Articles | Volume 11, issue 3
Earth Syst. Sci. Data, 11, 1411–1436, 2019
Earth Syst. Sci. Data, 11, 1411–1436, 2019
Data description paper
18 Sep 2019
Data description paper | 18 Sep 2019

Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions

Bo Zheng et al.


Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Bo Zheng on behalf of the Authors (03 Aug 2019)  Author's response    Manuscript
ED: Publish as is (18 Aug 2019) by Thomas Blunier
Short summary
We use a multi-species atmospheric Bayesian inversion approach to attribute satellite-observed atmospheric carbon monoxide (CO) variations to its sources and sinks in order to achieve a full closure of the global CO budget during 2000–2017. We identify a declining trend in the global CO budget since 2000, driven by reduced anthropogenic emissions in the US, Europe, and China, as well as by reduced biomass burning emissions globally, especially in equatorial Africa.