Articles | Volume 10, issue 2
https://doi.org/10.5194/essd-10-951-2018
https://doi.org/10.5194/essd-10-951-2018
Review article
 | 
01 Jun 2018
Review article |  | 01 Jun 2018

Historical gridded reconstruction of potential evapotranspiration for the UK

Maliko Tanguy, Christel Prudhomme, Katie Smith, and Jamie Hannaford

Related authors

Optimising ensemble streamflow predictions with bias correction and data assimilation techniques
Maliko Tanguy, Michael Eastman, Amulya Chevuturi, Eugene Magee, Elizabeth Cooper, Robert H. B. Johnson, Katie Facer-Childs, and Jamie Hannaford
Hydrol. Earth Syst. Sci., 29, 1587–1614, https://doi.org/10.5194/hess-29-1587-2025,https://doi.org/10.5194/hess-29-1587-2025, 2025
Short summary
Distribution, trends, and drivers of flash droughts in the United Kingdom
Iván Noguera, Jamie Hannaford, and Maliko Tanguy
Hydrol. Earth Syst. Sci., 29, 1295–1317, https://doi.org/10.5194/hess-29-1295-2025,https://doi.org/10.5194/hess-29-1295-2025, 2025
Short summary
Have river flow droughts become more severe? A review of the evidence from the UK – a data-rich temperate environment
Jamie Hannaford, Stephen Turner, Amulya Chevuturi, Wilson Chan, Lucy J. Barker, Maliko Tanguy, Simon Parry, and Stuart Allen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-293,https://doi.org/10.5194/hess-2024-293, 2024
Revised manuscript accepted for HESS
Short summary
Added value of seasonal hindcasts to create UK hydrological drought storylines
Wilson C. H. Chan, Nigel W. Arnell, Geoff Darch, Katie Facer-Childs, Theodore G. Shepherd, and Maliko Tanguy
Nat. Hazards Earth Syst. Sci., 24, 1065–1078, https://doi.org/10.5194/nhess-24-1065-2024,https://doi.org/10.5194/nhess-24-1065-2024, 2024
Short summary
Divergent future drought projections in UK river flows and groundwater levels
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024,https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary

Related subject area

Hydrology
One year of high-frequency monitoring of groundwater physico-chemical parameters in the Weierbach experimental catchment, Luxembourg
Karl Nicolaus van Zweel, Laurent Gourdol, Jean François Iffly, Loïc Léonard, François Barnich, Laurent Pfister, Erwin Zehe, and Christophe Hissler
Earth Syst. Sci. Data, 17, 2217–2229, https://doi.org/10.5194/essd-17-2217-2025,https://doi.org/10.5194/essd-17-2217-2025, 2025
Short summary
Discrete global grid system-based flow routing datasets in the Amazon and Yukon basins
Chang Liao, Darren Engwirda, Matthew G. Cooper, Mingke Li, and Yilin Fang
Earth Syst. Sci. Data, 17, 2035–2062, https://doi.org/10.5194/essd-17-2035-2025,https://doi.org/10.5194/essd-17-2035-2025, 2025
Short summary
GRILSS: opening the gateway to global reservoir sedimentation data curation
Sanchit Minocha and Faisal Hossain
Earth Syst. Sci. Data, 17, 1743–1759, https://doi.org/10.5194/essd-17-1743-2025,https://doi.org/10.5194/essd-17-1743-2025, 2025
Short summary
A worldwide event-based debris flow barrier dam dataset from 1800 to 2023
Haiguang Cheng, Kaiheng Hu, Shuang Liu, Xiaopeng Zhang, Hao Li, Qiyuan Zhang, Lan Ning, Manish Raj Gouli, Pu Li, Anna Yang, Peng Zhao, Junyu Liu, and Li Wei
Earth Syst. Sci. Data, 17, 1573–1593, https://doi.org/10.5194/essd-17-1573-2025,https://doi.org/10.5194/essd-17-1573-2025, 2025
Short summary
CAMELS-DK: hydrometeorological time series and landscape attributes for 3330 Danish catchments with streamflow observations from 304 gauged stations
Jun Liu, Julian Koch, Simon Stisen, Lars Troldborg, Anker Lajer Højberg, Hans Thodsen, Mark F. T. Hansen, and Raphael J. M. Schneider
Earth Syst. Sci. Data, 17, 1551–1572, https://doi.org/10.5194/essd-17-1551-2025,https://doi.org/10.5194/essd-17-1551-2025, 2025
Short summary

Cited articles

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Fao irrigation and drainage paper 56 – crop evapotranspiration – guidelines for computing crop water requirements, Rome, 1998. 
Aràndiga, F., Donat, R., and Santágueda, M.: The PCHIP subdivision scheme, Appl. Math. Comput., 272, 28–40, https://doi.org/10.1016/j.amc.2015.07.071, 2016. 
Bai, P., Liu, X., Yang, T., Li, F., Liang, K., Hu, S., and Liu, C.: Assessment of the Influences of Different Potential Evapotranspiration Inputs on the Performance of Monthly Hydrological Models under Different Climatic Conditions, J. Hydrometeorol., 17, 2259–2274, doi10.1175/JHM-D-15-0202.1, 2016. 
Balkovič, J., van der Velde, M., Schmid, E., Skalský, R., Khabarov, N., Obersteiner, M., Stürmer, B., and Xiong, W.: Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation, Agr. Syst., 120, 61–75, https://doi.org/10.1016/j.agsy.2013.05.008, 2013. 
Barik, M. G.: Remote Sensing-based Estimates of Potential Evapotranspiration for Hydrologic Modeling in the Upper Colorado River Basin Region, PhD, Civil Engineering 0300 UCLA, University of California, Los Angeles, 146 pp., 2014. 
Download
Short summary
Potential evapotranspiration (PET) is necessary input data for most hydrological models, used to simulate river flows. To reconstruct PET prior to the 1960s, simplified methods are needed because of lack of climate data required for complex methods. We found that the McGuinness–Bordne PET equation, which only needs temperature as input data, works best for the UK provided it is calibrated for local conditions. This method was used to produce a 5 km gridded PET dataset for the UK for 1891–2015.
Share
Altmetrics
Final-revised paper
Preprint