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Abstract. Atmospheric carbon monoxide (CO) concentrations have been decreasing since 2000 as observed by both satellite- 

and ground-based instruments, but global bottom-up emission inventories estimate increasing anthropogenic CO emissions 

concurrently. In this study, we use a multi-species atmospheric Bayesian inversion approach to attribute satellite-observed 

atmospheric CO variations to its sources and sinks in order to achieve a full closure of the global CO budget during 2000–15 

2017. Our observation constraints include satellite retrievals of the total column mole fraction of CO, formaldehyde (HCHO), 

and methane (CH4) that are all major components of the atmospheric CO cycle. Three inversions (i.e., 2000–2017, 2005–2017, 

and 2010–2017) are performed to use the observation data to the maximum extent possible as they become available and assess 

the consistency of inversion results to the assimilation of more trace gas species. We identify a declining trend in the global 

CO budget since 2000 (three inversions are broadly consistent during overlapping periods), driven by reduced anthropogenic 20 

emissions in the U.S. and Europe (both likely from the transport sector), and in China (likely from industry and residential 

sectors), as well as by reduced biomass burning emissions globally, especially in Equatorial Africa (associated with reduced 

burned areas). We show that the trends and drivers of the inversion-based CO budget are not affected by the inter-annual 

variation assumed for prior CO fluxes. All three inversions estimate that surface CO emissions contradict the global bottom-

up inventories in the world’s top two emitters for the sign of anthropogenic emission trends in China (e.g., here −0.8 ± 0.5% 25 

yr−1 since 2000 while the prior gives 1.3 ± 0.4% yr−1) and for the rate of anthropogenic emission increase in South Asia (e.g., 

here 1.0 ± 0.6% yr−1 since 2000 smaller than 3.5 ± 0.4% yr−1 in the prior inventory). The posterior model CO concentrations 

and trends agree well with independent ground-based observations and correct the prior model bias. The comparison of the 

three inversions with different observation constraints further suggests that the most complete constrained inversion that 

assimilates CO, HCHO, and CH4 has a good representation of the global CO budget, therefore matches best with independent 30 

observations, while the inversion only assimilating CO tends to underestimate both the decrease in anthropogenic CO 

emissions and the increase in the CO chemical production. The global CO budget data from all three inversions in this study 

can be accessed from https://doi.org/10.6084/m9.figshare.c.4454453.v1 (Zheng et al., 2019). 
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1 Introduction 

Carbon monoxide (CO) is present in trace quantities in the atmosphere but plays a vital role in atmospheric chemistry. CO is 

part of a photochemical reaction sequence driven by hydroxyl radical (OH) that links methane (CH4), formaldehyde (HCHO), 

ozone (O3), and carbon dioxide (CO2). The reaction of CO with OH accounts for 40% of the removal of OH in the troposphere 

(Lelieveld et al., 2016) and governs the oxidizing capacity of the Earth’s atmosphere. This reaction also makes CO an important 5 

precursor of O3 and affects the CH4 lifetime and abundance, which leads to an indirect positive radiative forcing of 0.2 W m−2 

(Myhre et al., 2013). Since CO is heavily involved in the relationship between atmospheric chemistry and climate forcing, it 

is crucial to investigate its atmospheric burden, trends, and the underlying drivers. 

Atmospheric CO concentrations following industrialization increased until around the late 1970s and have been decreasing 

since the 1990s as shown by Greenland firn air records (Wang et al., 2012; Petrenko et al., 2013) and surface flask samples 10 

collected at few sites (Khalil and Rasmussen, 1994; Novelli et al., 2003; Gratz et al., 2015; Schultz et al., 2015). These few 

measurement points may not capture the global trend, given the short lifetime of CO being of only several weeks. Since 2000, 

the atmospheric CO burden has been monitored globally and continuously by the CO vertical profiles and tropospheric total 

columns retrieved from the space-borne Measurements Of Pollution In The Troposphere instrument (MOPITT, Deeter et al., 

2017). A declining trend is apparent in the MOPITT data, more pronounced in the Northern Hemisphere (Worden et al., 2013) 15 

where most of the global economic activity occurs associated with a large amount of fossil fuel use and CO emissions from 

combustion processes. An intuitive explanation of the declining CO is that the improvement of combustion technologies (e.g., 

high-efficiency engines) has reduced CO emissions over time, but global bottom-up inventories oppositely estimate increasing 

anthropogenic CO emissions after 2000 because of the increasing fossil fuel consumption (Granier et al., 2011; Crippa et al., 

2018; Hoesly et al., 2018). When prescribed with these inventories, atmospheric chemistry models fail to capture the observed 20 

rapid decline in atmospheric CO burdens globally (Petrenko et al., 2013; Strode et al., 2016). 

Interpreting atmospheric CO trends requires accurate quantification of the global CO budget (Duncan et al., 2007), including 

surface sources, atmospheric sources (oxidation of hydrocarbons, known as CO chemical production), and atmospheric sinks. 

The surface sources include anthropogenic incomplete combustion of fossil fuels and biofuels (Hoesly et al., 2018), biomass 

burning (van der Werf et al., 2017), plant leaves (Tarr et al., 1995; Bruhn et al., 2013), and the ocean (Conte et al., 2019). 25 

Anthropogenic emissions depend on fuel type, fuel amount, combustion technology, and emission control devices (e.g., a 

catalytic converter for an automobile). Biomass burning emissions are caused by human-igniting or lightning fires on fire-

prone landscapes such as savannas and forests. Fire intensities and CO emissions are sensitive to climatic conditions such as 

drought and heat wave (Chen et al., 2017), and are enhanced (e.g., deforestation) or suppressed (e.g., cultivation or forest fire 

suppression) by human activities. Peat fires produce larger CO emissions from incomplete combustion than open fires, 30 

especially in Indonesia (Yin et al., 2016). A small amount of CO is directly generated from plant leaves and marine 

biogeochemical cycling, which vary less from year to year than anthropogenic and biomass burning sources. However, large 

amounts of CO are produced from the oxidation of hydrocarbons from biogenic emissions that can vary due to climate and 
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human land use changes. The oxidation by OH is the dominant sink of CO and gives CO a global average chemical lifetime 

of 1–3 months (Seinfeld and Pandis, 2006). 

The contradiction between growing anthropogenic CO emissions in global bottom-up inventories (Granier et al., 2011; Crippa 

et al., 2018; Hoesly et al., 2018) and the MOPITT-observed declining CO since 2000 suggests three scenarios: 1) the CO sink 

has been increasing faster than the CO source, and 2) the bottom-up inventories underestimate the improvement in combustion 5 

technology and the actual decrease of anthropogenic CO emissions, and 3) biomass burning emissions or CO chemical 

production have been decreasing rapidly. The first scenario is unlikely to be the main reason, because OH is considered well 

buffered in the atmosphere with a small inter-annual variation (Montzka et al., 2011; Naik et al., 2013; Voulgarakis et al., 

2013), or slightly decreasing in the last decade, a process that may partly explain the renewed growth of atmospheric CH4 

since 2007 (Rigby et al., 2017; Turner et al., 2017; McNorton et al., 2018). It is difficult to simply determine whether scenarios 10 

2) and 3) play a big or small role because the estimates of anthropogenic and biomass burning CO emissions and trends are 

typically subject to large uncertainties. Although at first sight, growing anthropogenic emissions seemingly disagree with the 

observed declining CO, trends in biomass burning emissions, CO chemical production, and atmospheric transport all play a 

confounding role. This calls for a full closure of the atmospheric CO budget using the best available data and knowledge, 

which can be framed as an inverse problem that matches all available information within their uncertainties. 15 

The main purpose of this study is to reconcile the observed and bottom-up estimated atmospheric CO budget since 2000, and 

to provide a self-consistent and accurate inversion-based data product of the global CO budget during 2000–2017. We use an 

atmospheric Bayesian inversion approach to infer the global CO budget, where surface CO emissions, CO chemical 

production, and CO sinks are optimized at a spatial resolution of 3.75° longitude × 1.9° latitude every 8 days. Three inversions 

(2000–2017, 2005–2017, and 2010–2017, see details in Sect. 2.2) are performed assimilating multiple satellite observations of 20 

CO, HCHO, and CH4 in the inversion system as they become available in order to constrain the CO reaction sequence. One 

additional sensitivity inversion is conducted to use flat prior CO fluxes without inter-annual variations in order to assess the 

influence of prior variations on the CO budget estimates. Based on these inversion results, we investigate the magnitudes, 

trends, and drivers of the global CO budget from 2000 to 2017, helping to understand the observed remarkable decline in the 

atmospheric CO since 2000. 25 

2 Methods 

2.1 General methodology 

The evolution of atmospheric CO concentrations with time (∂[CO]/∂t) in a 3-D atmospheric model grid box is expressed as 

the sum of multiple CO emission sources (SourceCO) minus the CO sink (SinkCO), which can be represented by the following 

equation (1). 30 
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The flux divergence term (υ●▽[CO]) represents the transport of CO into and out of each atmospheric model grid box, whose 

sum is equal to zero at the whole globe. ECO is the surface CO emission flux from different source sectors (i.e., anthropogenic, 

biomass burning, biogenic, and oceanic). PCH4→CO and PNMVOCs→CO represent the CO chemical production from CH4 and non-

methane volatile organic compounds (NMVOCs), respectively, oxidized by OH in the atmosphere. The CO chemical sink 5 

(kCO+OH(T)[CO][OH]) is calculated on the basis of CO ([CO]), OH ([OH]), and a temperature (T)-dependent rate (kCO+OH), 

and DepCO is the dry deposition of CO that contributes about 7% of the CO total sink (Stein et al., 2014). 

We use the global 3-D transport model of the Laboratoire de Météorologie Dynamique (LMDz) coupled with a simplified 

chemistry module, Simplified Atmospheric Chemistry assimilation System (SACS) (Pison et al., 2009), to simulate the 

atmospheric physical and chemical processes described in Eq. (1) except the dry deposition not represented by this model. 10 

An atmospheric Bayesian inversion framework is built upon the LMDz-SACS model (Chevallier et al., 2005, 2009), and 

satellite observations of the relevant trace gas species (CO, HCHO, and CH4) are assimilated to constrain the inversion system 

(Zheng et al., 2018a, 2018b) given some prior information on the initial model state, surface emissions, CO chemical 

production, and OH field. Section 2.2 provides details of the atmospheric inversion approach and the model evaluation 

protocol, and Sect. 2.3 describes how we analyse the global CO budget using inversion results. 15 

2.2 Atmospheric Bayesian inversion 

The core of atmospheric Bayesian inversion is the minimization of the following cost function: 

                                        (2) 

x is the control vector that gathers the target variables we seek to optimize, and xb is a prior guess of these variables assuming 

unbiased Gaussian error statistics represented by a covariance matrix B. y is the observation vector containing all the 20 

observation data assimilated to constrain the inverse problem; their error statistics are assumed to be unbiased and Gaussian 

with a covariance matrix R. H is the forward model (the combination of the LMDz-SACS model, a sampling operator, and an 

averaging kernel operator) that calculates the equivalent of the observation data in y based on the control vector x. The forward 

model error and the representation error caused by the mismatch between model and observation resolutions are also included 

in R, making R represent a combination of measurement, forward model, and representation errors. Configurations of the 25 

variables and vectors in Eq. (2) are summarized in Table 1 and Table S1, most of which have already been described in our 

previous papers (Zheng et al., 2018a, 2018b). To solve the inverse problem, forward and adjoint codes are iteratively run until 

sufficient convergence of the cost function (Eq. (2)), and the last iteration with optimized model states gives us the best estimate 

that matches all available information within their uncertainties. 
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The inversion system has several updates compared to the version developed by the same research team a few years ago to 

study atmospheric CO trends (Yin et al., 2015). First, we use a higher resolution transport model with finer horizontal grid 

cells (3.75° × 1.9° compared to 3.75° × 2.5°) and more vertical layers (39 layers compared to 19 layers) than Yin et al. (2015) 

used. Second, we assimilate the MOPITT version 7 data as an observation constraint, which is improved with respect to 

retrieval biases and bias drift compared to the previously used version 6 data (Deeter et al., 2017). Third, we use the latest 5 

global bottom-up emission inventories as prior, including the Community Emissions Data System (CEDS, Hoesly et al., 2018) 

for the anthropogenic source and the Global Fire Emissions Database (GFED) 4.1s for the biomass burning source. The 

regional studies of Zheng et al. (2018a, 2018b) used the same configuration than here, except that they assimilated in-situ 

measurement for CH4 rather than satellite retrievals. 

We perform four inversion simulations with our inversion system (Table 2). Inversion #1 (2000–2017) is constrained by CO 10 

total columns derived from the MOPITT version 7 TIR-NIR retrievals; Inversion #2 (2005–2017) is constrained by both 

MOPITT CO column and Ozone Monitoring Instrument (OMI) version 3 HCHO column; and Inversion #3 (2010–2017) is 

additionally constrained by Greenhouse gases Observing SATellite (GOSAT) column-averaged dry air mole fractions of CH4 

(XCH4). All three inversions also assimilate in-situ measurement of methyl chloroform (MCF) to help constrain OH (Yin et 

al., 2015), but the rapidly declining levels of MCF in the atmosphere makes this constraint progressively ineffective (e.g., 15 

Liang et al., 2017). Factorial simulations constrained by MOPITT CO, OMI HCHO, and GOSAT XCH4 allow us not only to 

better constrain the photochemical reaction sequence of CO, but also to facilitate a quantitative assessment of potential 

uncertainties in the inversion CO budget relating to the use of different observation constraints. We also do a sensitivity 

Inversion #4 (2000–2017) with the same observation constraints as Inversion #1 but flat prior surface CO emissions without 

any inter-annual variability to check if the derived CO budget is robust to the inter-annual variation of the prior CO fluxes. 20 

Inversion results of the optimized CO concentration in the atmosphere are evaluated against independent ground-based 

observations from the World Data Centre for Greenhouse Gases (WDCGG, https://gaw.kishou.go.jp/) and the Total Carbon 

Column Observing Network (TCCON, Wunch et al., 2011). The WDCGG provides measurements of surface CO 

concentrations through in-situ and flask sample measurements, and the TCCON provides retrievals of the column-averaged 

dry air mole fraction of CO (XCO). We collect observation data from 110 sites in WDCGG (Table S2) and from 32 sites in 25 

TCCON (Table S3, station names and references are shown in Fig. A1), which cover the whole globe (Fig. A1). To do the 

evaluation, we first sample the model at the location and time of the observation data, and then calculate the average values 

and annual trends for both model and observation. The annual trends are estimated on the basis of monthly time series using a 

curve fitting method (https://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html), which is also used in Zheng et al. (2018a). 

p values and 95% confidence intervals are given to assess the robustness of the estimated trends. The metrics used for 30 

evaluation include normalized mean bias (NMB), root mean square error (RMSE), the Pearson's correlation (R), and the 

regression slope between model and observation among all surface sites. 

https://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html
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2.3 Atmospheric CO budget 

The picture of atmospheric CO budget derived from our inversions includes surface fluxes (the sum of direct emissions from 

different source sectors and of dry deposition), CO chemical production, and CO chemical sink. Given the marginal role played 

by dry deposition (about 20% of the direct emissions, Stein et al. 2014), the inferred surface fluxes will be assumed to be made 

of direct emissions only in the following. The CO chemical production and chemical sink are direct outputs from the inverse 5 

system, which calculates the CO yield from the oxidation of CH4 and of NMVOCs and the CO oxidation sink with the 

linearized chemistry scheme in each model grid box at each time step of the model simulation.  

To obtain sectoral surface emission fluxes, we multiply the optimized 8-daily surface total fluxes by the proportion of each 

sector in each model grid cell as given by the prior (Jiang et al., 2017; Yin et al., 2016; Zheng et al., 2018b). We distinguish 

between four source sectors: anthropogenic, biomass burning, biogenic, and oceanic, which have rather distinct spatial-10 

seasonal patterns in CO emission distributions. Without considering the oceanic emission, 96% of the CO emissions on land 

are distributed on grid cells with a dominant emission source (i.e. a sector that contributes more than 50% of CO flux in that 

grid). Further, 85% of CO emissions on land are distributed in grid cells where such a dominant source accounts for more than 

65% of the CO total flux. The distinct seasonal evolutions of different sectors also help attribute emissions to one specific 

source sector. For example, the biomass burning in Africa typically accounts for 80–90% of surface CO emissions in the dry 15 

season (Zheng et al., 2018b). This local source homogeneity reduces the attribution bias of sectoral CO fluxes, although it 

cannot eliminate all biases. To minimize remaining biases, we focus on annual emission anomalies through removing 

multiannual average or calculating linear trends to reduce the systematic errors. This makes it possible to directly compare the 

inversion-based emissions with bottom-up inventories to analyze the underlying emission drivers (Sect. 4.2).  

We also collect previous top-down inversion estimates of the global CO budget from the scientific literature (Table S4). These 20 

studies used older versions of MOPITT retrievals (or other satellite data) and coarser-resolution transport models, and they did 

not have the capability of multi-species constraints. Despite different observation data quality and inversion model set up, it is 

still meaningful to do such a review to visualize the evolution of the inversion-based global atmospheric CO budget. 

3 Results 

3.1 Observed declining CO since 2000 25 

Tropospheric CO columns observed by MOPITT v7 declined at an average rate of −0.32±0.05% yr−1 (p<0.01; numbers being 

± signs are 95% confidence limits from a linear fit) from 2000 to 2017 over the whole globe (Fig. 1a; Fig. S1). This trend, 

equivalent to −5.6×1015 ± 0.9×1015 mol cm−2 yr−1, is much larger than the retrieval bias drift of 1.0×1015 ± 1.0×1015 mol cm−2 

yr−1 in the MOPITT v7 TIR-NIR product (Deeter et al., 2017), indicating that the observed downward trend is robust to satellite 

retrieval errors (Worden et al., 2013). The distributed ground-based sites of the WDCGG network (dots in Fig. 1a) also measure 30 

rapidly decreasing surface CO concentrations during 2000–2017, broadly consistent with the negative trends of the MOPITT 
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CO columns. The sites located on or near continents, more affected by land sources upwind, generally show faster CO 

concentration declines than the MOPITT CO columns, while the background sites, especially those over islands, agree better 

with MOPITT observations. The TCCON observed XCO also presents consistent declining trends with MOPITT (Fig. S2). 

The trends in MOPITT CO columns reveal heterogeneous spatial patterns (Figs. 1b and 1c). The largest decrease is seen in the 

northern mid-latitudes (30° N–60° N), where Canada (CAN), USA, Europe (EU), Russia (RUS), and China (CHN) all present 5 

statistically significant declining trends (Fig. 1c). The tropical region (30° S–30° N) has a smaller decrease in CO columns due 

to some increasing trends existing over South Asia (SAS) and over a large part of Africa. South Asia is the only region that 

has a statistically significant trend of rising CO columns since 2000 according to our region splitting (Fig. A1). The African 

continent presents both increasing and decreasing CO columns that compensate each other and therefore lead to no statistically 

significant trends over Equatorial Africa (EQAF) and Southern Africa (SAF) (Fig. 1c). This is consistent with ground-based 10 

observations at Ascension Island, UK (ASC, Table S2) located downwind of the West African coast that sees CO plumes from 

Africa. The southern mid-latitudes (30° S–60° S) primarily consist of the ocean with very few lands, where the MOPITT and 

WDCGG observations both show consistently moderately decreased CO abundance. 

3.2 Global atmospheric CO budget 

3.2.1 MOPITT constrained inversion 15 

Inversion #1, constrained by MOPITT v7 CO columns, estimates that the global annual CO source was 2.6×103 Tg CO yr−1 

on average and decreased at a rate of −10.0±6.9 Tg CO yr−2 (p<0.01) during 2000–2017 (Table 3). The chemical sink of CO 

by reaction with OH is estimated as 2.6×103 Tg CO yr−1 with a declining trend of −9.3±6.0 Tg CO yr−2 (p<0.01). The steady 

declining CO source breaks the source-sink balance of CO in the atmosphere, makes the CO source slightly smaller than its 

sink, and therefore drives the atmospheric CO burden down from 2000 to 2017. The reduced CO source further leads to a 20 

comparable decline in the CO sink due to relatively stable OH burden in the troposphere.  

The global CO source is spread roughly equally between direct emissions from the Earth’s surface (1.4×103 Tg CO yr−1) and 

the chemical production in the atmosphere (1.2×103 Tg CO yr−1). The direct emissions are estimated to have decreased by 

9.4±7.0 Tg CO yr−2 (p=0.01), driven by decreasing anthropogenic (−5.6±2.2 Tg CO yr−2, p<0.01) and biomass burning 

(−3.8±4.9 Tg CO yr−2, p=0.11) sources. The trend in biomass burning emissions has a large p-value, which means statistical 25 

non-significance due to a large year-to-year variation (Coefficient of Variation, CV =11.6%), especially the peak emissions 

from Southeast Asia (SEAS) at the end of 2015 caused by the 2015–2016 El Niño event (Yin et al., 2016; Liu et al., 2017). 

The oceanic and biogenic sources account for only 15% of surface CO emissions with a small inter-annual variability 

(CV=2.2% and 8.6%, respectively), therefore they have little effect on the trend of the CO total source. In contrast to declining 

direct emissions, the CO chemical production is estimated to have remained flat (CV=1.2%), resulting from the compensation 30 

between increasing yields from CH4 oxidation (3.0±0.4 Tg CO yr−2, p<0.01) and decreasing yields from NMVOCs oxidation 

(−3.6±1.5 Tg CO yr−2, p<0.01). 



8 

 

Three variables determine the global CO sink as discussed in Eq. (1): kCO+OH(T), [CO], and [OH]. Tropospheric CO columns 

measured by MOPITT have declined at a relative rate of −0.32±0.05% yr−1 (p<0.01) during 2000–2017, highly consistent with 

the relative trend in the estimated CO sink (−0.35±0.23% yr−1, p<0.01). This suggests that decreasing CO concentrations are 

the primary driver of the declining CO sink, and dominate over the influence from the possible changes in OH and reaction 

rate.  5 

3.2.2 Influence of OMI HCHO and GOSAT XCH4 constraints 

Inversions #2 and #3 assimilated OMI HCHO and GOSAT XCH4 in the inverse system to directly constrain the reactants of 

CO chemical production. These two inversions make a small difference (<10% for a single year and <2% for multiannual 

mean) in the global CO budget estimates compared to Inversion #1 (Table S5), and all three inversions estimate a slightly 

smaller CO source than the CO sink in most of the years between 2000 and 2017. However, the three inversions reveal different 10 

declining trends (Table 4; Fig. 2). Inversion #2 estimates that the global CO source and sink decreased at the rates of −7.4±13.0 

Tg CO yr−2 (p=0.24) and −9.7±11.7 Tg CO yr−2 (p=0.09), respectively, from 2005 to 2017, slightly slower than Inversion #1-

estimated trends of −10.3±12.7 Tg CO yr−2 (p=0.10) and −11.3±11.0 Tg CO yr−2 (p=0.05) in the same period. The large p 

values for trends during 2005–2017 indicate a large inter-annual variability, mainly caused by the significant biomass burning 

emissions from peat fires in Indonesia during the 2015–2016 El Niño event (Sect. 3.3). The slower decline in the CO total 15 

source estimated by Inversions #2 and #3 is primarily due to the growing CO production (Fig. 2a), in contrast to the flat CO 

chemical production estimated by Inversion #1. For example, Inversion #2 estimates that the CO production increased by 

10.8±5.3 Tg CO yr−2 (p<0.01) during 2005–2017, and Inversion #3 estimates a growing CO production by 12.8±11.3 Tg CO 

yr−2 (p=0.03) during 2010–2017. 

Direct anthropogenic CO emissions are estimated to decline faster in Inversions #2 and #3 (Table 4 – those trends being 20 

compared during the same overlapping periods for inversions in this table). Inversion #1 estimates that anthropogenic CO 

emissions declined by −6.4±3.5 Tg CO yr−2 (p<0.01) during 2005–2017, while Inversion #2 shows a steeper decline of 

−11.1±4.0 Tg CO yr−2 (p<0.01). During 2010–2017, Inversions #2 and #3 estimate declining rates of −14.6±5.4 Tg CO yr−2 

(p<0.01) and −12.7±3.8 Tg CO yr−2 (p<0.01), respectively, both faster than the Inversion #1 estimated trend of −7.5±6.5 Tg 

CO yr−2 (p=0.03). For the top 5 emitters of anthropogenic CO (Fig. 2b), we see faster declines in the USA, CHN, and EU and 25 

slower growth over SAS and EQAF than those present in Inversion #1. However, biomass burning emissions and trends tend 

to remain almost unchanged in Inversions #2 and #3 (Table 4; Fig.2c). 

3.2.3 Best estimate between different inversions 

Inversions #1, #2, and #3 all clearly suggest that decreased surface emissions from anthropogenic and biomass burning sources 

are major drivers of the declining global CO source during 2000–2017, however, they estimate different trends in 30 

anthropogenic CO emissions and CO chemical production. This suggests that the additional observation constraints related to 

the CO reaction sequence alter the inversion-estimated trends of the global CO budget. 
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Inversion #1 is capable of separating the trend of the CO total source from the trend of the CO total sink, broadly consistent 

with the results derived from Inversion #2 and Inversion #3, but the contribution of reduced anthropogenic sources to the 

declining CO emissions seems to be underestimated in Inversion #1 because the increasing CO chemical production is not 

directly constrained in that inverse configuration. The increased CO chemical production is reflected by the growing HCHO 

in the atmosphere, which is an intermediate reaction product in the oxidation of hydrocarbons. Tropospheric HCHO columns 5 

as observed by OMI have been reported to keep growing over China, India, and part of the USA over the last decade (De 

Smedt et al., 2010; Zhu et al., 2017; Shen et al., 2019), probably related to strong increases in anthropogenic NMVOCs 

emissions. The bias of Inversion #1 that does not constrain the HCHO and CO production is region-dependent, but most 

evident in anthropogenic source regions (e.g., China and the US) where rapidly increasing man-made NMVOCs emissions 

dominate over relatively stable biogenic NMVOCs. With additional OMI HCHO and GOSAT XCH4 constraints, the CO 10 

chemical production in these regions is estimated to increase instead of being flat, which further leads to a faster decrease in 

the estimated anthropogenic CO emissions to maintain the overall declining CO burden in the atmosphere. In biomass burning 

regions where biogenic NMVOCs emissions are relatively stable, the estimates of biomass burning CO emissions are quite 

consistent across the three different inversions. 

The most realistic inversion estimate of the global CO budget should be the one with sufficient constraints not only on the 15 

atmospheric CO abundance but also on the CO chemical production. The CO chemical production is an important term of the 

CO budget trends, as it experienced a steady increase due to growing HCHO and CH4 concentrations in the atmosphere. 

Constraining the CO chemical production can correct the inversion system that may inaccurately attribute some of the 

decreases in the CO source to the CO chemical production. Therefore, it is reasonable to think that Inversion #3 has a more 

realistic representation of the source splitting between anthropogenic emissions and chemical production in the global CO 20 

budget than Inversion #2 does, and Inversion #2 is better than Inversion #1. It is appropriate to use Inversion #3 and Inversion 

#2 for the trend analysis but these inversions are limited to short periods. If Inversion #1 has to be used due to its long-term 

temporal coverage, caution needs to be taken that the decreasing trends of anthropogenic CO emissions are probably 

underestimated and the increasing trends of CO chemical production are not well separated over anthropogenic source regions. 

For the trend analysis in this paper, we present all the estimates from Inversions #1, #2, and #3 for completeness. The global 25 

CO budget data derived from all the three inversions can be found at the data repository of 

https://doi.org/10.6084/m9.figshare.c.4454453.v1 (Zheng et al., 2019). 

3.2.4 Comparison with the prior CO budget 

The comparison to the prior modelled CO budget (Table S6) shows that the inversion system adjusts both the magnitudes and 

trends of the CO source and CO sink. Inversions #1, #2, and #3 exhibit similar estimates in the global CO source, which are 30 

15% (~ 3.4×102 Tg CO yr−1) larger than the prior CO flux on average, including 1.1×102 Tg CO yr−1 from anthropogenic 

sources, 1.1×102 Tg CO yr−1 from biomass burning sources, and 0.9×102 Tg CO yr−1 from biogenic sources. The increment of 

15% is within the uncertainty range of bottom-up CO inventories, which are typically subject to a one-sigma uncertainty 
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between 26% and 123% for top emitting anthropogenic regions and countries (Crippa et al., 2018). The inversion-based CO 

sink is 14% higher than the prior estimates, equivalent to another 3.2×102 Tg CO yr−1 loss. For trends, the prior results exhibit 

an increasing CO source (3.6±3.8 Tg CO yr−2, p=0.07) that could result in a growing atmospheric CO burden from 2000 to 

2017, disagreeing with the observed declining CO since 2000. The inversion results reverse the upward trend in prior 

anthropogenic emissions to a rapid downward trend and estimate larger decreases in biomass burning emissions. 5 

3.3 Regional atmospheric CO budget 

3.3.1 Regional distribution 

The global CO source, the sum of surface emissions and chemical production, follows a bimodal distribution by latitude (Fig. 

3a, 4a, S3a, S4a). The highest peak is in tropical regions (30° S–30° N) where 70% of the global CO source is located, including 

83% of biomass burning emissions, 75% of CO chemical production, and 50% of anthropogenic emissions. The regions closest 10 

to the equator, such as South America, Equatorial Africa, Southeast Asia, and Northern Australia, are responsible for most of 

the biomass burning emissions (Fig. 5c) and of the CO chemical production. The anthropogenic emission hotspots are 

Equatorial Africa, South Asia, and South China (Fig. 5a). The other peak latitude band of CO source is the northern mid-

latitudes (30° N–60° N), which account for 23% of the global CO source, dominated by the anthropogenic emissions from the 

US, Europe, and China (Fig. 5a). On average, 47% of the global anthropogenic CO emissions are distributed within 30° N–15 

60° N. 

The global CO sink presents an asymmetrical distribution around the equator that is 30% larger in the Northern Hemisphere 

than that in the Southern Hemisphere, due to the higher CO levels in the Northern Hemisphere (Fig. 3a, 4c, S3c, S4c). The 

tropical regions (30° S–30° N) that have both the largest CO source and OH concentration (Lelieveld et al., 2016) account for 

71% of the global CO sink, consistent with the proportion of CO source distributed over this region. The northern mid-latitudes 20 

(30° N–60° N) account for only 17% of the global CO sink but 23% of the CO source due to a much lower OH concentration 

than in the tropical troposphere. The southern mid-latitudes (30° S–60° S) account for 9% of global CO sink, corresponding 

to 5% of the global CO source located in this region. A strong CO sink is also evident near coastlines over the ocean (e.g. west 

of the African continent) mainly due to the fact that the CO transported out of lands driven by prevailing winds further react 

with OH over the ocean. 25 

For trends, the northern mid-latitudes (30° N–60° N) show the sharpest declines in both CO source and CO sink, consistently 

presented in Inversion #1 (Fig. 3b), #2 (Fig. 3c), and #3 (Fig. 3d). The decline in the CO source is most evident in the US, 

Europe, and China (Fig. 4b, S3b, S4b), mainly caused by reduced anthropogenic sources (Fig. 5b). This drives the largest 

regional decrease in CO total columns between 30° N–60° N as seen by MOPITT (Fig. 1) and also leads to a significantly 

reduced CO sink. The tropical region (30° S–30° N) exhibits both increased and decreased CO sources over different 30 

continents. The increased sources over South Asia and Equatorial Africa are both driven by the exponential growth in 

anthropogenic emissions (Fig. 5b), which partially offsets the decreasing biomass burning emissions in Equatorial Africa and 
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South America (Fig. 5d). The increase of the CO chemical production is seen over the whole tropical region, as shown in Figs. 

3c and 3d. However, the estimated CO sink lacks statistically significant trends in the majority of the tropical region, and the 

continents with fast-growing CO sources (e.g., South Asia, Equatorial Africa) lead to increased CO total columns (Fig. 1), 

although the global background concentrations are rapidly decreasing. 

3.3.2 Anthropogenic emissions 5 

The top 5 emitters of anthropogenic CO are CHN, SAS, USA, EQAF, and EU, where large amounts of fossil fuel and biofuel 

are burned in industrial, transportation, and residential facilities. These five regions are estimated to account for more than 

60% of the global anthropogenic CO emissions (Tables S7, S8, S9), and can explain more than 80% of the global downward 

trend from 2000 to 2017 (Fig. 6a). CHN, USA, and EU are estimated to have reduced their emissions rapidly, which more than 

offsets the increasing emissions from SAS and EQAF. Emissions from all the other regions contribute much less to total 10 

anthropogenic emissions, and most of the emission changes are not statistically significant (p>0.1), therefore have little 

influence on the anthropogenic CO emissions trends. 

A comparison with the bottom-up anthropogenic inventory CEDS that we use as prior shows that the Inversion #1 estimates 

stay close to CEDS over CHN, SAS, and the USA, but have larger values in regions with medium-sized emissions (20–50 Tg 

CO yr−1), such as in EU and EQAF (Fig. 7a; Table S7). The inversion-based larger emissions in those regions help correct the 15 

biases of the prior modelled CO concentrations with respect to independent surface observations (Sect. 3.4). For the 2000–

2017 trend (Fig. 7b), the discrepancy between Inversion #1 and CEDS mainly occurs for the top two emitters, CHN and SAS, 

although their long-term averages agree well. Inversion #1 shows that CHN emissions decreased and SAS emissions increased 

modestly, while both of these two regions are allocated a rapid growth in CEDS. As Inversion #1 tends to underestimate the 

decrease and to overestimate the increase of anthropogenic emissions (Sect. 3.2), the CEDS inventory probably has large biases 20 

in emission trends estimates over CHN and SAS, which is the main reason why it estimates growing anthropogenic emissions 

globally (Table S6) and cannot match the observed declining CO when used in the input of our LMDz-SACS model. This is 

consistent with the finding of Strode et al. (2016) who performed global CO modelling with a different model and inventory. 

3.3.3 Biomass burning emissions 

Inversions #1, #2, and #3 consistently estimate declining biomass burning CO emissions (Fig. 6b), primarily driven by five 25 

regions (EQAF, SAF, Brazil - BRA, SEAS, and RUS) that account for more than 70% of global biomass burning CO (Tables 

S10, S11, S12). Based on Inversion #1 results, EQAF presents a declining trend of −1.6±1.1 Tg CO yr−2 (p<0.01, Table S10) 

during 2000–2017, while emissions in the other four regions fluctuate. The large inter-annual variability makes the assessment 

of a trend more uncertain especially given high emissions during extreme drought years. For example, the 2010 emissions are 

estimated significantly higher than the 2009 emissions due to the suddenly rising emissions in BRA caused by drought in the 30 

Amazon forest (Lewis et al., 2011; Xu et al., 2011). The 2015 emissions are estimated close to the maximum since 2000 due 

to fire anomalies in SEAS and BRA as a consequence of record-breaking drought during the 2015–2016 El Niño event 
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(Jiménez-Muñoz et al., 2016; Yin et al., 2016; Liu et al., 2017). Besides, the EU and the Korea and Japan (KAJ) both present 

slightly decreasing biomass burning emissions (p<0.05), while Canada (CAN) shows a moderate increasing trend of 0.8±0.6 

Tg CO yr−2 (p<0.05), concurrent with the increasing burned area (Canadian National Fire Database, 2018). All of the other 

regions have highly variable biomass burning emissions during 2000–2017 without linear trends (p>0.1, Table S10). 

The biomass burning CO emissions derived from all three inversions are on average ~30% higher than the GFED 4.1s estimates 5 

that we use as prior, mainly because our inversions give ~20%, ~50%, and ~70% higher emissions than GFED for EQAF, 

SAF, and BRA, respectively (Fig. 7d). The larger biomass burning emissions derived from inversions are most evident in the 

peak fire month and in late fire seasons when burned area declines after the peak fire month (Fig. S5). This mismatch in 

biomass burning emission seasonality between bottom-up and top-down estimates is a long-standing problem, especially in 

Africa and South America (van der Werf et al., 2006; Roberts et al., 2009; Whitburn et al., 2015; Thonat et al., 2015). Our 10 

previous study (Zheng et al., 2018b) suggested that the mismatch over Africa is probably caused by a flaming-to-smoldering 

transition that occurs in late dry seasons, which increases CO emission factors of savanna fires due to low combustion 

efficiency and thus push up CO emissions. GFED uses seasonally constant emission factors that represent the mean of 

measurement mostly for flaming combustions, therefore tends to underestimate the late fire season emissions. Despite being 

probably underestimated, GFED estimates consistent regional emission trends (if any) with Inversion #1 (Fig. 7e) because the 15 

underestimation bias is canceled when calculating trends. 

3.4 Evaluation with ground-based observations 

Modelled CO columns from Inversions #1, #2, and, #3 all match MOPITT observations within their assigned errors and also 

in terms of trends (Inversion #1 is shown in Fig. S6). The posterior simulation corrects the underestimates of prior modelled 

CO columns, especially over Europe, Africa, and South America, where the CO source is increased by inversion. For trends, 20 

the model with prior fluxes can only simulate slightly declining CO columns over the USA and EU (Fig. S6g), where 

anthropogenic CO emissions decrease in prior, but present increasing CO columns over all the other regions. The inverse 

system reverses the upward trend in prior CO sources that is inconsistent with atmospheric CO observations (e.g., in Asia), 

which consequently reproduces the global decline in CO total columns (Figs. S6c, S6e). 

The independent ground-based observations from WDCGG and TCCON confirm an improvement of modelled CO and XCO 25 

in Inversions #1, #2, and, #3 with respect to both annual averages and trends (Figs. B1–B3, S7–S9). Compared with the 

WDCGG data, all three inversions correct the underestimates of the prior surface CO concentrations, which reduces the NMB 

and RMSE and increase the slope (more close to one) and R-squared of the linear regressions. For trends, most of the WDCGG 

sites, especially those located in the USA, EU, and CHN, present statistically significant downward trends between 2000 and 

2017, while the prior results tend to underestimate the declining trends. These biases are reduced by the inversions, though 30 

uncertainties still exist in view of the scattered dots. The WDCGG sites that show large disagreements are mostly located at 

coastal terrain areas, where our coarse-resolution model simplifies the coastline and thus cannot resolve the associated 

meteorology well (e.g., land-sea breeze circulation) (Palau et al., 2005; Ahmadov et al., 2007) and possible local emission 
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sources. Several sites at high northern latitudes also suggest relatively large modelling bias due to the lack of high-quality 

satellite data as an observational constraint. The modelled XCO with posterior fluxes agrees better than the prior results with 

the TCCON observations, especially for the rapidly declining trends between 2000 and 2017. 

The evaluation with measurement from WDCGG suggests that Inversion #3 gives a fair estimate of surface CO trends during 

2010–2017 (NMB = −8%, RMSE = 1.4 % yr−1, Fig. B3c), while Inversion #2 (NMB = −34%, RMSE = 2.0 % yr−1, Fig. B2c) 5 

and Inversion #1 (NMB = −47%, RMSE = 1.8 % yr−1, Fig. B1c) still present moderate biases in their study period. During the 

overlap period of 2010–2017 with Inversion #3, Inversion #2 and Inversion #1 both present slightly larger RMSE of 1.5 % 

yr−1 in the trend estimates. Comparing with TCCON observations, we also see a slight improvement of the modelled XCO 

trends in Inversion #3 (NMB = 21%, RMSE = 0.3 % yr−1, Fig. B3d) and in Inversion #2 (NMB = 10%, RMSE = 0.3 % yr−1, 

Fig. B2d) than those estimated by Inversion #1 (NMB = 9%, RMSE = 0.4 % yr−1, Fig. B1d). 10 

4 Discussion 

4.1 Influence of prior inter-annual variation 

Inversion #4 has the same inversion set up as Inversion #1 except that it used the flat prior CO fluxes (seasonal climatology) 

without inter-annual variation. The prior CO fluxes used in Inversion #1 (Table S6) are composed of increasing anthropogenic 

emissions (0.33±0.14% yr−1, p<0.01) and decreasing but highly time-variable biomass burning emissions (−0.43±1.43% yr−1, 15 

p=0.53), which lead to a slightly increasing global total source (0.16±0.18% yr−1, p=0.07). Without this prior inter-annual 

variability, Inversion #4 estimates that the global CO source declined by −0.32±0.23% yr−1 (p<0.01) and the global CO sink 

declined by −0.32±0.20% yr−1 (p<0.01) during 2000–2017 (Table 3). The declining CO source can be decomposed into a 

relatively flat CO chemical production (0.03±0.09% yr−1) and a rapidly declining surface emission (−0.62±0.36% yr−1) that is 

primarily due to the decreasing anthropogenic (−0.70±0.26% yr−1) and biomass burning (−0.91±0.81% yr−1) emissions. 20 

Overall, Inversion #4 is highly consistent with Inversion #1 in regard to the relative trends in the anthropogenic (Table S7) and 

biomass burning (Table S10) sources globally (Fig. 6) and regionally (Fig. 7), especially for the top five emitters (Figs. 8, 9). 

This consistency suggests that the estimated declining trends in the global CO source and CO sink are not affected by the inter-

annual variations of prior CO fluxes. 

4.2 Drivers of declining CO emissions 25 

We compare the inversion-based anthropogenic CO emissions to regional bottom-up inventories that are not used in our 

inversions (Fig. 8). Here we use the bottom-up inventory data from EPA for the USA (USEPA, 2018, Fig. 8a), from MEIC 

v1.3 for CHN (Zheng et al., 2018c, Fig. 8b), from TNO-MACC III for EU (Kuenen et al., 2014, Fig. 8c), from REAS v2.1 for 

SAS (Kurokawa et al., 2013, Fig. 8d), and from EDGAR v4.3.2 for EQAF (Crippa et al., 2018, Fig. 8e), while our prior 

inventory is the global inventory CEDS (see Section 2.2). These bottom-up emissions data are derived from detailed regional 30 

activity maps and sector-specific emission factors, except for EQAF where we use the global inventory EDGAR v4.3.2 (up to 
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2012) due to the lack of regional inventories there. Figure 8 shows consistent anthropogenic CO emission trends between 

bottom-up and top-down estimates in all five regions, indicating that the inversion results well capture the inter-annual 

variation of anthropogenic CO emissions. The sectoral detail of bottom-up data allows us to identify the driving source sector 

in each region. The transport sector dominates the rapidly decreasing emissions in the USA and EU, while the industrial and 

residential sectors drive down the emissions in CHN after 2005. The road transport, industrial, and residential sources all push 5 

up emissions in SAS during 2000–2010, while the growing residential source is mainly responsible for the continuous rising 

emissions in EQAF. 

Distinct emission driver sectors reflect different stages of socio-economic development, fuel use, and emission regulation 

policies in different regions. Developed economies such as the USA and EU have improved their industrial and residential 

combustion facilities that now burn relatively clean energy at high combustion efficiencies. The transport sector accounts for 10 

the majority of the current emissions, and the progressive pollution control on vehicles has successfully cut CO emissions in 

the USA (Jiang et al., 2018) and EU (Crippa et al., 2016). CHN and SAS are both on the process of rapid industrialization and 

urbanization, which made their anthropogenic CO emissions rise up rapidly since 2000, driven by all the source sectors 

especially the industrial and residential sources. To save energy and reduce air pollution, China has improved the combustion 

efficiency and strengthened the end-of-pipe pollution control since 2005, which has successfully cut industrial and residential 15 

CO emissions (Zheng et al., 2018a, 2018c). China has also implemented stringent vehicle emission standards, however, the 

explosive growth in vehicle sales and oil use partly offsets the impact of vehicle pollution control, making the transport sector 

contribute less to emission reductions. The emissions from SAS are estimated to have increased up to 2010 and have remained 

flat since then, while the cause of flattening emissions is not very clear due to lack of bottom-up inventories for recent years. 

The underdeveloped economies in the EQAF have few emissions from the industrial and transport sources, and most of the 20 

emissions increase is driven by the growing residential source mainly for cooking and heating. 

Biomass burning emissions are determined by burned area, fuel combustion rate per unit area, and emission factors per unit 

mass of fuel burnt (van der Werf et al., 2017). Our inversion-based biomass burning CO emissions broadly follow the trends 

of GFED 4.1s burned area that is derived from satellite observations during 2000–2017 (Fig. 9), which suggests that burned 

area is the primary driver of biomass burning emissions variation. The global burned area is observed to have declined since 25 

2000 (Fig. 9a) with the largest decline in the grassland and savanna ecosystems over EQAF (Fig. 9b). This declining trend is 

primarily driven by agricultural expansion and intensification with more fire management and suppression due to population 

increase and socioeconomic development (Andela and van der Werf, 2014; Andela et al., 2017). Although extreme drought 

years could shortly expand the burned area, the overall downward trends in global burned area are robust due to the strong 

inverse relationship between fire activities and economic development (Andela et al., 2017). We have also noticed that the 30 

variations in burned area and biomass burning emissions did not have perfect matches in some years (e.g., the year of 2015). 

The mismatch can be explained by the inter-annual variation of fuel combustion rate and emission factors that mostly depend 

on burning conditions, land cover, and fuel type. For example, the 2015–2016 El Niño event caused severe fires on the drained 

peatlands in Indonesia that are not burned in normal years. This caused only a moderate increase in burned area but released a 
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disproportionately large amount of CO because the peat fire emission factor is 210 g CO kg−1 dry matter (van der Werf et al., 

2017), 3.3 times higher than that of savanna fires (63 g CO kg−1 dry matter) that regularly burn every year and contribute 

roughly half of the global biomass burning CO emissions. 

4.3 Interactions between OH and CO 

The global CO budget is affected by the interactions between OH and CO. A lower OH level translates into a proportionally 5 

smaller CO sink and thus estimates a smaller CO total source to achieve the source-sink balance (Müller et al., 2018). As such, 

the inter-annual variability of OH (if any) perturbs the long-term trends of the global CO budget. There are similar discussions 

for CH4 that a combination of declining OH and slightly growing CH4 source may explain the renewed growth of CH4 

concentrations since 2007 (Rigby et al., 2017; Turner et al., 2017), otherwise an abrupt increase in CH4 emissions since 2007 

has to be assumed to match the CH4 observations (Turner et al., 2017). On the other hand, the declining CO burden in the 10 

atmosphere can leave more OH available to oxidize CH4 through the coupling of CO-OH-CH4, which means that the declining 

CO can stimulate the growth of CO chemical production (Gaubert et al., 2017). These interactions between OH and CO help 

understand the uncertainties induced by OH in our inversion results. 

The tropospheric OH mean derived from Inversion #1 is 9.9×105 molec. cm−3 and Inversions #2 and #3 both give a mean OH 

of 10.0×105 molec. cm−3. These values are close to the TransCom prior with less than 1% difference (the prior uncertainty is 15 

5%). This is a medium level compared to the modelled OH of 6.5×105 to 13.4×105 molec. cm−3 in the Atmospheric Chemistry 

and Climate Model Intercomparison Project (ACCMIP) simulations (Voulgarakis et al., 2013). The three inversions all 

estimate a small inter-annual variation in OH, less than 2% (Fig. S10). Inversion #1 that constrains OH through CO and MCF 

gives a small positive trend in OH during 2000–2008 (0.21±0.14% yr−1, P<0.01) and a small negative trend during 2008–2017 

(−0.07±0.06% yr−1, P=0.02). Inversions #2 and #3 both estimate slightly increasing OH with the trends of 0.26±0.25% yr−1 20 

(P=0.05) and 0.19±0.21% yr−1 (P=0.06), respectively, during their overlapping period 2010–2017. The estimated growing OH 

trends are larger than the downward trends estimated by Inversion #1. As Inversions #2 and #3 additionally assimilate HCHO 

and CH4 that also react with OH, these results suggest that HCHO and CH4 tend to have a stronger constraint on the OH level 

than CO and MCF assimilated in Inversion #1. It should be noted that the mixing ratios of MCF in the atmosphere are 

approaching zero and therefore hardly constrain OH any more (Liang et al., 2017). 25 

The debate on OH variation is still ongoing (Turner et al., 2019; Nisbet et al., 2019). OH was thought to be well buffered in 

the atmosphere, which means that OH is not sensitive to the variations of anthropogenic and natural emissions. This is reflected 

in the results of global chemistry and climate models (Naik et al., 2013; Voulgarakis et al., 2013). A recent 3-D inverse 

modelling by McNorton et al. (2018) also gave a small inter-annual variation of 1.8±0.4% in the tropospheric OH from 2007 

to 2015, broadly consistent with our inversion results (Fig. S10). In contrast, some two-box model inversions give larger inter-30 

annual variations of about 5–8% in the global OH mean (Rigby et al., 2017; Turner et al., 2017; Naus et al., 2019, Fig. S10). 

Rigby et al. (2017) and Turner et al. (2017) primarily used MCF to infer OH, and they both estimated declining OH from 

2004/2005 to 2014/2013. This declining trend is not revealed by 3-D modelling studies, including our inversions here. Turner 
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et al. (2017) also suggested slightly increasing OH since 2013, which agrees with our estimates of Inversions #2 and #3. 

However, it should be noted that the uncertainty ranges assessed by those two-box model studies are larger than their estimated 

OH variations. Our 3-D inversions further suggest that the OH trend is sensitive to the observation constraints used. All these 

features suggest that the OH inter-annual variation is still underdetermined (Rigby et al., 2017; Turner et al., 2017). 

The ability to simulate the nonlinear chemistry of OH is still weak in global models, which is another challenge to understand 5 

the OH variation. The LMDz-SACS model adopts a linearized chemical scheme to simulate the hydrocarbon reactions 

including CH4+OH, HCHO+OH, CO+OH, and MCF+OH. The nonlinear dynamics of the OH chemistry, such as the secondary 

OH production (Lelieveld et al., 2016) and the interaction of OH with the NOx chemistry (Miyazaki et al., 2017), is not 

represented. The negligible computational cost of this configuration for OH motivates it, but we also expect the optimization 

of OH through the joint assimilation of CH4, HCHO, CO, and MCF observations to counterbalance the simplicity of the 10 

scheme. Alternatively, it would be interesting to sophisticate the scheme by introducing key tracers in the OH chemistry (e.g., 

tropospheric ozone, NO, and NMVOCs) in the scheme together with prescribed (though uncertain) reaction rates, but we 

currently lack enough observations to constrain this additional complexity. 

The OH trends derived from our inversions may be ambiguous, but we can still speculate that our main conclusion is robust 

to the possibly larger variation of OH. If a strong downward OH trend existed as two-box model studies suggested, we could 15 

see faster decreases in both global atmospheric CO sink and global atmospheric CO source than our current estimates. Although 

decreasing rates may be varied, the overall trends and drivers of the estimated global CO budget are not changed. 

4.4 Comparison with previous top-down estimates 

We compile the top-down estimated global CO budget from 12 papers (Table S4) to compare with our inversion results. 

Compared to the nine studies using different inversion systems (Fig. 10), our inversion system is the only one with the 20 

capability of multi-species constraints and also the only one using MOPITT v7 data to constrain CO, while the previous studies 

had to use older versions of MOPITT data. 

All these top-down studies converge on the estimates of global CO source (Fig. 10a), but disagree on the split between surface 

emissions and chemical production, and also on the proportions of CH4-based and NMVOCs-based CO productions. For 

example, Jiang et al. (2017) estimated consistent declining trends in anthropogenic (Fig. 10d) and biomass burning (Fig. 10e) 25 

CO emissions as our estimates, but their annual average emissions are 20–37% lower than our results. The CO production 

from NMVOCs shows a large spread (Fig. 10h) among different inversion studies. Gaubert et al. (2017) estimated a CO 

chemical production quite close to our estimates (Fig. 10f), while they gave lower CH4 oxidation and higher NMVOCs 

oxidation. The biogenic and oceanic CO emissions derived from different inversions are 100–200 Tg CO yr−1 and 20 Tg CO 

yr−1 (Table S4), respectively, which are consistent with our estimates (Table 3). Few studies estimated the global CO sink (Fig. 30 

10b), except Gaubert et al. (2017) who gave a declining CO sink from 2002 to 2013 that agrees with our estimates, but Gaubert 

et al. (2017) values are 15% lower on average. 
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The other three inversions in the comparison are all derived from previous versions of our inversion system with multi-species 

constraints (Fortems-Cheiney et al., 2011, 2012; Yin et al., 2015). Compared to these previous estimates (Fig. S11), we have 

increased the spatial resolution of our transport model, used improved prior data, and assimilated the new MOPITT v7 

observations. Therefore, the updated inversion results in this paper are expected to have better quality, leading to updated 

trends estimates of the global CO source (Fig. S11a), CO sink (Fig. S11b), surface CO emissions (Fig. S11c), and the CO 5 

production from NMVOCs (Fig. S11h). 

5 Data availability 

The data we use as an input of our inversion models and their references are as follows. The MOPITT v7 TIR-NIR product 

(Deeter et al., 2017) for 2000–2017 can be downloaded from https://l0dup05.larc.nasa.gov/opendap/MOPITT/MOP02J.007/. 

The OMI v3 HCHO column retrievals (González Abad et al., 2015) for 2004–2017 can be downloaded from 10 

https://aura.gesdisc.eosdis.nasa.gov/data/Aura_OMI_Level2/OMHCHO.003/. The GOSAT XCH4 retrievals produced by the 

University of Leicester (Parker et al., 2011) for 2009–2017 can be downloaded from 

http://www.leos.le.ac.uk/data/GHG/GOSAT/v7.2/CH4_GOS_OCPR_v7.2.tar.gz. The ground-based observations from 

WDCGG can be downloaded from https://gaw.kishou.go.jp/, and those from TCCON (Wunch et al., 2011) can be downloaded 

from https://tccondata.org/. The CEDS emissions data (Hoesly et al., 2018) can be downloaded from 15 

http://www.globalchange.umd.edu/ceds/ceds-cmip6-data/. The GFED emissions data (van der Werf et al., 2017) can be 

downloaded from https://www.globalfiredata.org/. 

The global CO budget during 2000–2017 derived from Inversions #1, #2, and #3 in this study can be downloaded from 

https://doi.org/10.6084/m9.figshare.c.4454453.v1 (Zheng et al., 2019). These are monthly gridded data product at the spatial 

resolution of 3.75° longitude × 1.9° latitude, including surface CO emissions from different source sectors (i.e., anthropogenic, 20 

biomass burning, biogenic, and oceanic), CO chemical production, and CO chemical sink. 

6 Conclusions 

We have estimated the global atmospheric CO budget during 2000–2017 through a multi-species atmospheric inversion 

system, and have investigated its magnitude, variation, and drivers to understand the observed steady decline in the atmospheric 

CO burdens. The inversion-based CO budget significantly improves the modelled CO concentrations and trends compared 25 

with independent ground-based observations from the WDCGG and TCCON archives. The inversion results attribute the 

drivers of the declining MOPITT CO columns during 2000–2017 to a decrease in anthropogenic and biomass burning CO 

emissions that more than offsets the growing CO chemical production in the atmosphere. The decline in anthropogenic CO 

emissions mainly occurs in the US, Europe, and China, highly consistent with state-of-the-art regional bottom-up inventories, 

which show that the transport sector drives emissions down in the US and Europe, and the improved combustion efficiency 30 

https://l0dup05.larc.nasa.gov/opendap/MOPITT/MOP02J.007/
https://aura.gesdisc.eosdis.nasa.gov/data/Aura_OMI_Level2/OMHCHO.003/
http://www.leos.le.ac.uk/data/GHG/GOSAT/v7.2/CH4_GOS_OCPR_v7.2.tar.gz
https://gaw.kishou.go.jp/
https://tccondata.org/
http://www.globalchange.umd.edu/ceds/ceds-cmip6-data/
https://www.globalfiredata.org/
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and pollution control in the industrial and residential sources are major drivers in China. The declining biomass burning 

emissions are consistent with the overall downward trends of satellite-based global burned areas, which is the consequence of 

agricultural and economic expansion as reported in other published studies. Nonetheless, biomass burning still has significant 

inter-annual variability and releases a large amount of CO in extreme drought years. We have investigated the robustness and 

uncertainties of the inversion results through three inversion analyses and one sensitivity inversion tests, from which we 5 

demonstrated that the overall declining trends in global and regional CO sources and the underlying drivers are robust to 

different observation constraints, to prior inter-annual variation, and to possible OH trends. Additionally, our inversion results 

include emission estimates for methane and formaldehyde that will be the topic of a future dedicated evaluation.  
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Table 1. Configurations of the atmospheric inverse system. 

Model setup Configuration Main reference 

Inversion general set up   

Spatial scale Global  

Spatial resolution 3.75° longitude × 1.9° latitude / 

E-folding correlation length 1000 km over ocean and 500 km over land Chevallier et al. (2005) 

Data assimilation window 14 months for each year (Nov to Dec) / 

Time resolution (emission flux) 8 days Yin et al. (2015) 

Minimizer of cost function M1QN3 Gilbert and Lemaréchal (1989) 

Chemistry-transport model (H)   

Model name LMDz-SACS Pison et al. (2009) 

Meteorological forcing Nudged to ECMWF ERA-Interim Dee et al. (2011) 

Spatial resolution 3.75° longitude × 1.9° latitude × 39 layers  

Convection scheme Tiedtke's scheme Tiedtke (1989) 

Control vector (x) Gridded emissions of CO, CH4, and methyl chloroform (MCF); 

2D gridded scaling factors to the HCHO production from 

NMVOCs; 2D gridded scaling factors to the initial 

concentrations of CO, CH4, MCF, and HCHO in the first time 

step; scaling factors to OH for 6 big regions globally 

Yin et al. (2015) 

Prior information (xb)   

CO emissions Anthropogenic source: CEDS Hoesly et al. (2018) 

 Biomass burning: GFED 4.1s van der Werf et al. (2017) 

 Biogenic source: MEGAN Sindelarova et al. (2014) 

 Ocean source: POET Olivier et al. (2003) 

CH4 emissions Anthropogenic source: CEDS Hoesly et al. (2018) 

 Biomass burning: GFED 4.1s van der Werf et al. (2017) 

 Wetland: WetCHARTs Bloom et al. (2017) 

 Other CH4 sources Saunois et al. (2016) 

MCF emissions Derived from our previous work Yin et al. (2015) 

HCHO from NMVOCs  Pre-calculated by the full chemistry model LMDz-INCA Folberth et al. (2006) 

Model initial state Produced by the LMDz-INCA model Folberth et al. (2006) 

OH fields 3D OH fields from TransCom Patra et al. (2011) 

Observation vector (y)   

CO total column MOPITT v7 TIR-NIR product (available since Mar 2000) Deeter et al. (2017) 

HCHO total column OMI version 3 (available since Oct 2004) González Abad et al. (2015) 

XCH4 GOSAT retrievals produced by the University of Leicester 

(available since Apr 2009) 

Kuze et al. (2009), 

Parker et al. (2011) 

MCF concentration Surface observations from WDCGG https://gaw.kishou.go.jp/ 
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Table 2. Atmospheric inversions performed in this work. 

# Time period Prior emissions Observation constraints 

1 2000–2017 Time-variant data as described in Table 1. MOPITT v7 CO total column and WDCGG MCF concentrations. 

2 2005–2017 Same as Inversion #1 but for 2005–2017. Observation constraints of Inversion #1 in addition with OMI v3 

HCHO total column. 

3 2010–2017 Same as Inversion #1 but for 2010–2017. Observation constraints of Inversion #2 in addition with GOSAT 

XCH4. 

4 2000–2017 Same as Inversion #1 except that prior CO 

fluxes are the 2000–2017 annual average 

without inter-annual variation. 

Same as Inversion #1. 
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Table 3. Global atmospheric carbon monoxide budget during 2000–2017. Average CO budget (103 Tg CO yr−1), coefficient of variation 

(CV, %), and absolute trends from 2000 to 2017 (Tg CO yr−2) are derived from Inversion #1 (see Table 2). Relative trends (% yr−1) with 

95% confidence limits are shown for both Inversions #1 and #4 (no inter-annual variation in the prior CO flux). Significant trends are marked 

by asterisks (*p < 0.1, ** p < 0.05, and *** p < 0.01). 

 
Average 

(103 Tg CO yr−1) 

CV 

(%) 

Absolute trend 

(Inversion #1)  

(Tg CO yr−2) 

Relative trend 

(Inversion #1) 

(% yr−1) 

Relative trend 

(Inversion #4) 

(% yr−1) 

Sources      

Anthropogenic 0.7 5.0 −5.6 ± 2.2*** −0.69 ± 0.27*** −0.70 ± 0.26*** 

Biomass burning 0.5 11.6 −3.8 ± 4.9 −0.91 ± 1.15 −0.91 ± 0.81** 

Oceanic 0.02 2.2 −0.05 ± 0.04** −0.22 ± 0.18** −0.31 ± 0.28** 

Biogenic 0.2 8.6 0.1 ± 1.6 0.04 ± 0.84 0.20 ± 0.76 

Sub-total direct emissions 1.4 6.1 −9.4 ± 7.0** −0.65 ± 0.48** −0.62 ± 0.36*** 

Oxidation of CH4 0.9 1.8 3.0 ± 0.4*** 0.35 ± 0.04*** 0.33 ± 0.04*** 

Oxidation of NMVOCs 0.3 7.2 −3.6 ± 1.5*** −0.94 ± 0.39*** −0.65 ± 0.33*** 

Sub-total chemical oxidation 1.2 1.2 −0.6 ± 1.4 −0.05 ± 0.12 0.03 ± 0.09 

Total sources 2.6 3.3 −10.0 ± 6.9*** −0.37 ± 0.26*** −0.32 ± 0.23*** 

Sinks      

OH reaction 2.6 2.9 −9.3 ± 6.0*** −0.35 ± 0.23*** −0.32 ± 0.20*** 

5 
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Table 4. Absolute trends in global atmospheric carbon monoxide budget. Absolute trends (Tg CO yr−2) with 95% confidence limits are 

estimated for the time period of 2005–2017 and 2010–2017 using Inversions #1, #2, and #3 (see Table 2). Significant trends are marked by 

asterisks (*p < 0.1, ** p < 0.05, and *** p < 0.01). 

Unit: Tg CO yr−2 
Inversion #1 Inversion #1 Inversion #2 Inversion #2 Inversion #3 

2005–2017 2010–2017 2005–2017 2010–2017 2010–2017 

Sources      

Anthropogenic −6.4 ± 3.5*** −7.5 ± 6.5** −11.1 ± 4.0*** −14.6 ± 5.4*** −12.7 ± 3.8*** 

Biomass burning −4.4 ± 8.5 −0.8 ± 20.8 −4.8 ± 7.8 −2.3 ± 19.4 −3.1 ± 19.0 

Oceanic 0.0 ± 0.1 0.0 ± 0.2 0.0 ± 0.1 −0.3 ± 0.2** −0.3 ± 0.3** 

Biogenic −0.2 ± 2.9 1.4 ± 5.8 −2.4 ± 1.9** −2.5 ± 3.3 −3.0 ± 4.7 

Sub-total direct emissions −11.1 ± 12.6* −6.9 ± 29.5 −18.2 ± 10.6*** −19.7 ± 21.0* −19.0 ± 22.8* 

Oxidation of CH4 3.3 ± 0.6*** 4.3 ± 1.4*** 6.1 ± 2.0*** 9.6 ± 4.0*** 2.8 ± 6.4 

Oxidation of NMVOCs −2.5 ± 2.3** −4.1 ± 6.9 4.7 ± 4.0** 11.0 ± 10.0** 10.0 ± 8.6*** 

Sub-total chemical oxidation 0.8 ± 2.2 0.1 ± 6.9 10.8 ± 5.3*** 20.6 ± 11.8*** 12.8 ± 11.3** 

Total sources −10.3 ± 12.7 −6.8 ± 29.8 −7.4 ± 13.0 0.9 ± 28.6 −6.2 ± 29.1 

Sinks      

OH reaction −11.3 ± 11.0** −8.6 ± 23.5 −9.7 ± 11.7* −0.7 ± 25.0 −8.9 ± 26.4 
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Figure 1. Trends in the abundance of atmospheric CO from 2000 to 2017. The map (a) shows the 2000–2017 trends in MOPITT CO 

total columns at the spatial resolution of 0.5° × 0.5° with the WDCGG sites (dots) that have a continuous measurement during 2000–2017. 

The colour of the WDCGG dots represent the trends in surface CO concentrations. The curve in (b) shows the trends in MOPITT CO columns 

by latitude band. The bars in (c) show regional CO column trends (region split refers to Fig. A1). The trends in (a), (b), and (c) are all 5 

estimated on the base of monthly time series using a curve fitting method as described in Zheng et al. (2018a). The grey colour in the map 

(a) indicates the areas or dots without statistically significant trends (p ≥ 0.05), and the error bars in (b) and (c) represent the 95% confidence 

intervals. Fig. S1 presents the trends of MOPITT CO columns from 2005 to 2017 (Fig. S1a) and from 2010 to 2017 (Fig. S1b), respectively.
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Figure 2. Comparison of inversion-based CO source trends between Inversions #1, #2, and #3. The comparison is conducted between 

Inversions #1 and #2 for 2005–2017 (red dot), between Inversions #1 and #2 for 2010–2017 (blue dot), and between Inversions #1 and #3 

for 2010–2017 (green dot). The global totals are presented in (a), and the top 5 emitters (region definition refers to Fig. A1) of regional 

anthropogenic and biomass burning emissions are presented in (b) and (c), respectively. In all these figures, the CO source trends derived 5 

from Inversion #1 are presented along with the x-axis, and the CO source trends from Inversions #2 and #3 are presented along with the y-

axis. The error bars for x and y (grey lines) are 95% confidence intervals of the estimated linear trends.
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Figure 3. Global CO budget and trends by latitude band. The global CO source (black curve and stacked chart) and sink (red curve) 

derived from Inversion #1 are presented in (a) for every 15-degree latitude band. The budget trends with 95% confidence intervals are 

estimated for 2000–2017 using Inversion #1 (b), for 2005–2017 using Inversion #2 (c), and for 2010–2017 using Inversion #3 (d). The trends 

are estimated using the linear least squares fitting method based on annual time series for each 15-degree latitude band.  5 
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Figure 4. Spatial distribution of the global CO budget and 2000–2017 trends. Annual average CO total source and sink during 2000–

2017 are shown at the spatial resolution of 3.75° longitude × 1.9° latitude in (a) and (c), respectively, and linear trends of each grid cell are 

shown in (b) and (d), which are estimated using the linear least squares fitting method based on annual time series. Grey colour in (b) and 

(d) indicates the areas without statistically significant trends (p ≥ 0.05). All data shown in this figure are derived from Inversion #1 results. 5 

The spatial-temporal distributions derived from Inversion #2 and Inversion #3 are shown in Fig. S3 and Fig. S4, respectively. 
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Figure 5. Spatial distribution of anthropogenic and biomass burning CO emissions and the 2000–2017 trends. Annual average CO 

emissions from anthropogenic and biomass burning sources are shown at the spatial resolution of 3.75° longitude × 1.9° latitude in (a) and 

(c), respectively, and linear trends of each grid cell are shown in (b) and (d), which are estimated using the linear least squares fitting method 

based on annual time series. Grey colour indicates the areas without anthropogenic and biomass burning emissions or without statistically 5 

significant trends (p ≥ 0.05). All data shown in this figure are derived from Inversion #1 results. 
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Figure 6. Global CO emission anomalies from 2000 to 2017. Anthropogenic (a) and biomass burning (b) emission anomalies are presented 

with global totals derived from Inversions #1 – #4 (curves), as well as regional emission anomalies (stacked bar) derived from Inversion #1, 

including the top 5 emitters and the sum of all the other regions. For Inversion #1 and Inversion #4, the emission anomalies are calculated 

through removing the 2000–2017 average calculated from their own time series data. For Inversion #2 and Inversion #3, the emission 5 

anomalies are calculated through removing the 2000–2017 average calculated from Inversion #1.
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Figure 7. Comparison between Inversion #1 emission estimates with the prior emissions and Inversion #4 estimates. Annual average 

regional anthropogenic emissions (Tg CO yr−1, blue dots in a) are compared between Inversion #1 (y-axis) and the CEDS estimate (x-axis) 

with coefficients of variation as error bars. The linear trends (Tg CO yr−2) in regional anthropogenic emissions (blue dots in b and c) are 5 

compared between Inversion #1 (y-axis in b and c) and the CEDS inventory (x-axis in b) and Inversion #4 estimate (x-axis in c), respectively, 

with the area of each dot proportional to annual average emissions derived from Inversion #1. Figures (d), (e), and (f) are similar to (a), (b), 

and (c), respectively, but for biomass burning CO emissions.
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Figure 8. Comparison of inversion-based anthropogenic CO emission anomalies with bottom-up emission inventories. The top 5 

emitters of anthropogenic CO are presented here including the USA (a), CHN (b), EU (c), SAS (d), and EQAF (e). We compare the regional 

emission anomalies estimated from Inversions #1 – #4 (curves) to the bottom-up emission inventories that have sectoral details (stacked 

bar). We normalize emission time series through removing their own annual average, except that Inversion #2 and Inversion #3 subtract the 5 

2000–2017 annual average emissions calculated from Inversion #1. 
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Figure 9. Comparison of inversion-based biomass burning CO emission anomalies with GFED 4.1s burned area. Global total (a) and 

the top 5 emitters of biomass burning CO are presented here including EQAF (b), SAF (c), BRA (d), SEAS (e), and RUS (f). We compare 

the regional emission anomalies estimated from Inversions #1 – #4 to the GFED 4.1s burned area. We normalize burned area and emissions 

time series by removing the annual average to calculate the 2000–2017 anomalies, except that Inversion #2 and Inversion #3 subtract the 5 

2000–2017 annual average emissions calculated from Inversion #1. 
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Figure 10. Comparison of Inversions #1, #2, and #3 with previous top-down estimates of the global CO budget. The comparison is 

conducted for the global CO source (a), the global CO sink (b), the surface direct emissions (c), the anthropogenic emissions (d), the biomass 

burning emissions (e), the CO chemical production (f), the CO production from CH4 oxidation (g), and the CO production from NMVOCs 

oxidation (h).5 
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Appendix A: Region splitting in this study 

 

Figure A1. The 18 regions used in this study. The WDCGG (blue dot) and TCCON (red triangle) sites are located on the map. The three 

black boxes select the WDCGG sites used in the model evaluation for the US, Europe, and China, respectively, in Figs. S5, S7, and S9. The 

TCCON stations include Indianapolis (Iraci et al., 2017a), Manaus (Dubey et al., 2017a), Sodankylä (Kivi et al., 2017), Lauder (Sherlock et 5 

al., 2017a, 2017b), Burgos (Morino et al., 2018), Ascension Island (Feist et al., 2017), Réunion Island (De Mazière et al., 2017), Caltech 

(Wennberg et al., 2017a), Zugspitze (Sussmann and Rettinger, 2018), Ny Ålesund (Notholt et al., 2017a), Orléans (Warneke et al., 2017), 

Jet Propulsion Laboratory (Wennberg et al., 2017b, Wennberg et al., 2017c), Saga (Kawakami et al., 2017), Izana (Blumenstock et al., 2017), 

Edwards (Iraci et al., 2017b), Garmisch (Sussmann and Rettinger, 2017), Bremen (Notholt et al., 2017b), Karlsruhe (Hase et al., 2017), Four 

Corners (Dubey et al., 2017b), Wollongong (Griffith et al., 2017a), East Trout Lake (Wunch et al., 2017), Paris (Té et al., 2017), Anmeyondo 10 

(Goo et al., 2017), Park Falls (Wennberg et al., 2017d), Lamont (Wennberg et al., 2017e), Bialystok (Deutscher et al., 2017), Rikubetsu 

(Morino et al., 2017a), Eureka (Strong et al., 2018), Tsukuba (Morino et al., 2017b), and Darwin (Griffith et al., 2017b).
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Appendix B: Evaluation of posterior simulations of Inversions #1, #2, and #3 

 

Figure B1. Evaluation of Inversion #1 with independent ground-based observations. Annual average surface CO concentrations and 

XCO modelled by both prior (black dot) and optimized (red dot) emissions are compared with ground-based observations from the WDCGG 

(a) and TCCON networks (b), respectively. The 2000–2017 trends that are significant in a statistical test (p < 0.05) observed by WDCGG 5 

(c) and TCCON (d) are used to evaluate the modelled trends. The trends are calculated based on monthly time series using a curve fitting 

method as described in Zheng et al. (2018).
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Figure B2. Evaluation of Inversion #2 with independent ground-based observations. Annual average surface CO concentrations and 

XCO modelled by both prior (black dot) and optimized (red dot) emissions are compared with ground-based observations from the WDCGG 

(a) and TCCON networks (b), respectively. The 2005–2017 trends that are significant in a statistical test (p < 0.05) observed by WDCGG 

(c) and TCCON (d) are used to evaluate the modelled trends. The trends are calculated based on monthly time series using a curve fitting 5 

method as described in Zheng et al. (2018).



46 

 

 

Figure B3. Evaluation of Inversion #3 with independent ground-based observations. Annual average surface CO concentrations and 

XCO modelled by both prior (black dot) and optimized (red dot) emissions are compared with ground-based observations from the WDCGG 

(a) and TCCON networks (b), respectively. The 2010–2017 trends that are significant in a statistical test (p < 0.05) observed by WDCGG 

(c) and TCCON (d) are used to evaluate the modelled trends. The trends are calculated based on monthly time series using a curve fitting 5 

method as described in Zheng et al. (2018). 

 


