has caused land subsidence and increased the risk of salinization, thereby endangering the livelihood of the population in the delta. We made a model of the salinity of the groundwater by integrating different sources of information and determined fresh groundwater volumes. The resulting model can be used by researchers and policymakers.
Bram Droppers, Wietse H. P. Franssen, Michelle T. H. van Vliet, Bart Nijssen, and Fulco Ludwig
Geosci. Model Dev., 13, 5029–5052, https://doi.org/10.5194/gmd-13-5029-2020, https://doi.org/10.5194/gmd-13-5029-2020, 2020
Short summary
Short summary
Our study aims to include both both societal and natural water requirements and uses into a hydrological model in order to enable worldwide assessments of sustainable water use. The model was extended to include irrigation, domestic, industrial, energy, and livestock water uses as well as minimum flow requirements for natural systems. Initial results showed competition for water resources between society and nature, especially with respect to groundwater withdrawals.
Cited articles
Beard, J., Bierkens, M. F. P., and Bartholomeus, R.: Following the Water: Characterising
de facto Wastewater Reuse in Agriculture in the Netherlands, Sustainability, 11, 5936,
https://doi.org/10.3390/su11215936, 2019.
Bierkens, M. F. P. and Wada, Y.: Non-renewable groundwater use and groundwater
depletion: a review, Environ. Res. Lett., 14, 063002, https://doi.org/10.1088/1748-9326/ab1a5f, 2019.
Country-specific data on total volume of municipal wastewater produced at the national
level, available at: https://www.globalwaterintel.com (last access: 5 January 2020), 2015.
Chhipi-Shrestha, G., Hewage, K., and Sadiq, R.: Fit-for-purpose wastewater treatment:
Conceptualization to development of decision support tool (I), Sci. Total Environ., 607–608,
600–612, https://doi.org/10.1016/j.scitotenv.2017.06.269, 2017.
Data on generation and discharge of wastewater in volume in EU member countries,
potential EU candidate countries and other European countries, available at:
http://ec.europa.eu/eurostat/data/database, last access: 5 January 2020.
de Graaf, I. E. M., van Beek, L. P. H., Wada, Y., and Bierkens, M. F. P.: Dynamic
attribution of global water demand to surface water and groundwater resources: Effects of
abstractions and return flows on river discharges, Adv. Water Resour., 64, 21–33,
https://doi.org/10.1016/j.advwatres.2013.12.002, 2014.
Deblonde, T., Cossu-Leguille, C., and Hartemann, P.: Emerging pollutants in wastewater:
a review of the literature, Int. J. Hyg. Environ. Health, 214, 442–448,
https://doi.org/10.1016/j.ijheh.2011.08.002, 2011.
El Moussaoui, T., Wahbi, S., Mandi, L., Masi, S., and Ouazzani, N.: Reuse study of
sustainable wastewater in agroforestry domain of Marrakesh city, J. Saudi Soc. Agric. Sci., 18,
288–293, https://doi.org/10.1016/j.jssas.2017.08.004, 2019.
Environmental Indicators:
https://unstats.un.org/unsd/envstats/qindicators, last access: 5 January 2020.
EPA Facility Registry Service (FRS): Wastewater Treatment Plants, available at:
https://edg.epa.gov/data/PUBLIC/OEI/OIC/FRS_Wastewater.zip, last access: 5 January 2020.
Ercin, A. E. and Hoekstra, A. Y.: Water footprint scenarios for 2050: A global analysis,
Environ. Int., 64, 71–82, https://doi.org/10.1016/j.envint.2013.11.019, 2014.
Flörke, M., Teichert, E., Bärlund, I., Eisner, S., Wimmer, F., and Alcamo, J.:
Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development:
A global simulation study, Glob. Environ. Change, 23, 144–156,
https://doi.org/10.1016/j.gloenvcha.2012.10.018, 2013.
Garcia, X. and Pargament, D.: Reusing wastewater to cope with water scarcity: Economic,
social and environmental considerations for decision-making, Resour. Conserv. Recycl., 101,
154–166, https://doi.org/10.1016/j.resconrec.2015.05.015, 2015.
Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van der Ploeg, M., van de Zee,
S. E. A. T. M., and Ritsema, C. J.: Emerging pollutants in the environment: A challenge for water
resource management, Int. Soil Water Conserv. Res., 3, 57–65, https://doi.org/10.1016/j.iswcr.2015.03.002,
2015.
Global information system on water and agriculture, available at:
http://www.fao.org/nr/water/aquastat/wastewater/index.stm, last access: 5 January 2020.
Gude, V. G.: Desalination and water reuse to address global water scarcity,
Rev. Environ. Sci. Biol., 16, 591–609, https://doi.org/10.1007/s11157-017-9449-7, 2017.
Hanasaki, N., Fujimori, S., Yamamoto, T., Yoshikawa, S., Masaki, Y., Hijioka, Y.,
Kainuma, M., Kanamori, Y., Masui, T., Takahashi, K., and Kanae, S.: A global water scarcity
assessment under Shared Socio-economic Pathways – Part 2: Water availability and scarcity,
Hydrol. Earth Syst. Sci., 17, 2393–2413, https://doi.org/10.5194/hess-17-2393-2013, 2013.
bibitem17 Hansen, E., Rodrigues, M., and Aquim, P.: Wastewater reuse in a cascade based system of
a petrochemical industry for the replacement of losses in cooling towers, J. Environ. Manage.,
181, 157–162, https://doi.org/10.1016/j.jenvman.2016.06.014, 2016.
Hernández-Chover, V., Bellver-Domingo, Á., and Hernández-Sancho, F.:
Efficiency of wastewater treatment facilities: The influence of scale economies,
J. Environ. Manage., 228, 77–84, https://doi.org/10.1016/j.jenvman.2018.09.014, 2018.
Hernandez-Sancho, F., Molinos-Senante, M., and Sala-Garrido, R.: Cost modelling for
wastewater treatment processes, Desalination, 268, 1–5, https://doi.org/10.1016/j.desal.2010.09.042, 2011.
Hernández-Sancho, F., Lamizana-Diallo, B., Mateo-Sagasta, J., and Qadir, M.:
Economic valuation of wastewater: The cost of action and the cost of no action, UNEP, Nairobi,
2015.
Jiménez, B. and Asano, T.: Water Reuse: An International Survey of Current
Practice, Issues and Needs, IWA Publishing, 2008.
Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V., and Kang, S.-M.: The state of
desalination and brine production: A global outlook, Sci. Total Environ., 657, 1343–1356,
https://doi.org/10.1016/j.scitotenv.2018.12.076, 2019.
Jones, E., van Vliet, M. T. H., Qadir, M., and Bierkens, M. F. P.: Country-level and
gridded wastewater production, collection, treatment and re-use, PANGAEA,
https://doi.org/10.1594/PANGAEA.918731, 2020.
Khalil, M. and Hussein, H.: Use of waste water for aquaculture: An experimental field
study at a sewage-treatment plant, Egypt, Aquac. Res., 28, 859–865,
https://doi.org/10.1046/j.1365-2109.1997.00910.x, 2008.
Kummu, M., Guillaume, J., Moel, H., Eisner, S., Flörke, M., Porkka, M., Siebert,
S., Veldkamp, T. I. E., and Ward, P.: The world's road to water scarcity: Shortage and stress in
the 20th century and pathways towards sustainability, Sci. Rep., 6, 38495,
https://doi.org/10.1038/srep38495, 2016.
Luthy, R. G., Sedlak, D. L., Plumlee, M. H., Austin, D., and Resh, V. H.:
Wastewater-effluent-dominated streams as ecosystem-management tools in a drier climate,
Front. Ecol. Environ., 13, 477–485, https://doi.org/10.1890/150038, 2015.
Mateo-Sagasta, J., Raschid-Sally, L., and Thebo, A.: Global Wastewater and Sludge
Production, Treatment and Use, in: Wastewater: Economic Asset in an Urbanizing World, edited by:
Drechsel, P., Qadir, M., and Wichelns, D., Springer Netherlands, Dordrecht, 15–38, 2015.
Morote, Á., Olcina, J., and Hernández, M.: The Use of Non-Conventional Water
Resources as a Means of Adaptation to Drought and Climate Change in Semi-Arid Regions:
South-Eastern Spain, Water, 11, 93, https://doi.org/10.3390/w11010093, 2019.
Murray, A. and Drechsel, P.: Why do some wastewater treatment facilities work when the
majority fail? Case study from the sanitation sector in Ghana, Waterlines, 30, 135–149,
https://doi.org/10.3362/1756-3488.2011.015, 2011.
Qadir, M., Boelee, E., Amerasinghe, P., and Danso, G.: Costs and Benefits of Using
Wastewater for Aquifer Recharge, in: Wastewater: Economic Asset in an Urbanizing World, edited by:
Drechsel, P., Qadir, M., and Wichelns, D., Springer Netherlands, Dordrecht,
153–167, 2015.
Qadir, M., Drechsel, P., Jiménez Cisneros, B., Kim, Y., Pramanik, A., Mehta, P.,
and Olaniyan, O.: Global and regional potential of wastewater as a water, nutrient and energy
source, Nat. Resour. Forum, 44, 40–51, https://doi.org/10.1111/1477-8947.12187, 2020.
Qadir, M., Jiménez, G., Farnum, R., Dodson, L., and Smakhtin, V.: Fog Water
Collection: Challenges beyond Technology, Water, 10, 372, https://doi.org/10.3390/w10040372, 2018.
Qadir, M., Sharma, B. R., Bruggeman, A., Choukr-Allah, R., and Karajeh, F.:
Non-conventional water resources and opportunities for water augmentation to achieve food security
in water scarce countries, Agr. Water Manage., 87, 2–22, https://doi.org/10.1016/j.agwat.2006.03.018, 2007.
Qadir, M., Wichelns, D., Raschid-Sally, L., McCornick, P. G., Drechsel, P., Bahri, A.,
and Minhas, P. S.: The challenges of wastewater irrigation in developing countries, Agr. Water
Manage., 97, 561–568, https://doi.org/10.1016/j.agwat.2008.11.004, 2010.
Raschid-Sally, L. and Jayakody, P.: Drivers and Characteristics of Wastewater
Agriculture in Developing Countries: Results from a Global Assessment, International Water
Management Institute, Colombo, Sri Lanka, 2008.
Rice, J., Wutich, A., and Westerhoff, P.: Assessment of De Facto Wastewater Reuse
across the U.S.: Trends between 1980 and 2008, Environ. Sci. Technol., 47, 11099–11105,
https://doi.org/10.1021/es402792s, 2013.
Sato, T., Qadir, M., Yamamoto, S., Endo, T., and Zahoor, A.: Global, regional, and
country level need for data on wastewater generation, treatment, and use, Agr. Water Manage., 130,
1–13, https://doi.org/10.1016/j.agwat.2013.08.007, 2013.
Scott, C., Drechsel, P., Bahri, A., Mara, D., Redwood, M., Raschid-Sally, L., and
Jiménez, B.: Wastewater irrigation and health: Challenges and outlook for mitigating risks in
low-income countries, in: Wastewater irrigation and health: Assessing and mitigating risk in
low-income countries, edited by: Drechsel, P., Scott, C., Raschid-Sally, L., Redwood, M., and
Bahri, A., Earthscan, London, 381–394, 2010.
Smol, M., Adam, C., and Preisner, M.: Circular economy model framework in the European
water and wastewater sector, J. Mater. Cycl. Waste, 22, 682–697,
https://doi.org/10.1007/s10163-019-00960-z, 2020.
Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C., Drost, N.,
van der Ent, R. J., de Graaf, I. E. M., Hoch, J. M., de Jong, K., Karssenberg, D., López
López, P., Peßenteiner, S., Schmitz, O., Straatsma, M. W., Vannametee, E., Wisser, D., and
Bierkens, M. F. P.: PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources
model, Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, 2018.
Thebo, A. L., Drechsel, P., and Lambin, E. F.: Global assessment of urban and
peri-urban agriculture: irrigated and rainfed croplands, Environ. Res. Lett., 9, 114002,
https://doi.org/10.1088/1748-9326/9/11/114002, 2014.
Thebo, A. L., Drechsel, P., Lambin, E. F., and Nelson, K. L.: A global,
spatially-explicit assessment of irrigated croplands influenced by urban wastewater flows,
Environ. Res. Lett., 12, 074008, https://doi.org/10.1088/1748-9326/aa75d1, 2017.
UNEP: A Snapshot of the World's Water Quality: Towards a global assessment, United
Nations Environment Programme, Nairobi, Kenya, 162pp, 2016.
van Vliet, M., Flörke, M., and Wada, Y.: Quality matters for water scarcity, Nat.
Geosci., 10, 800–802, https://doi.org/10.1038/ngeo3047, 2017.
Voulvoulis, N.: Water reuse from a circular economy perspective and potential risks
from an unregulated approach, Curr. Opin. Environ. Sci. Health, 2, 32–45,
https://doi.org/10.1016/j.coesh.2018.01.005, 2018.
Wada, Y., Beek, L. P. H., Viviroli, D., Dürr, H., Weingartner, R., and Bierkens,
M. F. P.: Global monthly water stress: II. Water demand and severity of water, Water Resour. Res.,
47, https://doi.org/10.1029/2010WR009792, 2011.
Wada, Y., Flörke, M., Hanasaki, N., Eisner, S., Fischer, G., Tramberend, S., Satoh, Y.,
van Vliet, M. T. H., Yillia, P., Ringler, C., Burek, P., and Wiberg, D.: Modeling global water use
for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches,
Geosci. Model Dev., 9, 175–222, https://doi.org/10.5194/gmd-9-175-2016, 2016.
Wada, Y., Wisser, D., Eisner, S., Flörke, M., Gerten, D., Haddeland, I., Hanasaki,
N., Masaki, Y., Portmann, F. T., Stacke, T., Tessler, Z., and Schewe, J.: Multimodel projections
and uncertainties of irrigation water demand under climate change, Geophys. Res. Lett., 40,
4626–4632, https://doi.org/10.1002/grl.50686, 2013.
Wada, Y., Wisser, D., and Bierkens, M. F. P.: Global modeling of withdrawal, allocation
and consumptive use of surface water and groundwater resources, Earth Syst. Dynam., 5, 15–40,
https://doi.org/10.5194/esd-5-15-2014, 2014.
Waterbase – UWWTD: Urban Waste Water Treatment Directive – reported data, available at:
https://www.eea.europa.eu/data-and-maps/data/waterbase-uwwtd-urban-waste-water-treatment-directive-6
(last access: 5 January 2020), 2019.
World Health Organization (WHO): Guidelines for drinking-water quality: fourth edition, Geneva, Switzerland, 564 pp., 2011.
Wichelns, D., Drechsel, P., and Qadir, M.: Wastewater: Economic Asset in an Urbanizing
World, in: Wastewater: Economic Asset in an Urbanizing World, edited by: Drechsel, P., Qadir, M.,
and Wichelns, D., Springer Netherlands, Dordrecht, 3–14, 2015.
WWAP: The United Nations World Water Development Report 2017. Wastewater: The Untapped
Resource, Paris, UNESCO, 2017.
Zhang, Y. and Shen, Y.: Wastewater irrigation: past, present, and future: Wastewater
irrigation, WIRES Water, e1234, https://doi.org/10.1002/wat2.1234, 2017.
Short summary
Continually improving and affordable wastewater management provides opportunities for both pollution reduction and clean water supply augmentation. This study provides a global outlook on the state of domestic and industrial wastewater production, collection, treatment and reuse. Our results can serve as a baseline in evaluating progress towards policy goals (e.g. Sustainable Development Goals) and as input data in large-scale water resource assessments (e.g. water quality modelling).
Continually improving and affordable wastewater management provides opportunities for both...
Altmetrics
Final-revised paper
Preprint