Articles | Volume 11, issue 1
https://doi.org/10.5194/essd-11-1-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-11-1-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Gridded maps of geological methane emissions and their isotopic signature
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Faculty of Environmental Science and Engineering, Babes Bolyai
University, Cluj-Napoca, Romania
Giancarlo Ciotoli
Istituto di Geologia Ambientale e Geoingegneria, CNR-IGAG, Rome,
Italy
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Stefan Schwietzke
Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
NOAA Earth System
Research Laboratory, Global Monitoring Division, Boulder, Colorado, USA
now at: Environmental Defense Fund, Boulder, Colorado, USA
Martin Schoell
Gas-Consult Int., Pleasanton, California, USA
Related authors
Sara M. Defratyka, Julianne M. Fernandez, Getachew A. Adnew, Guannan Dong, Peter M. J. Douglas, Daniel L. Eldridge, Giuseppe Etiope, Thomas Giunta, Mojhgan A. Haghnegahdar, Alexander N. Hristov, Nicole Hultquist, Iñaki Vadillo, Josue Jautzy, Ji-Hyun Kim, Jabrane Labidi, Ellen Lalk, Wil Leavitt, Jiawen Li, Li-Hung Lin, Jiarui Liu, Lucia Ojeda, Shuhei Ono, Jeemin Rhim, Thomas Röckmann, Barbara Sherwood Lollar, Malavika Sivan, Jiayang Sun, Gregory T. Ventura, David T. Wang, Edward D. Young, Naizhong Zhang, and Tim Arnold
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-41, https://doi.org/10.5194/essd-2025-41, 2025
Preprint under review for ESSD
Short summary
Short summary
Measurement of methane’s doubly substituted isotopologues at natural abundances holds promise for better constraining the Earth’s atmospheric CH4 budget. We compiled 1475 measurements from field samples and laboratory experiments, conducted since 2014, to facilitate the differentiation of CH4 formation pathways and processes, to identify existing gaps limiting application of Δ13CH3D and Δ12CH2D2, and to develop isotope ratio source signature inputs for global CH4 flux modelling.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Ana Maria Roxana Petrescu, Glen P. Peters, Richard Engelen, Sander Houweling, Dominik Brunner, Aki Tsuruta, Bradley Matthews, Prabir K. Patra, Dmitry Belikov, Rona L. Thompson, Lena Höglund-Isaksson, Wenxin Zhang, Arjo J. Segers, Giuseppe Etiope, Giancarlo Ciotoli, Philippe Peylin, Frédéric Chevallier, Tuula Aalto, Robbie M. Andrew, David Bastviken, Antoine Berchet, Grégoire Broquet, Giulia Conchedda, Stijn N. C. Dellaert, Hugo Denier van der Gon, Johannes Gütschow, Jean-Matthieu Haussaire, Ronny Lauerwald, Tiina Markkanen, Jacob C. A. van Peet, Isabelle Pison, Pierre Regnier, Espen Solum, Marko Scholze, Maria Tenkanen, Francesco N. Tubiello, Guido R. van der Werf, and John R. Worden
Earth Syst. Sci. Data, 16, 4325–4350, https://doi.org/10.5194/essd-16-4325-2024, https://doi.org/10.5194/essd-16-4325-2024, 2024
Short summary
Short summary
This study provides an overview of data availability from observation- and inventory-based CH4 emission estimates. It systematically compares them and provides recommendations for robust comparisons, aiming to steadily engage more parties in using observational methods to complement their UNFCCC submissions. Anticipating improvements in atmospheric modelling and observations, future developments need to resolve knowledge gaps in both approaches and to better quantify remaining uncertainty.
Petr Brož, Dorothy Oehler, Adriano Mazzini, Ernst Hauber, Goro Komatsu, Giuseppe Etiope, and Vojtěch Cuřín
Earth Surf. Dynam., 11, 633–661, https://doi.org/10.5194/esurf-11-633-2023, https://doi.org/10.5194/esurf-11-633-2023, 2023
Short summary
Short summary
The aim of this review is to summarise the current knowledge about mud-volcano-like structures on Mars, address critical aspects of the process of sedimentary volcanism, identify key open questions, and point to areas where further research is needed to understand this phenomenon and its importance in the Red Planet's geological evolution.
Ana Maria Roxana Petrescu, Chunjing Qiu, Matthew J. McGrath, Philippe Peylin, Glen P. Peters, Philippe Ciais, Rona L. Thompson, Aki Tsuruta, Dominik Brunner, Matthias Kuhnert, Bradley Matthews, Paul I. Palmer, Oksana Tarasova, Pierre Regnier, Ronny Lauerwald, David Bastviken, Lena Höglund-Isaksson, Wilfried Winiwarter, Giuseppe Etiope, Tuula Aalto, Gianpaolo Balsamo, Vladislav Bastrikov, Antoine Berchet, Patrick Brockmann, Giancarlo Ciotoli, Giulia Conchedda, Monica Crippa, Frank Dentener, Christine D. Groot Zwaaftink, Diego Guizzardi, Dirk Günther, Jean-Matthieu Haussaire, Sander Houweling, Greet Janssens-Maenhout, Massaer Kouyate, Adrian Leip, Antti Leppänen, Emanuele Lugato, Manon Maisonnier, Alistair J. Manning, Tiina Markkanen, Joe McNorton, Marilena Muntean, Gabriel D. Oreggioni, Prabir K. Patra, Lucia Perugini, Isabelle Pison, Maarit T. Raivonen, Marielle Saunois, Arjo J. Segers, Pete Smith, Efisio Solazzo, Hanqin Tian, Francesco N. Tubiello, Timo Vesala, Guido R. van der Werf, Chris Wilson, and Sönke Zaehle
Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, https://doi.org/10.5194/essd-15-1197-2023, 2023
Short summary
Short summary
This study updates the state-of-the-art scientific overview of CH4 and N2O emissions in the EU27 and UK in Petrescu et al. (2021a). Yearly updates are needed to improve the different respective approaches and to inform on the development of formal verification systems. It integrates the most recent emission inventories, process-based model and regional/global inversions, comparing them with UNFCCC national GHG inventories, in support to policy to facilitate real-time verification procedures.
Sara M. Defratyka, Julianne M. Fernandez, Getachew A. Adnew, Guannan Dong, Peter M. J. Douglas, Daniel L. Eldridge, Giuseppe Etiope, Thomas Giunta, Mojhgan A. Haghnegahdar, Alexander N. Hristov, Nicole Hultquist, Iñaki Vadillo, Josue Jautzy, Ji-Hyun Kim, Jabrane Labidi, Ellen Lalk, Wil Leavitt, Jiawen Li, Li-Hung Lin, Jiarui Liu, Lucia Ojeda, Shuhei Ono, Jeemin Rhim, Thomas Röckmann, Barbara Sherwood Lollar, Malavika Sivan, Jiayang Sun, Gregory T. Ventura, David T. Wang, Edward D. Young, Naizhong Zhang, and Tim Arnold
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-41, https://doi.org/10.5194/essd-2025-41, 2025
Preprint under review for ESSD
Short summary
Short summary
Measurement of methane’s doubly substituted isotopologues at natural abundances holds promise for better constraining the Earth’s atmospheric CH4 budget. We compiled 1475 measurements from field samples and laboratory experiments, conducted since 2014, to facilitate the differentiation of CH4 formation pathways and processes, to identify existing gaps limiting application of Δ13CH3D and Δ12CH2D2, and to develop isotope ratio source signature inputs for global CH4 flux modelling.
Gerrit Kuhlmann, Foteini Stavropoulou, Stefan Schwietzke, Daniel Zavala-Araiza, Andrew Thorpe, Andreas Hueni, Lukas Emmenegger, Andreea Calcan, Thomas Röckmann, and Dominik Brunner
Atmos. Chem. Phys., 25, 5371–5385, https://doi.org/10.5194/acp-25-5371-2025, https://doi.org/10.5194/acp-25-5371-2025, 2025
Short summary
Short summary
A measurement campaign in 2019 found that methane emissions from oil and gas in Romania were significantly higher than reported. In 2021, our follow-up campaign using airborne remote sensing showed a marked decreases in emissions by 20 %–60 % due to improved infrastructure. The study highlights the importance of measurement-based emission monitoring and illustrates the value of a multi-scale assessment integrating ground-based observations with large-scale airborne remote sensing campaigns.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Hossein Maazallahi, Foteini Stavropoulou, Samuel Jonson Sutanto, Michael Steiner, Dominik Brunner, Mariano Mertens, Patrick Jöckel, Antoon Visschedijk, Hugo Denier van der Gon, Stijn Dellaert, Nataly Velandia Salinas, Stefan Schwietzke, Daniel Zavala-Araiza, Sorin Ghemulet, Alexandru Pana, Magdalena Ardelean, Marius Corbu, Andreea Calcan, Stephen A. Conley, Mackenzie L. Smith, and Thomas Röckmann
Atmos. Chem. Phys., 25, 1497–1511, https://doi.org/10.5194/acp-25-1497-2025, https://doi.org/10.5194/acp-25-1497-2025, 2025
Short summary
Short summary
This article presents insights from airborne in situ measurements collected during the ROmanian Methane Emissions from Oil and gas (ROMEO) campaign supported by two models. Results reveal Romania's oil and gas methane emissions were significantly under-reported to the United Nations Framework Convention on Climate Change (UNFCCC) in 2019. A large underestimation was also found in the Emissions Database for Global Atmospheric Research (EDGAR) v7.0 for the study domain in the same year.
Ana Maria Roxana Petrescu, Glen P. Peters, Richard Engelen, Sander Houweling, Dominik Brunner, Aki Tsuruta, Bradley Matthews, Prabir K. Patra, Dmitry Belikov, Rona L. Thompson, Lena Höglund-Isaksson, Wenxin Zhang, Arjo J. Segers, Giuseppe Etiope, Giancarlo Ciotoli, Philippe Peylin, Frédéric Chevallier, Tuula Aalto, Robbie M. Andrew, David Bastviken, Antoine Berchet, Grégoire Broquet, Giulia Conchedda, Stijn N. C. Dellaert, Hugo Denier van der Gon, Johannes Gütschow, Jean-Matthieu Haussaire, Ronny Lauerwald, Tiina Markkanen, Jacob C. A. van Peet, Isabelle Pison, Pierre Regnier, Espen Solum, Marko Scholze, Maria Tenkanen, Francesco N. Tubiello, Guido R. van der Werf, and John R. Worden
Earth Syst. Sci. Data, 16, 4325–4350, https://doi.org/10.5194/essd-16-4325-2024, https://doi.org/10.5194/essd-16-4325-2024, 2024
Short summary
Short summary
This study provides an overview of data availability from observation- and inventory-based CH4 emission estimates. It systematically compares them and provides recommendations for robust comparisons, aiming to steadily engage more parties in using observational methods to complement their UNFCCC submissions. Anticipating improvements in atmospheric modelling and observations, future developments need to resolve knowledge gaps in both approaches and to better quantify remaining uncertainty.
Federico Mori, Giuseppe Naso, Amerigo Mendicelli, Giancarlo Ciotoli, Chiara Varone, and Massimiliano Moscatelli
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-104, https://doi.org/10.5194/essd-2024-104, 2024
Preprint withdrawn
Short summary
Short summary
Our research introduces an unmatched dataset of 15,000 shear wave velocity (Vs) profiles from the Italian Seismic Microzonation Database, aimed at dissecting uncertainties to refine seismic hazard analyses. By scrutinizing Vs variations within diverse seismic microzones, we seek to elevate the precision of seismic risk assessments. The study underscores the critical importance of understanding Vs and its uncertainties, showcasing our commitment to advancing seismic hazard comprehension.
Magdalena Pühl, Anke Roiger, Alina Fiehn, Alan M. Gorchov Negron, Eric A. Kort, Stefan Schwietzke, Ignacio Pisso, Amy Foulds, James Lee, James L. France, Anna E. Jones, Dave Lowry, Rebecca E. Fisher, Langwen Huang, Jacob Shaw, Prudence Bateson, Stephen Andrews, Stuart Young, Pamela Dominutti, Tom Lachlan-Cope, Alexandra Weiss, and Grant Allen
Atmos. Chem. Phys., 24, 1005–1024, https://doi.org/10.5194/acp-24-1005-2024, https://doi.org/10.5194/acp-24-1005-2024, 2024
Short summary
Short summary
In April–May 2019 we carried out an airborne field campaign in the southern North Sea with the aim of studying methane emissions of offshore gas installations. We determined methane emissions from elevated methane measured downstream of the sampled installations. We compare our measured methane emissions with estimated methane emissions from national and global annual inventories. As a result, we find inconsistencies of inventories and large discrepancies between measurements and inventories.
Hossein Maazallahi, Antonio Delre, Charlotte Scheutz, Anders M. Fredenslund, Stefan Schwietzke, Hugo Denier van der Gon, and Thomas Röckmann
Atmos. Meas. Tech., 16, 5051–5073, https://doi.org/10.5194/amt-16-5051-2023, https://doi.org/10.5194/amt-16-5051-2023, 2023
Short summary
Short summary
Measurement methods are increasingly deployed to verify reported methane emissions of gas leaks. This study describes unique advantages and limitations of three methods. Two methods are rapidly deployed, but uncertainties and biases exist for some leak locations. In contrast, the suction method could accurately determine leak rates in principle. However, this method, which provides data for the German emission inventory, creates an overall low bias in our study due to non-random site selection.
Foteini Stavropoulou, Katarina Vinković, Bert Kers, Marcel de Vries, Steven van Heuven, Piotr Korbeń, Martina Schmidt, Julia Wietzel, Pawel Jagoda, Jaroslav M. Necki, Jakub Bartyzel, Hossein Maazallahi, Malika Menoud, Carina van der Veen, Sylvia Walter, Béla Tuzson, Jonas Ravelid, Randulph Paulo Morales, Lukas Emmenegger, Dominik Brunner, Michael Steiner, Arjan Hensen, Ilona Velzeboer, Pim van den Bulk, Hugo Denier van der Gon, Antonio Delre, Maklawe Essonanawe Edjabou, Charlotte Scheutz, Marius Corbu, Sebastian Iancu, Denisa Moaca, Alin Scarlat, Alexandru Tudor, Ioana Vizireanu, Andreea Calcan, Magdalena Ardelean, Sorin Ghemulet, Alexandru Pana, Aurel Constantinescu, Lucian Cusa, Alexandru Nica, Calin Baciu, Cristian Pop, Andrei Radovici, Alexandru Mereuta, Horatiu Stefanie, Alexandru Dandocsi, Bas Hermans, Stefan Schwietzke, Daniel Zavala-Araiza, Huilin Chen, and Thomas Röckmann
Atmos. Chem. Phys., 23, 10399–10412, https://doi.org/10.5194/acp-23-10399-2023, https://doi.org/10.5194/acp-23-10399-2023, 2023
Short summary
Short summary
In this study, we quantify CH4 emissions from onshore oil production sites in Romania at source and facility level using a combination of ground- and drone-based measurement techniques. We show that the total CH4 emissions in our studied areas are much higher than the emissions reported to UNFCCC, and up to three-quarters of the detected emissions are related to operational venting. Our results suggest that oil and gas production infrastructure in Romania holds a massive mitigation potential.
Petr Brož, Dorothy Oehler, Adriano Mazzini, Ernst Hauber, Goro Komatsu, Giuseppe Etiope, and Vojtěch Cuřín
Earth Surf. Dynam., 11, 633–661, https://doi.org/10.5194/esurf-11-633-2023, https://doi.org/10.5194/esurf-11-633-2023, 2023
Short summary
Short summary
The aim of this review is to summarise the current knowledge about mud-volcano-like structures on Mars, address critical aspects of the process of sedimentary volcanism, identify key open questions, and point to areas where further research is needed to understand this phenomenon and its importance in the Red Planet's geological evolution.
Andreas Forstmaier, Jia Chen, Florian Dietrich, Juan Bettinelli, Hossein Maazallahi, Carsten Schneider, Dominik Winkler, Xinxu Zhao, Taylor Jones, Carina van der Veen, Norman Wildmann, Moritz Makowski, Aydin Uzun, Friedrich Klappenbach, Hugo Denier van der Gon, Stefan Schwietzke, and Thomas Röckmann
Atmos. Chem. Phys., 23, 6897–6922, https://doi.org/10.5194/acp-23-6897-2023, https://doi.org/10.5194/acp-23-6897-2023, 2023
Short summary
Short summary
Large cities emit greenhouse gases which contribute to global warming. In this study, we measured the release of one important green house gas, methane, in Hamburg. Multiple sources that contribute to methane emissions were located and quantified. Methane sources were found to be mainly caused by human activity (e.g., by release from oil and gas refineries). Moreover, potential natural sources have been located, such as the Elbe River and lakes.
Ana Maria Roxana Petrescu, Chunjing Qiu, Matthew J. McGrath, Philippe Peylin, Glen P. Peters, Philippe Ciais, Rona L. Thompson, Aki Tsuruta, Dominik Brunner, Matthias Kuhnert, Bradley Matthews, Paul I. Palmer, Oksana Tarasova, Pierre Regnier, Ronny Lauerwald, David Bastviken, Lena Höglund-Isaksson, Wilfried Winiwarter, Giuseppe Etiope, Tuula Aalto, Gianpaolo Balsamo, Vladislav Bastrikov, Antoine Berchet, Patrick Brockmann, Giancarlo Ciotoli, Giulia Conchedda, Monica Crippa, Frank Dentener, Christine D. Groot Zwaaftink, Diego Guizzardi, Dirk Günther, Jean-Matthieu Haussaire, Sander Houweling, Greet Janssens-Maenhout, Massaer Kouyate, Adrian Leip, Antti Leppänen, Emanuele Lugato, Manon Maisonnier, Alistair J. Manning, Tiina Markkanen, Joe McNorton, Marilena Muntean, Gabriel D. Oreggioni, Prabir K. Patra, Lucia Perugini, Isabelle Pison, Maarit T. Raivonen, Marielle Saunois, Arjo J. Segers, Pete Smith, Efisio Solazzo, Hanqin Tian, Francesco N. Tubiello, Timo Vesala, Guido R. van der Werf, Chris Wilson, and Sönke Zaehle
Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, https://doi.org/10.5194/essd-15-1197-2023, 2023
Short summary
Short summary
This study updates the state-of-the-art scientific overview of CH4 and N2O emissions in the EU27 and UK in Petrescu et al. (2021a). Yearly updates are needed to improve the different respective approaches and to inform on the development of formal verification systems. It integrates the most recent emission inventories, process-based model and regional/global inversions, comparing them with UNFCCC national GHG inventories, in support to policy to facilitate real-time verification procedures.
Jacob T. Shaw, Amy Foulds, Shona Wilde, Patrick Barker, Freya A. Squires, James Lee, Ruth Purvis, Ralph Burton, Ioana Colfescu, Stephen Mobbs, Samuel Cliff, Stéphane J.-B. Bauguitte, Stuart Young, Stefan Schwietzke, and Grant Allen
Atmos. Chem. Phys., 23, 1491–1509, https://doi.org/10.5194/acp-23-1491-2023, https://doi.org/10.5194/acp-23-1491-2023, 2023
Short summary
Short summary
Flaring is used by the oil and gas sector to dispose of unwanted natural gas or for safety. However, few studies have assessed the efficiency with which the gas is combusted. We sampled flaring emissions from offshore facilities in the North Sea. Average measured flaring efficiencies were ~ 98 % but with a skewed distribution, including many flares of lower efficiency. NOx and ethane emissions were also measured. Inefficient flaring practices could be a target for mitigating carbon emissions.
Bryce F. J. Kelly, Xinyi Lu, Stephen J. Harris, Bruno G. Neininger, Jorg M. Hacker, Stefan Schwietzke, Rebecca E. Fisher, James L. France, Euan G. Nisbet, David Lowry, Carina van der Veen, Malika Menoud, and Thomas Röckmann
Atmos. Chem. Phys., 22, 15527–15558, https://doi.org/10.5194/acp-22-15527-2022, https://doi.org/10.5194/acp-22-15527-2022, 2022
Short summary
Short summary
This study explores using the composition of methane of in-flight atmospheric air samples for greenhouse gas inventory verification. The air samples were collected above one of the largest coal seam gas production regions in the world. Adjacent to these gas fields are coal mines, Australia's largest cattle feedlot, and over 1 million grazing cattle. The results are also used to identify methane mitigation opportunities.
Sourish Basu, Xin Lan, Edward Dlugokencky, Sylvia Michel, Stefan Schwietzke, John B. Miller, Lori Bruhwiler, Youmi Oh, Pieter P. Tans, Francesco Apadula, Luciana V. Gatti, Armin Jordan, Jaroslaw Necki, Motoki Sasakawa, Shinji Morimoto, Tatiana Di Iorio, Haeyoung Lee, Jgor Arduini, and Giovanni Manca
Atmos. Chem. Phys., 22, 15351–15377, https://doi.org/10.5194/acp-22-15351-2022, https://doi.org/10.5194/acp-22-15351-2022, 2022
Short summary
Short summary
Atmospheric methane (CH4) has been growing steadily since 2007 for reasons that are not well understood. Here we determine sources of methane using a technique informed by atmospheric measurements of CH4 and its isotopologue 13CH4. Measurements of 13CH4 provide for better separation of microbial, fossil, and fire sources of methane than CH4 measurements alone. Compared to previous assessments such as the Global Carbon Project, we find a larger microbial contribution to the post-2007 increase.
Amy Foulds, Grant Allen, Jacob T. Shaw, Prudence Bateson, Patrick A. Barker, Langwen Huang, Joseph R. Pitt, James D. Lee, Shona E. Wilde, Pamela Dominutti, Ruth M. Purvis, David Lowry, James L. France, Rebecca E. Fisher, Alina Fiehn, Magdalena Pühl, Stéphane J. B. Bauguitte, Stephen A. Conley, Mackenzie L. Smith, Tom Lachlan-Cope, Ignacio Pisso, and Stefan Schwietzke
Atmos. Chem. Phys., 22, 4303–4322, https://doi.org/10.5194/acp-22-4303-2022, https://doi.org/10.5194/acp-22-4303-2022, 2022
Short summary
Short summary
We measured CH4 emissions from 21 offshore oil and gas facilities in the Norwegian Sea in 2019. Measurements compared well with operator-reported emissions but were greatly underestimated when compared with a 2016 global fossil fuel inventory. This study demonstrates the need for up-to-date and accurate inventories for use in research and policy and the important benefits of best-practice reporting methods by operators. Airborne measurements are an effective tool to validate such inventories.
Xinyi Lu, Stephen J. Harris, Rebecca E. Fisher, James L. France, Euan G. Nisbet, David Lowry, Thomas Röckmann, Carina van der Veen, Malika Menoud, Stefan Schwietzke, and Bryce F. J. Kelly
Atmos. Chem. Phys., 21, 10527–10555, https://doi.org/10.5194/acp-21-10527-2021, https://doi.org/10.5194/acp-21-10527-2021, 2021
Short summary
Short summary
Many coal seam gas (CSG) facilities in the Surat Basin, Australia, are adjacent to other sources of methane, including agricultural, urban, and natural seeps. This makes it challenging to estimate the amount of methane being emitted into the atmosphere from CSG facilities. This research demonstrates that measurements of the carbon and hydrogen stable isotopic composition of methane can distinguish between and apportion methane emissions from CSG facilities, cattle, and many other sources.
Hossein Maazallahi, Julianne M. Fernandez, Malika Menoud, Daniel Zavala-Araiza, Zachary D. Weller, Stefan Schwietzke, Joseph C. von Fischer, Hugo Denier van der Gon, and Thomas Röckmann
Atmos. Chem. Phys., 20, 14717–14740, https://doi.org/10.5194/acp-20-14717-2020, https://doi.org/10.5194/acp-20-14717-2020, 2020
Short summary
Short summary
Methane accounts for ∼ 25 % of current climate warming. The current lack of methane measurements is a barrier for tracking major sources, which are key for near-term climate mitigation. We use mobile measurements to identify and quantify methane emission sources in Utrecht (NL) and Hamburg (DE) with a focus on natural gas pipeline leaks. The measurements resulted in fixing the major leaks by the local utility, but coordinated efforts are needed at national levels for further emission reductions.
Cited articles
Aliyev, A. A., Guliyev, I. S., and Feyzullayev, A. A.: What do we know about
mud volcanoes Azerbaijan National Academy of Sciences Geology Institute,
Qoliaf qrup QSC, Baku, 206 pp., 2012.
Berchet, A., Bousquet, P., Pison, I., Locatelli, R., Chevallier, F., Paris,
J.-D., Dlugokencky, E. J., Laurila, T., Hatakka, J., Viisanen, Y., Worthy, D.
E. J., Nisbet, E., Fisher, R., France, J., Lowry, D., Ivakhov, V., and
Hermansen, O.: Atmospheric constraints on the methane emissions from the East
Siberian Shelf, Atmos. Chem. Phys., 16, 4147–4157,
https://doi.org/10.5194/acp-16-4147-2016, 2016.
Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Frankenberg, C.,
Scheepmaker, R. A., Dlugokencky, E., Wofsy, S. C., Kort, E. A., Sweeney, C.,
Schuck, T., Brenninkmeijer, C., Chen, H., Beck, V., and Gerbig, C.:
Atmospheric CH4 in the first decade of the 21st century: Inverse
modeling analysis using SCIAMACHY satellite retrievals and NOAA surface
measurements, J. Geophys. Res.-Atmos., 118, 7350–7369,
https://doi.org/10.1002/jgrd.50480, 2013.
Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D.
A., Prigent, C., Van der Werf, G. R., Peylin, P., Brunke, E. G., Carouge,
C., Langenfelds, R. L., Lathiere, J., Papa, F., Ramonet, M., Schmidt, M.,
Steele, L. P., Tyler, S. C., and White, J.: Contribution of anthropogenic
and natural sources to atmospheric methane variability, Nature, 443,
439–443, 2006.
CGG: Organic Geochemistry Data from FRogi and Fluid Features Database,
available at:
https://www.cgg.com/en/What-We-Do/Multi-Client-Data/Geological/Robertson-Geochemistry
(last access: 30 November 2018), 2015.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J.,
Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le
Quéré, C., Myneni, R. B., Piao, S., and Thornton, P.: Carbon and
Other Biogeochemical Cycles, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of
IPCC, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen,
S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, UK, 2013.
Clarke, R. H. and Cleverly R. W.: Leakage and post-accumulation migration,
in: Petroleum migration, edited by: England, W. A. and Fleet, A. J., Geol. Soc. Sp., London, 59, 265–271, 1991.
Dalsøren, S. B., Myhre, G., Hodnebrog, Ø., Myhre, C. L., Stohl, A.,
Pisso, I., Schwietzke, S., Höglund-Isaksson, L., Helmig, D., Reimann, S., Sauvage, S., Schmidbauer, N., Read, K. A., Carpenter, J. J., Lewis, A. C.,
Punjabi, S., and Wallasch, M.: Discrepancy between simulated and observed
ethane and propane levels explained by underestimated fossil emissions, Nat.
Geosci., 11, 178–184, 2018.
Dimitrov, L.: Mud volcanoes – the most important pathway for degassing
deeply buried sediments, Earth-Sci. Rev., 59, 49–76, 2002.
Dimitrov, L.: Mud volcanoes – a significant source of atmospheric methane,
Geo-Mar. Lett., 23, 155–161, 2003.
Dyonisius, M., Petrenko, V. V., Smith, A. M., Beck, J., Schmitt, J., Menking,
J. A., Shackleton, S. A., Hmiel, B., Vimont, I., Hua, Q., Yang, B.,
Seth, B., Bock, M., Beaudette, R., Harth, C. M., Baggenstos, D., Bauska,
T. K., Rhodes, R., Brook, E., Fischer, H., Severinghaus, J. P., and
Weiss, R. F.: The contribution of geologic emissions, thawing permafrost and
methane hydrates to the global methane budget – perspective from ice core
records, AGU Fall Meeting 2018, Abstract, 2018.
EDGARv4.2: European Commission, Joint Research Centre (JRC)/Netherlands
Environmental Assessment Agency (PBL), Emission Databse for Global
Atmospheric Research (EDGAR), release version 4.2, available at: http://edgar.jrc.ec.europa.eu
(last access: 30 November 2018), 2011.
Etiope, G.: Mud volcanoes and microseepage: the forgotten geophysical
components of atmospheric methane budget, Ann. Geophys., 48, 1–7,
2005.
Etiope, G.: Methane uncovered, Nat. Geosci., 5, 373–374, 2012.
Etiope, G.: Natural Gas Seepage, The Earth's hydrocarbon degassing,
Springer, Switzerland, 199 pp., 2015.
Etiope, G.: Natural Gas, Encyclopedia of Geochemistry, Earth Sciences
Series, Springer, Switzerland, 1–5, 2017.
Etiope, G. and Klusman, R. W.: Geologic emissions of methane to the
atmosphere, Chemosphere, 49, 777–789, 2002.
Etiope, G. and Milkov, A. V.: A new estimate of global methane flux from
onshore and shallow submarine mud volcanoes to the atmosphere, Environ.
Geol., 46, 997–1002, 2004.
Etiope, G. and Ciccioli, P.: Earth's degassing – A missing ethane and
propane source, Science, 323, p. 468, https://doi.org/10.1126/science.1165904, 2009.
Etiope, G. and Klusman, R. W.: Microseepage in drylands: flux and
implications in the global atmospheric source/sink budget of methane, Global.
Planet. Change, 72, 265–274, 2010.
Etiope, G. and Sherwood Lollar, B.: Abiotic methane on Earth, Rev. Geophys.,
51, 276–299, 2013.
Etiope, G. and Schoell, M.: Abiotic gas: atypical but not rare, Elements, 10,
291–296, 2014.
Etiope, G., Papatheodorou, G., Christodoulou, D., Ferentinos, G., Sokos, E.,
and Favali P.: Methane and hydrogen sulfide seepage in the NW Peloponnesus
petroliferous basin (Greece): origin and geohazard, Am. Assoc. Pet. Geol.
Bull., 90, 701–713, 2006.
Etiope, G., Fridriksson, T., Italiano, F., Winiwarter, W., and Theloke, J.:
Natural emissions of methane from geothermal and volcanic sources in Europe,
J. Volcanol. Geoth. Res., 165, 76–86, 2007.
Etiope, G., Lassey, K. R., Klusman, R. W., and Boschi, E.: Reappraisal of the
fossil methane budget and related emission from geologic sources, Geophys.
Res. Lett., 35, L09307, https://doi.org/10.1029/2008GL033623, 2008a.
Etiope, G., Milkov, A. V., and Derbyshire, E.: Did geologic emissions of
methane play any role in Quaternary climate change?, Global Planet. Change,
61, 79–88, 2008b.
Etiope, G., Feyzullayev, A., and Baciu, C. L.: Terrestrial methane seeps and
mud volcanoes: a global perspective of gas origin, Mar. Petrol. Geol., 26,
333–344, 2009.
Etiope, G., Nakada, R., Tanaka, K., and Yoshida, N.: Gas seepage from
Tokamachi mud volcanoes, onshore Niigata Basin (Japan): origin, post-genetic
alterations and CH4-CO2 fluxes, Appl. Geochem., 26,
348–359, 2011.
Etiope, G., Samardžić, N., Grassa, F., Hrvatović, H.,
Miošić, N., and Skopljak, F.: Methane and hydrogen in hyperalkaline
groundwaters of the serpentinized Dinaride ophiolite belt, Bosnia and
Herzegovina, Appl. Geochem., 84, 286–296, 2017.
Etiope, G., Ciotoli, G., Schwietzke, S., and Schoell, M.: Global geological
CH4 emission grid files, https://doi.org/10.25925/4j3f-he27, 2018.
Famiglietti, J. S.: The global groundwater crisis, Nat. Clim. Change, 4,
945–948, 2014.
Finko, E. A.: Global faults layer from ArcAtlas (ESRI), edited by: Liouty, A.
A., available at:
http://www.arcgis.com/home/item.html?id=a5496011fa494b99810e4deb5c618ae2#overview
(last access: 30 November 2018), 2014.
Fleicher, P., Orsi, T. H., Richardson, M. D., and Anderson, A. L.:
Distribution of free gas in marine sediments: a global overview, Geo-Marine
Lett., 21, 103–122, 2001.
Grubbs, F.: Procedures for detecting outlying observations in
samples, Technometrics, 11, 1–21, 1969.
JRC/PBL – European Commission, Joint Research Centre (JRC)/Netherlands
Environmental Assessment Agency (PBL): Emission Database for Global
Atmospheric Research (EDGAR), Release EDGARv4.3, available at: http://edgar.jrc.ec.europa.eu
(last access: 30 November 2018), 2017.
Judd, A. G.: Natural seabed seeps as sources of atmospheric methane,
Environ. Geol., 46, 988–996, 2004.
Judd, A. G. and Hovland, M.: Seabed Fluid Flow: Impact on Geology, Biology
and the Marine Environment, Cambridge University Press, Cambridge, 2007.
Klusman, R. W.: Rate measurements and detection of gas microseepage to the
atmosphere from an enhanced oil recovery/sequestration project, Rangely,
Colorado, USA, Appl. Geochem., 18, 1825–1838, 2003.
Klusman, R. W.: Baseline studies of surface gas exchange and soil–gas
composition in preparation for CO2 sequestration research: Teapot Dome,
Wyoming USA, Am. Assoc. Pet. Geol. Bull. 89, 981–1003, 2005.
Klusman, R. W., Jakel, M. E., and LeRoy, M. P.: Does microseepage of methane
and light hydrocarbons contribute to the atmospheric budget of methane and to
global climate change?, Assoc. Petrol. Geochem. Explor. Bull., 11, 1–55,
1998.
Klusman, R. W., Leopold, M. E., and LeRoy, M. P.: Seasonal variation in
methane fluxes from sedimentary basins to the atmosphere: results from
chamber measurements and modeling of transport from deep sources. J.
Geophys. Res., 105D, 24661–24670, 2000.
Kvenvolden, K. A. and Rogers, B. W.: Gaia's breath global methane
exhalations, Mar. Petrol. Geol., 22, 579–590, 2005.
Kvenvolden, K. A., Lorenson, T. D., and Reeburgh, W.: Attention turns to
naturally occurring methane seepage, EOS, 82, p. 457, 2001.
Lacroix, A. V.: Unaccounted-for sources of fossil and isotopically enriched
methane and their contribution to the emissions inventory: a review and
synthesis, Chemosphere, 26, 507–557, 1993.
Lassey, K. R., Lowe, D. C., and Smith, A. M.: The atmospheric cycling of
radiomethane and the “fossil fraction” of the methane source, Atmos. Chem.
Phys., 7, 2141–2149, https://doi.org/10.5194/acp-7-2141-2007, 2007.
Lelieveld, J., Crutzen, P. J., and Dentener, F. J.: Changing concentration,
lifetime and climate forcing of atmospheric methane, Tellus, 50B, 128–150,
1998.
LT Environmental, Inc.: Phase II Raton basin gas seep investigation, Las
animas and Huerfano counties, Colorado, Project #1925 oil and gas
conservation response fund, available at:
http://cogcc.state.co.us/Library/Ratoasin/Phase%20II%20Seep%20Investigation%20Final%20Report.pdf
(last access: 30 November 2018), 2007.
Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Turner, A. J., Weitz, M.,
Wirth, T., Hight, C., DeFigueiredo, M., Desai, M., Schmeltz, R., Hockstad, L.,
Bloom, A. A., Bowman, K. W., Seongeun, J., and Fischer, M. L.: Gridded
national inventory of U.S. methane emissions, Environ. Sci. Technol., 50,
13123–13133, https://doi.org/10.1021/acs.est.6b02878, 2016.
Manga, M., Brumm, M., and Rudolph, M. L.: Earthquake triggering of mud
volcanoes, Mar. Petrol. Geol., 26, 1785–1798, 2009.
Mazzini, A. and Etiope, G.: Mud volcanism: an updated review, Earth Sci.
Rev., 168, 81–112, 2017.
Milkov, A. V. and Etiope, G.: Revised genetic diagrams for natural gases
based on a global dataset of >20 000 samples, Org. Geochem.,
125, 129–120, 2018.
Milkov, A. V., Sassen, R., Apanasovich, T. V., and Dadashev, F. G.: Global
gas flux from mud volcanoes: a significant source of fossil methane in the
atmosphere and the ocean, Geophys. Res. Lett., 30, 1037,
https://doi.org/10.1029/2002GL016358, 2003.
Mogi, K.: Global variation of seismic activity, Tectonophysics, 57, T43–T50,
1979.
Päivi, L., Rød, J. K., and Thieme, N.: Fighting over oil: introducing
a new dataset, Conflict. Manag. Peace, 24, 239–256, 2007.
Petrenko, V. V., Smith, A. M., Schaefer, H., Riedel, K., Brook, E.,
Baggenstos, D., Harth, C., Hua, Q., Buizert, C., Schilt, A., Mitchell, L.,
Bauska, T., Orsi, A., Weiss, R. F., and Severinghaus, J. P.: Minimal
geological methane emissions during the Younger Dryas–Preboreal abrupt
warming event, Nature, 548, 443–446, 2017.
Prather, M., Ehhalt, D., Dentener, F., Derwent, R., Dlugokencky, E., Holland,
E., Isaksen, I., Katima, J., Kirchhoff, V., Matson, P., Midgley, P., and
Wang, M.: Atmospheric chemistry and greenhouse gases, in climate change 2001:
the scientific basis, in: Contribution of Working Group I to the Third
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Houghton, J. T., Ding, Y., Griggs, D. J., Nogeur, M., van der Linden, P.
J., Dai, X., Maskell, K., and Johnson, C. A., Cambridge University Press,
Cambridge, UK, 239–287, 2001.
Sapart, C. J., Monteil, G., Prokopiou, M., van de Wal, R. S. W., Kaplan, J.
O., Sperlich, P., Krumhardt, K. M., van der Veen, C., Houweling, S., Krol,
M. C., Blunier, T., Sowers, T., Martinerie, P., Witrant, E., Dahl-Jensen,
D., and Röckmann, T.: Natural and anthropogenic variations in methane
sources during the past two millennia, Nature 490, 85–88, 2012.
Schwietzke, S., Sherwood, O. A., Bruhwiler, L. M. P., Miller, J. B., Etiope,
G., Dlugokencky, E. J., Michel, S. E., Arling, V. A., Vaughn, B. H., White,
J. W. C., and Tan, P. P.: Upward revision of global fossil fuel methane
emissions based on isotope database, Nature, 538, 88–91, 2016.
Sciarra, A., Cinti, D., Pizzino, L., Procesi, M., Voltattorni, N., Mecozzi,
S., and Quattrocchi, F.: Geochemistry of shallow aquifers and soil gas
surveys in a feasibility study at the Rivara natural gas storage site (Po
Plain, Northern Italy), Appl. Geochem., 34, 3–22, 2013.
Sherwood, O. A., Schwietzke, S., Arling, V. A., and Etiope, G.: Global
Inventory of Gas Geochemistry Data from Fossil Fuel, Microbial and Burning
Sources, version 2017, Earth Syst. Sci. Data, 9, 639–656,
https://doi.org/10.5194/essd-9-639-2017, 2017.
Solomon, E. A., Kastner, M., MacDonald, I. R., and Leifer, I.: Considerable
methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of
Mexico, Nat. Geosci., 2, 561–565, 2009.
Tang, J. H., Bao, Z. Y., Xiang, W., and Guo, Q. H.: Daily variation of
natural emission of methane to the atmosphere and source identification in
the Luntai fault region of the Yakela condensed oil/gas field in the Tarim
Basin, Xinjiang, China, Acta Geol. Sin., 81, 801–840, 2007.
Tang, J. H., Yin, H. Y., Wang, G. J., and Chen, Y. Y.: Methane microseepage
from different sectors of the Yakela condensed gas field in Tarim Basin,
Xinjiang, China, Appl. Geochem., 25, 1257–1264, 2010.
Tang, J., Xu, Y., Wang, G., Etiope, G., Han, W., Yao, Z., and Huang, J.:
Microseepage of methane to the atmosphere from the Dawanqi oil-gas field,
Tarim Basin, China. J. Geoph. Res.-Atmos., 122, 4353–4363, 2017.
Thornton, B. F., Geibel, M. C., Crill, P. M., Humborg, C., and Mörth,
C.-M.: Methane fluxes from the sea to the atmosphere across the Siberian
shelf seas, Geophys. Res. Lett., 43, 5869–5877, https://doi.org/10.1002/2016GL068977,
2016.
Welhan, J. A.: Origins of methane in hydrothermal systems, Chem. Geol., 71,
183–198, 1988.
Short summary
We developed the first global maps of natural geological CH4 flux and isotopic values which can be used for new atmospheric CH4 modelling. The maps, based on updated, measured and theoretically estimated data, show that the highest geo-CH4 emissions are located in the Northern Hemisphere (N. America, Caspian region, Europe, Siberian Arctic Shelf), and that geo-CH4 is less 13C-enriched than what has been assumed so far in other studies. Other CH4 sources can now be estimated with higher accuracy.
We developed the first global maps of natural geological CH4 flux and isotopic values which can...
Altmetrics
Final-revised paper
Preprint