Articles | Volume 11, issue 2
https://doi.org/10.5194/essd-11-515-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-11-515-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Data set of submerged sand deposits organised in an interoperable spatial data infrastructure (Western Sardinia, Mediterranean Sea)
Walter Brambilla
CORRESPONDING AUTHOR
Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino del CNR, Oristano, Italy
Alessandro Conforti
Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino del CNR, Oristano, Italy
Simone Simeone
Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino del CNR, Oristano, Italy
Paola Carrara
Istituto per il Rilevamento Elettromagnetico dell'Ambiente CNR, Milan, Italy
Simone Lanucara
Istituto per il Rilevamento Elettromagnetico dell'Ambiente CNR, Milan, Italy
Giovanni De Falco
Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino del CNR, Oristano, Italy
Related authors
No articles found.
C. E. Kilsedar, L. Frigerio, M. Bonano, G. Bordogna, P. Carrara, P. Imperatore, R. Lanari, M. Manzo, A. Pepe, and M. A. Brovelli
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4-W14, 135–141, https://doi.org/10.5194/isprs-archives-XLII-4-W14-135-2019, https://doi.org/10.5194/isprs-archives-XLII-4-W14-135-2019, 2019
Giovanni De Falco, Emanuela Molinaroli, Alessandro Conforti, Simone Simeone, and Renato Tonielli
Biogeosciences, 14, 3191–3205, https://doi.org/10.5194/bg-14-3191-2017, https://doi.org/10.5194/bg-14-3191-2017, 2017
Short summary
Short summary
This study quantifies the contribution of carbonate sediments, produced in seagrass meadows and in photophilic algal communities, to the sediment budget of a beach–dune system. The contribution to the beach sediment budget represents a further ecosystem service provided by seagrass. The dependence of the beach sediment budget on carbonate production associated with coastal ecosystems has implications for the adaptation of carbonate beaches to the seagrass decline and sea level rise.
Related subject area
Marine geology
Demersal fishery Impacts on Sedimentary Organic Matter (DISOM): a global harmonized database of studies assessing the impacts of demersal fisheries on sediment biogeochemistry
Predictive mapping of organic carbon stocks in surficial sediments of the Canadian continental margin
The SDUST2022GRA global marine gravity anomalies recovered from radar and laser altimeter data: Contribution of ICESat-2 laser altimetry
SCShores: a comprehensive shoreline dataset of Spanish sandy beaches from a citizen-science monitoring programme
The Modern Ocean Sediment Archive and Inventory of Carbon (MOSAIC): version 2.0
Large freshwater-influx-induced salinity gradient and diagenetic changes in the northern Indian Ocean dominate the stable oxygen isotopic variation in Globigerinoides ruber
Beach-face slope dataset for Australia
Last interglacial sea-level proxies in the Korean Peninsula
A review of last interglacial sea-level proxies in the western Atlantic and southwestern Caribbean, from Brazil to Honduras
Last Interglacial sea-level proxies in the western Mediterranean
A standardized database of Last Interglacial (MIS 5e) sea-level indicators in Southeast Asia
A global database of marine isotope substage 5a and 5c marine terraces and paleoshoreline indicators
The last interglacial sea-level record of Aotearoa New Zealand
Last interglacial sea levels within the Gulf of Mexico and northwestern Caribbean Sea
Deep-sea sediments of the global ocean
Measurements of hydrodynamics, sediment, morphology and benthos on Ameland ebb-tidal delta and lower shoreface
Global distribution of nearshore slopes with implications for coastal retreat
Thickness of marine Holocene sediment in the Gulf of Trieste (northern Adriatic Sea)
The GIK-Archive of sediment core radiographs with documentation
Sarah Paradis, Justin Tiano, Emil De Borger, Antonio Pusceddu, Clare Bradshaw, Claudia Ennas, Claudia Morys, and Marija Sciberras
Earth Syst. Sci. Data, 16, 3547–3563, https://doi.org/10.5194/essd-16-3547-2024, https://doi.org/10.5194/essd-16-3547-2024, 2024
Short summary
Short summary
DISOM is a database that compiles data of 71 independent studies that assess the effect of demersal fisheries on sedimentological and biogeochemical properties. This database also provides crucial metadata (i.e. environmental and fishing descriptors) needed to understand the effects of demersal fisheries in a global context.
Graham Epstein, Susanna D. Fuller, Dipti Hingmire, Paul G. Myers, Angelica Peña, Clark Pennelly, and Julia K. Baum
Earth Syst. Sci. Data, 16, 2165–2195, https://doi.org/10.5194/essd-16-2165-2024, https://doi.org/10.5194/essd-16-2165-2024, 2024
Short summary
Short summary
Improved mapping of surficial seabed sediment organic carbon is vital for best-practice marine management. Here, using systematic data review, data unification process and machine learning techniques, the first national predictive maps were produced for Canada at 200 m resolution. We show fine-scale spatial variation of organic carbon across the continental margin and estimate the total standing stock in the top 30 cm of the sediment to be 10.9 Gt.
Zhen Li, Jinyun Guo, Chengcheng Zhu, Xin Liu, Cheinway Hwang, Sergey Lebedev, Xiaotao Chang, Anatoly Soloviev, and Heping Sun
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-484, https://doi.org/10.5194/essd-2023-484, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
A new global marine gravity model, SDUST2022GRA, is recovered from radar and laser altimeter data. The accuracy of SDUST2022GRA is 4.43 mGal on a global scale, which is at least 0.22 mGal better than that of others models. The spatial resolution of SDUST2022GRA is approximately 20 km in a certain region, slightly better superior others models. These assessments suggests that SDUST2022GRA is a reliable global marine gravity anomaly model.
Rita González-Villanueva, Jesús Soriano-González, Irene Alejo, Francisco Criado-Sudau, Theocharis Plomaritis, Àngels Fernàndez-Mora, Javier Benavente, Laura Del Río, Miguel Ángel Nombela, and Elena Sánchez-García
Earth Syst. Sci. Data, 15, 4613–4629, https://doi.org/10.5194/essd-15-4613-2023, https://doi.org/10.5194/essd-15-4613-2023, 2023
Short summary
Short summary
Sandy beaches, shaped by tides, waves, and winds, constantly change. Studying these changes is crucial for coastal management, but obtaining detailed shoreline data is difficult and costly. Our paper introduces a unique dataset of high-resolution shorelines from five Spanish beaches collected through the CoastSnap citizen-science program. With 1721 shorelines, our dataset provides valuable information for coastal studies.
Sarah Paradis, Kai Nakajima, Tessa S. Van der Voort, Hannah Gies, Aline Wildberger, Thomas M. Blattmann, Lisa Bröder, and Timothy I. Eglinton
Earth Syst. Sci. Data, 15, 4105–4125, https://doi.org/10.5194/essd-15-4105-2023, https://doi.org/10.5194/essd-15-4105-2023, 2023
Short summary
Short summary
MOSAIC is a database of global organic carbon in marine sediments. This new version holds more than 21 000 sediment cores and includes new variables to interpret organic carbon distribution, such as sedimentological parameters and biomarker signatures. MOSAIC also stores data from specific sediment and molecular fractions to better understand organic carbon degradation and ageing. This database is continuously expanding, and version control will allow reproducible research outputs.
Rajeev Saraswat, Thejasino Suokhrie, Dinesh K. Naik, Dharmendra P. Singh, Syed M. Saalim, Mohd Salman, Gavendra Kumar, Sudhira R. Bhadra, Mahyar Mohtadi, Sujata R. Kurtarkar, and Abhayanand S. Maurya
Earth Syst. Sci. Data, 15, 171–187, https://doi.org/10.5194/essd-15-171-2023, https://doi.org/10.5194/essd-15-171-2023, 2023
Short summary
Short summary
Much effort is made to project monsoon changes by reconstructing the past. The stable oxygen isotopic ratio of marine calcareous organisms is frequently used to reconstruct past monsoons. Here, we use the published and new stable oxygen isotopic data to demonstrate a diagenetic effect and a strong salinity influence on the oxygen isotopic ratio of foraminifera in the northern Indian Ocean. We also provide updated calibration equations to deduce monsoons from the oxygen isotopic ratio.
Kilian Vos, Wen Deng, Mitchell Dean Harley, Ian Lloyd Turner, and Kristen Dena Marie Splinter
Earth Syst. Sci. Data, 14, 1345–1357, https://doi.org/10.5194/essd-14-1345-2022, https://doi.org/10.5194/essd-14-1345-2022, 2022
Short summary
Short summary
Along the world's coastlines, we find sandy beaches that are constantly reshaped by ocean waves and tides. The way the incoming waves interact with the sandy beach is dictated by the slope of the beach face. Yet, despite their importance in coastal sciences, beach-face slope data remain unavailable along most coastlines. Here we use satellite remote sensing to present a new dataset of beach-face slopes for the Australian continent, covering 13 200 km of sandy coast.
Woo Hun Ryang, Alexander R. Simms, Hyun Ho Yoon, Seung Soo Chun, and Gee Soo Kong
Earth Syst. Sci. Data, 14, 117–142, https://doi.org/10.5194/essd-14-117-2022, https://doi.org/10.5194/essd-14-117-2022, 2022
Short summary
Short summary
This work is part of the World Atlas of Last Interglacial Shorelines (WALIS), whose aim is to construct a database of Last Interglacial (LIG) relative sea-level (RSL) indicators from across the globe. This paper reviews the LIG sea-level constraints from the Korean Peninsula entered into the online WALIS database. This paper including the dataset will contribute to reconstructing global LIG sea-level changes and regional LIG RSL in the Korean Peninsula.
Karla Rubio-Sandoval, Alessio Rovere, Ciro Cerrone, Paolo Stocchi, Thomas Lorscheid, Thomas Felis, Ann-Kathrin Petersen, and Deirdre D. Ryan
Earth Syst. Sci. Data, 13, 4819–4845, https://doi.org/10.5194/essd-13-4819-2021, https://doi.org/10.5194/essd-13-4819-2021, 2021
Short summary
Short summary
The Last Interglacial (LIG) is a warm period characterized by a higher-than-present sea level. For this reason, scientists use it as an analog for future climatic conditions. In this paper, we use the World Atlas of Last Interglacial Shorelines database to standardize LIG sea-level data along the coasts of the western Atlantic and mainland Caribbean, identifying 55 unique sea-level indicators.
Ciro Cerrone, Matteo Vacchi, Alessandro Fontana, and Alessio Rovere
Earth Syst. Sci. Data, 13, 4485–4527, https://doi.org/10.5194/essd-13-4485-2021, https://doi.org/10.5194/essd-13-4485-2021, 2021
Short summary
Short summary
The paper is a critical review and standardization of 199 published scientific papers to compile a Last Interglacial sea-level database for the Western Mediterranean sector. In the database, 396 sea-level data points associated with 401 dated samples are included. The relative sea-level data points and associated ages have been ranked on a 0 to 5 scale score.
Kathrine Maxwell, Hildegard Westphal, and Alessio Rovere
Earth Syst. Sci. Data, 13, 4313–4329, https://doi.org/10.5194/essd-13-4313-2021, https://doi.org/10.5194/essd-13-4313-2021, 2021
Short summary
Short summary
Marine Isotope Stage 5e (MIS 5e; the Last Interglacial, 125 ka) represents a period in the Earth’s geologic history when sea level was higher than present. In this paper, a standardized database was produced after screening and reviewing LIG sea-level data from published papers in Southeast Asia. We identified 43 unique sea-level indicators (42 from coral reef terraces and 1 from a tidal notch) and compiled the data in the World Atlas of Last Interglacial Shorelines (WALIS).
Schmitty B. Thompson and Jessica R. Creveling
Earth Syst. Sci. Data, 13, 3467–3490, https://doi.org/10.5194/essd-13-3467-2021, https://doi.org/10.5194/essd-13-3467-2021, 2021
Short summary
Short summary
The elevations of geological indicators of past sea level inform paleoclimate reconstructions of interglacial intervals, including changes in ice volume and equivalent sea level rise and fall. In this review article, we summarize previously reported elevations and chronologies of a global set of ~80 000- and ~100 000-year-old interglacial shorelines and compile these in the open-source World Atlas of Last Interglacial Shorelines (WALIS) database for further paleoclimate analysis.
Deirdre D. Ryan, Alastair J. H. Clement, Nathan R. Jankowski, and Paolo Stocchi
Earth Syst. Sci. Data, 13, 3399–3437, https://doi.org/10.5194/essd-13-3399-2021, https://doi.org/10.5194/essd-13-3399-2021, 2021
Short summary
Short summary
Studies of ancient sea level and coastlines help scientists understand how coasts will respond to future sea-level rise. This work standardized the published records of sea level around New Zealand correlated with sea-level peaks within the Last Interglacial (~128 000–73 000 years ago) using the World Atlas of Last Interglacial Shorelines (WALIS) database. New Zealand has the potential to provide an important sea-level record with more detailed descriptions and improved age constraint.
Alexander R. Simms
Earth Syst. Sci. Data, 13, 1419–1439, https://doi.org/10.5194/essd-13-1419-2021, https://doi.org/10.5194/essd-13-1419-2021, 2021
Short summary
Short summary
This study is part of a larger community effort to catalogue the elevation of sea levels approximately 120 000 years ago – a time period when global temperatures were generally warmer than they are today. For this specific study I summarized the work of other scientists who had determined the age and elevations of ancient shorelines and coral reefs from across the Gulf of Mexico and Yucatán Peninsula.
Markus Diesing
Earth Syst. Sci. Data, 12, 3367–3381, https://doi.org/10.5194/essd-12-3367-2020, https://doi.org/10.5194/essd-12-3367-2020, 2020
Short summary
Short summary
A new digital map of the sediment types covering the bottom of the ocean has been created. Direct observations of the seafloor sediments are few and far apart. Therefore, machine learning was used to fill those gaps between observations. This was possible because known relationships between sediment types and the environment in which they form (e.g. water depth, temperature, and salt content) could be exploited. The results are expected to provide important information for marine research.
Bram C. van Prooijen, Marion F. S. Tissier, Floris P. de Wit, Stuart G. Pearson, Laura B. Brakenhoff, Marcel C. G. van Maarseveen, Maarten van der Vegt, Jan-Willem Mol, Frank Kok, Harriette Holzhauer, Jebbe J. van der Werf, Tommer Vermaas, Matthijs Gawehn, Bart Grasmeijer, Edwin P. L. Elias, Pieter Koen Tonnon, Giorgio Santinelli, José A. A. Antolínez, Paul Lodewijk M. de Vet, Ad J. H. M. Reniers, Zheng Bing Wang, Cornelis den Heijer, Carola van Gelder-Maas, Rinse J. A. Wilmink, Cor A. Schipper, and Harry de Looff
Earth Syst. Sci. Data, 12, 2775–2786, https://doi.org/10.5194/essd-12-2775-2020, https://doi.org/10.5194/essd-12-2775-2020, 2020
Short summary
Short summary
To protect the Dutch coastal zone, sand is nourished and disposed at strategic locations. Simple questions like where, how, how much and when to nourish the sand are not straightforward to answer. This is especially the case around the Wadden Sea islands where sediment transport pathways are complicated. Therefore, a large-scale field campaign has been carried out on the seaward side of Ameland Inlet. Sediment transport, hydrodynamics, morphology and fauna in the bed were measured.
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Sandra Gaytan-Aguilar, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 11, 1515–1529, https://doi.org/10.5194/essd-11-1515-2019, https://doi.org/10.5194/essd-11-1515-2019, 2019
Short summary
Short summary
This dataset provides the spatial distribution of nearshore slopes at a resolution of 1 km along the global coastline. The calculation was based on available global topo-bathymetric datasets and ocean wave reanalysis. The calculated slopes show skill in capturing the spatial variability of the nearshore slopes when compared against local observations. The importance of this variability is presented with a global coastal retreat assessment for an arbitrary sea level rise scenario.
Ana Trobec, Martina Busetti, Fabrizio Zgur, Luca Baradello, Alberto Babich, Andrea Cova, Emiliano Gordini, Roberto Romeo, Isabella Tomini, Sašo Poglajen, Paolo Diviacco, and Marko Vrabec
Earth Syst. Sci. Data, 10, 1077–1092, https://doi.org/10.5194/essd-10-1077-2018, https://doi.org/10.5194/essd-10-1077-2018, 2018
Short summary
Short summary
Following the last glacial period the sea level started rising rapidly. The sea started entering the Gulf of Trieste approximately 10000 years ago and since then marine Holocene sediment has been depositing. We wanted to understand how thick this sediment is, so we used modern scientific equipment which lets us determine the depth of the seafloor and the sediment below. The sediment is thickest in the SE part of the gulf (approx. 5 m). In the other parts it is very thin, except near the coast.
Hannes Grobe, Kyaw Winn, Friedrich Werner, Amelie Driemel, Stefanie Schumacher, and Rainer Sieger
Earth Syst. Sci. Data, 9, 969–976, https://doi.org/10.5194/essd-9-969-2017, https://doi.org/10.5194/essd-9-969-2017, 2017
Short summary
Short summary
A unique archive of radiographs from ocean floor sediments was produced during five decades of marine geological work at the Geological-Paleontological Institute, Kiel University. The content of 18 500 images was digitized, uploaded to the data library PANGAEA, georeferenced and completed with metadata. With this publication the images are made available to the scientific community under a CC-BY licence, which is open-access and citable with the persistent identifier https://doi.org/10.1594/PANGAEA.854841.
Cited articles
Antonioli, F., Anzidei, M., Amorosi, A., Lo Presti, V., Mastronuzzi, G.,
Deiana, G., De Falco, G., Fontana, A., Fontolan, G., Lisco, S., Marsico, A.,
Moretti, M., Orrù, P. E., Sannino, G. M., Serpelloni, E., and Vecchio,
A.: Sea-level rise and potential drowning of the Italian coastal plains:
Flooding risk scenarios for 2100, Quaternary Sci. Rev., 158, 29–43, 2017.
Arisci, A., De Waele, J., Di Gregorio, F., Ferrucci, I., and Follesa, R.:
Geoenvironmental analysis in coastal zone management: a case of study in
Southwest-Sardinia (Italy), J. Coastal Res., 19, 963–970, 2003.
Armstrong, J., Wilby, R., and Nicholls, R. J.: Climate change adaptation
frameworks: an evaluation of plans for coastal Suffolk, UK, Nat. Hazards
Earth Syst. Sci., 15, 2511–2524, https://doi.org/10.5194/nhess-15-2511-2015,
2015.
Barbanti, A., Campostrini, P., Musco, F., Sarretta, A., and Gissi, E.:
Developing a Maritime Spatial Plan for the Adriatic-Ionian Region, CNR-ISMAR,
https://doi.org/10.5281/zenodo.48231, 2015.
Blott, S. J. and Pye, K.: GRADISTAT: A grain size distribution and statistics
package for the analysis of unconsolidated sediments, Earth Surf. Proc.
Land., 26, 1237–1248, https://doi.org/10.1002/esp.261, 2011.
Brambilla, W., van Rooijen, A., Simeone, S., Ibba, A., and De Muro, S.: Field
observations, coastal video monitoring and numerical modeling at Poetto
Beach, Italy, J. Coastal Res., 75, 825–829, https://doi.org/10.2112/SI75-166.1, 2016.
Brambilla, W., Conforti, A., Simeone, S., Carrara, P., Lanucara, S., and De
Falco, G.: Submerged sand deposits data from Western Sardinia, Mediterranean
Sea organised in an interoperable Spatial Data Infrastructure, PANGAEA,
https://doi.org/10.1594/PANGAEA.895430, 2018.
Brown, J. M., Ciavola, P., Masselink, G., McCall, R., and Plater, A. J.:
Preface: Monitoring and modelling to guide coastal adaptation to extreme
storm events in a changing climate, Nat. Hazards Earth Syst. Sci., 16,
463–467, https://doi.org/10.5194/nhess-16-463-2016, 2016.
Budillon, F., Conforti, A., Tonielli, R., De Falco, G., Di Martino, G.,
Innangi, S., and Marsella, E.: The Bulgheria canyon-fan A small-scale
proximal system in the eastern Tyrrhenian Sea (Italy), Mar. Geophys. Res.,
32, 83–97, 2011.
Carboni, S., Lecca, L., and Ferrara, C.: La discordanza versiliana sulla
piattaforma occidentale della Sardegna, B. Soc. Geol. Ital., 108, 503–519,
1989.
Carlson, R. L., Gangi, A. F., and Snow, K. L. R.: Empirical reflection travel
time versus depth and velocity versus depth functions for the deep sea
sediments column, J. Geophys. Res., 91, 8249–8266, 1986.
Casula, G., Cherchi, A., Montadert, L., Murru, M., and Sarria, E.: The
Cenozoic graben system of Sardinia (Italy): geodynamic evolution from new
seismic and field data, Mar. Pet. Geol., 18, 863–888,
https://doi.org/10.1016/S0264-8172(01)00023-X, 2001.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S.,
Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D.,
Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea level
change, in: Climate Change 2013: the Physical Science Basis, Contribution of
Working Group I to the Fifth Assessment Report of the Intergovernmental Panel
on Climate Change, Cambridge University Press, Cambridge, UK and New York,
NY, USA, 2013.
Ciavola, P., Ferreira, Ã., Haerens, P., van Koningsveld, M., Armaroli,
C., and Lequeux, Q.: Storm impacts along European coastlines. Part 1: The
joint effort of the MICORE and ConHaz Projects, Environ. Sci. Pol., 14,
912–923, https://doi.org/10.1016/j.envsci.2011.05.011, 2011.
Conforti, A., Budillon, F., Tonielli, R., and De Falco, G.: A newly
discovered Pliocene volcanic field on the western Sardinia continental margin
(western Mediterranean), Geo.-Mar. Lett., 36, 1–14,
https://doi.org/10.1007/s00367-015-0428-0, 2016.
Correggiari, A., Perini, L., Foglini, F., Remia, A., Campiani, E., Calabrese,
L., Luciani, P., Martini, A., Trincardi, F., and Pignone, R.:
InSAND_Sistema_Informativo_Sabbie_Offshore_web online, available at:
http://ambiente.regione.emilia-romagna.it/geologia/temi/costa/sistema-informativo-per-la-gestione-dei-depositi-di-sabbia-sommersi
(last access: 11 April 2019), 2012.
Correggiari, A., Remia, A., Foglini, F., Grande, V., Nicoletti, L., Perini,
L., Piazza, R., and Bertaggia, R.: Research and exploitation of shelf marine
sand deposit for coastal nourishment: geodatabase guidelines from northern
Adriatic Shelf experience, SHAPE – Shaping an Holistic Approach to Protect
the Adriatic Environment between coast and sea, IPA Project, Final meeting,
16–17 October 2013, Lignano, Italy, 2013.
Correggiari, A., Perini, L., Remia, A., Luciani, P., Foglini, F., Grande, V.,
Moscon, G., Calabrese, L., and Lorito, S.: Sistema Informativo per l'utilizzo
della risorsa Sabbia offshore nei progetti di protezione costiera:
geodatabase in_Sand, Servizio Geologico Sismico e dei Suoli, Regione Emilia
Romagna, technical report, available at:
https://ambiente.regione.emilia-romagna.it/it/geologia/temi/costa/pdf/in_sand_web.pdf
(last access: 11 April 2019), 2016.
De Falco, G., Molinaroli, E., Baroli, M., and Bellacicco, S.: Grain size and
compositional trends of sediments from Posidonia oceanica meadows to beach
shore, Sardinia, Western Mediterranean, Estuar. Coast. Shelf S., 58,
299–309, 2003.
De Falco, G., Baroli, M., Cucco, A., and Simeone, S.: Intrabasinal conditions
promoting the development of a biogenic carbonate sedimentary facies
associated with the seagrass Posidoniaoceanica, Cont. Shelf Res., 28,
797–812, 2008.
De Falco, G., Tonielli, R., Di Martino, G., Innangi, S., Simeone, S., and
Parnum, I. M.: Relationships between multibeam backscatter, sediment grain
size, and Posidonia oceanica seagrass distribution, Cont. Shelf Res., 30,
1941–1950, 2010.
De Falco, G., Budillon, F., Conforti, A., De Muro, S., Di Martino, G.,
Innangi, S., Perilli, A., Tonielli, R., and Simeone, S.: Sandy beaches
characterization and management of coastal erosion on western Sardinia island
(Mediterranean sea), J. Coastal Res., 70, 395–400, 2014.
De Falco, G., Budillon, F., Conforti, A., Di Bitetto, A., Di Martino, G.,
Innangi, S., Simeone, S., and Tonielli R.: Sorted bedforms over transgressive
deposits along the continental shelf of western Sardinia (Mediterranean Sea),
Mar. Geol., 359, 75–88, 2015.
De Falco, G., Molinaroli, E., Conforti, A., Simeone, S., and Tonielli, R.:
Biogenic sediments from coastal ecosystems to beach–dune systems:
implications for the adaptation of mixed and carbonate beaches to future sea
level rise, Biogeosciences, 14, 3191–3205,
https://doi.org/10.5194/bg-14-3191-2017, 2017.
De Muro, S., Ibba, A., Simeone, S., Buosi, C., and Brambilla, W.: An
integrated sea-land approach for mapping geomorphological and
sedimentological features in an urban microtidal wave-dominated beach: a case
study from S Sardinia, western Mediterranean, J. Maps, 13, 822–835,
https://doi.org/10.1080/17445647.2017.1389309, 2017.
Desprez, M.: Physical and biological impact of marine aggregate
extractionalong the French coast of the Eastern English Channel: short and
long term post dredging restoration, ICES J. Mar. Sci., 57, 1428–1438, 2000.
Emery, K. O.: Relict sediments on continental shelves of the world, Am.
Assoc. Petr. Geol. B., 52, 445–464, 1968.
Erftemeijer, P. L. A., Riegl, B., Hoeksema, B. W., and Todd, P. A.:
Environmental impacts of dredging and other sediment disturbances on corals:
a review, Mar. Pollut. Bull., 64, 1737–1765, 2012.
Eurosion: A guide to coastal erosion management practices in Europe, Eurosion
project, 30 June 2004, available at: http://www.eurosion.org (last
access: 11 April 2019), 2014.
Fais, S., Klingele, E. E., and Lecca, L.: Oligo-Miocene half graben structure
in western Sardinian Shelf (western Mediterranean): reflection seismic and
aeromagnetic data comparison, Mar. Geol., 133, 203–222,
https://doi.org/10.1016/0025-3227(96)00030-8, 1996.
Finkl, C. W. and Khalil, S.: Offshore exploration for sand sources: General
guidelines and procedural strategies along deltaic coasts, J. Coastal Res.,
44, 203–233, 2005.
Finkl, C. W. and Walker, H. J.: Beach Nourishment, Encyclopedia of Coastal
Science, Encyclopedia of Earth Science Series, Springer, Dordrecht, the
Netherlands, ISBN 978-1-4020-1903-6, 2005.
Folk, R. L. and Ward, W.: Brazos river bar: A study in the significance of
grain size parameters, J. Sediment. Petrol., 27, 3–26l, 1957.
Fraser, M. W., Short, J., Kendrick, G., McLean, D., Keesing, J., Byrne, M.,
Caley, J., Clarke, D., Davis, A. R., Erftemeijer, P. L. A., Field, S.,
Gustin-Craig, S., Huisman, J., Keough, M., Lavery, P. S., Masini, R.,
McMahon, K., Mengersen, K., Rasheed, M., Statton, J., Stoddart, J., and Wu,
P.: Effects of dredging on critical ecological processes for marine
invertebrates, seagrasses and macroalgae, and the potential for management
with environmental windows using Western Australia as a case study, Ecol.
Indic., 78, 229–242, https://doi.org/10.1016/j.ecolind.2017.03.026, 2017.
Fugazza, C., Oggioni, A., and Carrara, P.: RITMARE: Linked Open Data for
Italian Marine Research”, ERCIM-News, No. 96 (January 2014), 17–18, ISSN
0926-4981, available at:
http://ercim-news.ercim.eu/en96/special/ritmare-linked-open-data-for-italian-marine-research
(last access: 11 April 2019), 2014.
Gault, J., O'Hagan, A. M., Cummins, V., Murphy, J., and Vial, T.: Erosion
management in Inch beach, South West Ireland, Ocean Coast. Manage., 54,
930–942, 2011.
Grande, V., Proietti, R., Foglini, F., Remia, A., Correggiari, A., Paganelli,
D., Targusi, M., Franceschini, G., La Valle, P., Berducci, M.T., La Porta,
B., Lattanzi, L., Lisi, I., Maggi, C., Loia, M., Pazzini, A., Gabellini, M.,
and Nicoletti L.: Sistema Informativo per il monitoraggio ambientale della
risorsa sabbia offshore nei progetti di protezione costiera: geodatabase
Env_Sand. ISPRA, Manuali e Linee guida, 127/2015, 63 pp., ISBN
978-88-448-0742-9, available at:
http://www.isprambiente.gov.it/files/pubblicazioni/manuali-lineeguida/MLG_127_15_env_SAND.pdf
(last access: 11 April 2019), 2015.
Horton, B. P., Rahmstorf, S., Engelhart, S. E., and Kemp, A. C.: Expert
assessment of sea-level rise by AD 2100 and AD 2300, QuatSci. Rev., 84, 1–6,
2014.
Jiménez, J. A., Gracia, V., Valdemoro, H. I., Mendoza T., and
Sánchez-Arcilla A.: Managing erosion-induced problems in NW Mediterranean
urban beaches, Ocean Coast. Manage., 54, 907–918, 2011.
Khalil, S. M. and Finkl, C. W.: Spoil or Resource? Managing sediment for
coastal restoration, J. Coastal Res., 64, Proceedings of the 11th
International Coastal Symposium, Szczecin, Poland, 9–13 May 2011,
1433–1437, ISSN 0749-0208, 2011.
Kopp, R. E., Kemp, A. C., Bittermann, K., Horton, B. P., Donnelly, J. P.,
Gehrels, W. R., Hay, C. C., Mitrovica, J. X., Morrow, E. D., and Rahmstorf,
S.: Temperature-driven global sea-level variability in the Common Era, P.
Natl. Acad. Sci. USA, 15, 1434–1441, https://doi.org/10.1073/pnas.1517056113, 2016.
Lambeck, K., Antonioli, F., Anzidei, M., Ferranti, L., Leoni, G.,
Scicchitano, G., and Silenzi, S.: Sea level change along Italian coast during
Holocene and a projection for the future, Quatern. Int., 232, 250–257,
https://doi.org/10.1016/j.quaint.2010.04.026, 2011.
Lanucara, S., Oggioni, A., Modica, G., and Carrara, P.: Interoperable Sharing
and Visualization of Geological Data and Instruments: A Proof of Concept,
Computational Science and Its Applications – ICCSA 2017, Lecture Notes in
Computer Science, 10407, https://doi.org/10.1007/978-3-319-62401-3_42, 2017.
Lecca, L.: La piattaforma continentale miocenico-quaternaria del margine
occidentale sardo: blocco diagramma sezionato, Rendiconti Seminario
Facoltà di Scienze Università di Cagliari, 70, 49–70, 2000.
Lecca, L., Carboni, S., Scarteddu, R., Sechi, F., Tilocca, G., and Pisano,
S.: Schema stratigrafico della piattaforma continentale occidentale e
meridionale della Sardegna, Memorie Società Geologica Italiana, 36,
31–40, 1986.
Marchand, M., Sanchez-Arcilla, A., Ferreira M., Gault, J., Jiménez, J.
A., Markovic, M., Mulder, J., van Rijn, L., Stanic, A., Sulisz, W., and
Sutherland, J.: Concepts and science for coastal erosion management an
introduction to the CONSCIENCE framework, Ocean Coast. Manage., 54, 859–866,
https://doi.org/10.1016/j.ocecoaman.2011.06.005, 2011.
MATTM-Regioni: Linee Guida per la Difesa della Costa dai fenomeni di Erosione
e dagli effetti dei Cambiamenti climatici. Versione 2018 – Documento
elaborato dal Tavolo Nazionale sull'Erosione Costiera MATTM-Regioni con il
coordinamento tecnico di ISPRA, 305 pp., 2018.
Mcglade, K., Barquet, K., Bogaard, T., Ciavola, P., van Dongeren, A.,
Ferreira, Ã., Higgins, R., Martinez, G., McCall, R., Stelljes, N., and
Viavatenne, C.: Resilience-Increasing Strategies for Coasts – toolKIT
(RISC-KIT), Synthesis Report, Middlesex University London, project report
Risk-kit project, available at: http://eprints.mdx.ac.uk/21860/ (last
access: 11 April 2019), 2017.
Mengel, M., Levermann, A., Frieler, K., Robinson, L., Marzeion, B., and
Winkelmann, R.: Future sea level rise constrained by observations and
long-term commitment, P. Natl. Acad. Sci. USA, 113, 2597–2602, 2016.
Ministero Dell'Ambiente E Della Tutela Del Territorio: Mappatura delle
praterie di Posidonia oceanica lungo le coste della Sardegna e delle piccole
isole circostanti, Ministero dell'ambiente e tutela del territorio e del
mare, Rome, Italy, 2002.
Mitchum Jr., R. M., Vail, P. R., and Sangree, J. B.: Seismic stratigraphy and
global changes of sea level. Part 6. Stratigraphic interpretation of seismic
reflection patterns in depositional sequences, AAPG Mem., 26, 117–133, 1977.
Nicoletti, L., La Valle, P., Paganelli, D., Lattanzi, L., La Porta, B.,
Targusi, M., Lisi, I., Loia, M., Maggi, C., Pazzini, A., Proietti, R., and
Gabellini, M.: Aspetti ambientali del dragaggio di sabbie relitte a fini di
ripascimento: protocollo di monitoraggio per l'area di dragaggio, ISPRA,
Manuali e Linee Guida 72/2018, Istituto Superiore per la Protezione e la
Ricerca Ambientale, Rome, Italy, 35 pp., 2018.
Pavesi, F., Basoni, A., Fugazza, C., Menegon, S., Oggioni, A., Pepe, M.,
Tagliolato, P., and Carrara, P.: EDI – A template-driven metadata editor for
research data, Journal of Open Research Software, 4, e40,
https://doi.org/10.5334/jors.106, 2016.
Pranzini, E.: Coastal erosion and shore protection: A brief historical
analysis, J. Coast. Conserv., 22, 827–830, https://doi.org/10.1007/s11852-017-0521-9,
2018.
PueyoAnchuela, O., Frongia, P., Di Gregorio, F., CasasSainz, A., and
Pocovì Juan, A.: Magnetometry and ground-penetrating radar surveys
applied to tracing potential collectors of mining-derived pollutants in
coastal sediments (Piscinas Bay, Montevecchio mining area, SW Sardinia),
Environ. Earth Sci., 76, 230, https://doi.org/10.1007/s12665-017-6555-3, 2017.
Radermacher, M., Geerlof, W., de Schipper, M., Huisman, B., Aarninkhof, S.,
and Reniers, A.: Evolution of alongshore bathymetric variability around a
mega-scale beach nourishment, in: Proceedings of Coastal Dynamics 2017,
edited by: Aagaard, T., Deigaard, R., and Fuhrman, D., Helsingør, Denmark,
1370-1375, 2017.
Rahmstorf, S.: A semi-empirical approach to projecting future sea-level rise,
Science, 315, 368–370, 2007.
Richards, J. A. and Nicholls, R. J.: Impacts of climate change in coastal
systems in Europe. PESETA-Coastal Systems study, European Commission,
Institute for Prospective Technological Studies, Joint Research Centre EUR
24130 EN, ISBN 978-92-79-14627-5, https://doi.org/10.2791/3558, 2009.
Rogers, C. S.: Responses of coral reefs and reef organisms to sedimentation,
Mar. Ecol. Prog. Ser., 62, 185–202, 1990.
Sage, F., Von Gronefeld, G., Déverchère, J., Gaullier, V., Maillard,
A., and Gorini, C.: Seismic evidence for Messinian detrital deposits at the
western Sardinia margin, northwestern Mediterranean, Mar. Petrol. Geol., 22,
757–773, 2005.
Sánchez-Arcilla, A., Jiménez, J. A., and Marchand, M.: Managing
coastal evolution in a more sustainable manner. The Conscience approach,
Ocean Coast. Manage., 54, 951–955, 2011.
Sanderson, P. G. and Eliot, I.: Compartmentalisation of beachface sediments
along the southwestern coast of Australia, Mar. Geol., 162, 145–164, 1999.
Simeone, S. and De Falco, G.: Morphology and composition of beachcast
Posidonia oceanica litter on beaches with different exposures, Geomorphology,
151–152, 224–233, 2012.
Simeone, S., De Falco, G., Quattrocchi, G., and Cucco., A.: Morphological
changes of a Mediterranean beach over oneyear (San Giovanni di Sinis, western
Mediterranean), J. Coastal Res., 70, 217–222, 2014.
Simeone, S., De Falco, G., Quattrocchi, G., Palombo, L., and Cucco, A.:
Beaches morphological variability along a complex coastline (Sinis Peninsula,
western Mediterranean Sea), J. Coastal Res., 75, 1302–1306, 2016.
Simeone, S., Molinaroli, E., Conforti, A., and De Falco, G.: Impact of ocean
acidification on the carbonate sediment budget of a temperate mixed beach,
Climatic Change, 150, 227–242, https://doi.org/10.1007/s10584-018-2282-3, 2018.
Tingy, V., Ozer, A., De Falco, G., Baroli, M., and Djenidi, S.: Relationship
between the evolution of the shoreline and the Posidonia oceanica meadow
limit in a Sardinian coastal zone, J. Coastal Res., 23, 787–793, 2007.
Trobec, A., Busetti, M., Zgur, F., Baradello, L., Babich, A., Cova, A.,
Gordini, E., Romeo, R., Tomini, I., Poglajen, S., Diviacco, P., and Vrabec,
M.: Thickness of marine Holocene sediment in the Gulf of Trieste (northern
Adriatic Sea), Earth Syst. Sci. Data, 10, 1077–1092,
https://doi.org/10.5194/essd-10-1077-2018, 2018.
van Egmond, E. M., van Bodegom, P. M., Berg, M. P., Wijsman, J. W. M.,
Leewis, L., Janssen, G. M., and Aerts, R.: A mega-nourishment creates novel
habitat for intertidal macroinvertebrates by enhancing habitat relief of the
sandy beach, Estuar. Coast. Shelf S., 207, 232–241,
https://doi.org/10.1016/j.ecss.2018.03.003, 2018.
Van Rijn, L. C.: Erosion of gravel/shingle beaches and barriers, EU-Project
CONSCIENCE, Deltares, Delft, the Netherlands, 2010.
Short summary
The expected sea level rise by the year 2100 will determine an adaptation of the whole coastal system and the land retreat of the shoreline. Future scenarios coupled with the improvement of mining technologies will favour increased exploitation of sand deposits for nourishment. This work summarises a large data set of geophysical and sedimentological data that maps the spatial features of submerged sand deposits and is a useful tool in future climate change scenarios.
The expected sea level rise by the year 2100 will determine an adaptation of the whole coastal...
Altmetrics
Final-revised paper
Preprint