Articles | Volume 10, issue 2
Earth Syst. Sci. Data, 10, 951–968, 2018
https://doi.org/10.5194/essd-10-951-2018
Earth Syst. Sci. Data, 10, 951–968, 2018
https://doi.org/10.5194/essd-10-951-2018
Review article
01 Jun 2018
Review article | 01 Jun 2018

Historical gridded reconstruction of potential evapotranspiration for the UK

Maliko Tanguy et al.

Related authors

Historic hydrological droughts 1891–2015: systematic characterisation for a diverse set of catchments across the UK
Lucy J. Barker, Jamie Hannaford, Simon Parry, Katie A. Smith, Maliko Tanguy, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 23, 4583–4602, https://doi.org/10.5194/hess-23-4583-2019,https://doi.org/10.5194/hess-23-4583-2019, 2019
Short summary
A multi-objective ensemble approach to hydrological modelling in the UK: an application to historic drought reconstruction
Katie A. Smith, Lucy J. Barker, Maliko Tanguy, Simon Parry, Shaun Harrigan, Tim P. Legg, Christel Prudhomme, and Jamie Hannaford
Hydrol. Earth Syst. Sci., 23, 3247–3268, https://doi.org/10.5194/hess-23-3247-2019,https://doi.org/10.5194/hess-23-3247-2019, 2019
Short summary
Benchmarking ensemble streamflow prediction skill in the UK
Shaun Harrigan, Christel Prudhomme, Simon Parry, Katie Smith, and Maliko Tanguy
Hydrol. Earth Syst. Sci., 22, 2023–2039, https://doi.org/10.5194/hess-22-2023-2018,https://doi.org/10.5194/hess-22-2023-2018, 2018
Short summary
CEH-GEAR: 1 km resolution daily and monthly areal rainfall estimates for the UK for hydrological and other applications
V. D. J. Keller, M. Tanguy, I. Prosdocimi, J. A. Terry, O. Hitt, S. J. Cole, M. Fry, D. G. Morris, and H. Dixon
Earth Syst. Sci. Data, 7, 143–155, https://doi.org/10.5194/essd-7-143-2015,https://doi.org/10.5194/essd-7-143-2015, 2015
Short summary

Related subject area

Hydrology
QUADICA: water QUAlity, DIscharge and Catchment Attributes for large-sample studies in Germany
Pia Ebeling, Rohini Kumar, Stefanie R. Lutz, Tam Nguyen, Fanny Sarrazin, Michael Weber, Olaf Büttner, Sabine Attinger, and Andreas Musolff
Earth Syst. Sci. Data, 14, 3715–3741, https://doi.org/10.5194/essd-14-3715-2022,https://doi.org/10.5194/essd-14-3715-2022, 2022
Short summary
A global terrestrial evapotranspiration product based on the three-temperature model with fewer input parameters and no calibration requirement
Leiyu Yu, Guo Yu Qiu, Chunhua Yan, Wenli Zhao, Zhendong Zou, Jinshan Ding, Longjun Qin, and Yujiu Xiong
Earth Syst. Sci. Data, 14, 3673–3693, https://doi.org/10.5194/essd-14-3673-2022,https://doi.org/10.5194/essd-14-3673-2022, 2022
Short summary
A new snow depth data set over northern China derived using GNSS interferometric reflectometry from a continuously operating network (GSnow-CHINA v1.0, 2013–2022)
Wei Wan, Jie Zhang, Liyun Dai, Hong Liang, Ting Yang, Baojian Liu, Zhizhou Guo, Heng Hu, and Limin Zhao
Earth Syst. Sci. Data, 14, 3549–3571, https://doi.org/10.5194/essd-14-3549-2022,https://doi.org/10.5194/essd-14-3549-2022, 2022
Short summary
Microwave radiometry experiment for snow in Altay, China: time series of in situ data for electromagnetic and physical features of snowpack
Liyun Dai, Tao Che, Yang Zhang, Zhiguo Ren, Junlei Tan, Meerzhan Akynbekkyzy, Lin Xiao, Shengnan Zhou, Yuna Yan, Yan Liu, Hongyi Li, and Lifu Wang
Earth Syst. Sci. Data, 14, 3509–3530, https://doi.org/10.5194/essd-14-3509-2022,https://doi.org/10.5194/essd-14-3509-2022, 2022
Short summary
An integrated dataset of daily lake surface water temperature over the Tibetan Plateau
Linan Guo, Hongxing Zheng, Yanhong Wu, Lanxin Fan, Mengxuan Wen, Junsheng Li, Fangfang Zhang, Liping Zhu, and Bing Zhang
Earth Syst. Sci. Data, 14, 3411–3422, https://doi.org/10.5194/essd-14-3411-2022,https://doi.org/10.5194/essd-14-3411-2022, 2022
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Fao irrigation and drainage paper 56 – crop evapotranspiration – guidelines for computing crop water requirements, Rome, 1998. 
Aràndiga, F., Donat, R., and Santágueda, M.: The PCHIP subdivision scheme, Appl. Math. Comput., 272, 28–40, https://doi.org/10.1016/j.amc.2015.07.071, 2016. 
Bai, P., Liu, X., Yang, T., Li, F., Liang, K., Hu, S., and Liu, C.: Assessment of the Influences of Different Potential Evapotranspiration Inputs on the Performance of Monthly Hydrological Models under Different Climatic Conditions, J. Hydrometeorol., 17, 2259–2274, doi10.1175/JHM-D-15-0202.1, 2016. 
Balkovič, J., van der Velde, M., Schmid, E., Skalský, R., Khabarov, N., Obersteiner, M., Stürmer, B., and Xiong, W.: Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation, Agr. Syst., 120, 61–75, https://doi.org/10.1016/j.agsy.2013.05.008, 2013. 
Barik, M. G.: Remote Sensing-based Estimates of Potential Evapotranspiration for Hydrologic Modeling in the Upper Colorado River Basin Region, PhD, Civil Engineering 0300 UCLA, University of California, Los Angeles, 146 pp., 2014. 
Download
Short summary
Potential evapotranspiration (PET) is necessary input data for most hydrological models, used to simulate river flows. To reconstruct PET prior to the 1960s, simplified methods are needed because of lack of climate data required for complex methods. We found that the McGuinness–Bordne PET equation, which only needs temperature as input data, works best for the UK provided it is calibrated for local conditions. This method was used to produce a 5 km gridded PET dataset for the UK for 1891–2015.