Articles | Volume 10, issue 2
https://doi.org/10.5194/essd-10-857-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-10-857-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings
Institut für Energie- und Klimaforschung – Stratosphäre (IEK–7),
Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Quang Thai Trinh
Institut für Energie- und Klimaforschung – Stratosphäre (IEK–7),
Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Peter Preusse
Institut für Energie- und Klimaforschung – Stratosphäre (IEK–7),
Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
John C. Gille
Center for Limb Atmospheric Sounding, University of Colorado at Boulder, Boulder, Colorado, USA
National Center for Atmospheric Research, Boulder, Colorado, USA
Martin G. Mlynczak
NASA Langley Research Center, Hampton, Virginia, USA
James M. Russell III
Center for Atmospheric Sciences, Hampton University, Hampton, Virginia, USA
Martin Riese
Institut für Energie- und Klimaforschung – Stratosphäre (IEK–7),
Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Related authors
Ales Kuchar, Gunter Stober, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Manfred Ern, Damian Murphy, Diego Janches, Tracy Moffat-Griffin, Nicholas Mitchell, and Christoph Jacobi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2827, https://doi.org/10.5194/egusphere-2025-2827, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
We studied how the healing of the Antarctic ozone layer is affecting winds high above the South Pole. Using ground-based radar, satellite data, and computer models, we found that winds in the upper atmosphere have become stronger over the past two decades. These changes appear to be linked to shifts in the lower atmosphere caused by ozone recovery. Our results show that human efforts to repair the ozone layer are also influencing climate patterns far above Earth’s surface.
Christoph Jacobi, Khalil Karami, Ales Kuchar, Manfred Ern, Toralf Renkwitz, Ralph Latteck, and Jorge L. Chau
Adv. Radio Sci., 23, 21–31, https://doi.org/10.5194/ars-23-21-2025, https://doi.org/10.5194/ars-23-21-2025, 2025
Short summary
Short summary
Half-hourly mean winds have been obtained using ground-based low-frequency and very high frequency radio observations of the mesopause region at Collm, Germany, since 1984. Long-term changes of wind variances, which are proxies for short-period atmospheric gravity waves, have been analysed. Gravity wave amplitudes increase with time in winter, but mainly decrease in summer. The trends are consistent with mean wind changes according to wave theory.
Rasul Baikhadzhaev, Felix Ploeger, Peter Preusse, Manfred Ern, and Thomas Birner
EGUsphere, https://doi.org/10.5194/egusphere-2024-4088, https://doi.org/10.5194/egusphere-2024-4088, 2025
Short summary
Short summary
Across four reanalyses, shallow branch of the stratospheric overturning circulation was found to be driven by the largest waves with wavenumbers 1 to 3, and deep branch of the circulation was found to be driven by smaller-scale waves. Yet, the height of the level separating the branches is depended on the reanalysis considered. Thus using the appropriate separation levels in model inter-comparisons could reduce the spread between models regarding climatology and trends in the circulation.
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024, https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary
Short summary
We investigate the capabilities of a proposed satellite mission, CAIRT, for observing gravity waves throughout the middle atmosphere and present the necessary methodology for in-depth wave analysis. Our findings suggest that such a satellite mission is highly capable of resolving individual wave parameters and could give new insights into the role of gravity waves in general atmospheric circulation and atmospheric processes.
Björn Linder, Peter Preusse, Qiuyu Chen, Ole Martin Christensen, Lukas Krasauskas, Linda Megner, Manfred Ern, and Jörg Gumbel
Atmos. Meas. Tech., 17, 3829–3841, https://doi.org/10.5194/amt-17-3829-2024, https://doi.org/10.5194/amt-17-3829-2024, 2024
Short summary
Short summary
The Swedish research satellite MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is designed to study atmospheric waves in the mesosphere and lower thermosphere. These waves perturb the temperature field, and thus, by observing three-dimensional temperature fluctuations, their properties can be quantified. This pre-study uses synthetic MATS data generated from a general circulation model to investigate how well wave properties can be retrieved.
Manfred Ern, Mohamadou A. Diallo, Dina Khordakova, Isabell Krisch, Peter Preusse, Oliver Reitebuch, Jörn Ungermann, and Martin Riese
Atmos. Chem. Phys., 23, 9549–9583, https://doi.org/10.5194/acp-23-9549-2023, https://doi.org/10.5194/acp-23-9549-2023, 2023
Short summary
Short summary
Quasi-biennial oscillation (QBO) of the stratospheric tropical winds is an important mode of climate variability but is not well reproduced in free-running climate models. We use the novel global wind observations by the Aeolus satellite and radiosondes to show that the QBO is captured well in three modern reanalyses (ERA-5, JRA-55, and MERRA-2). Good agreement is also found also between Aeolus and reanalyses for large-scale tropical wave modes in the upper troposphere and lower stratosphere.
Sebastian Rhode, Peter Preusse, Manfred Ern, Jörn Ungermann, Lukas Krasauskas, Julio Bacmeister, and Martin Riese
Atmos. Chem. Phys., 23, 7901–7934, https://doi.org/10.5194/acp-23-7901-2023, https://doi.org/10.5194/acp-23-7901-2023, 2023
Short summary
Short summary
Gravity waves (GWs) transport energy vertically and horizontally within the atmosphere and thereby affect wind speeds far from their sources. Here, we present a model that identifies orographic GW sources and predicts the pathways of the excited GWs through the atmosphere for a better understanding of horizontal GW propagation. We use this model to explain physical patterns in satellite observations (e.g., low GW activity above the Himalaya) and predict seasonal patterns of GW propagation.
Qiuyu Chen, Konstantin Ntokas, Björn Linder, Lukas Krasauskas, Manfred Ern, Peter Preusse, Jörn Ungermann, Erich Becker, Martin Kaufmann, and Martin Riese
Atmos. Meas. Tech., 15, 7071–7103, https://doi.org/10.5194/amt-15-7071-2022, https://doi.org/10.5194/amt-15-7071-2022, 2022
Short summary
Short summary
Observations of phase speed and direction spectra as well as zonal mean net gravity wave momentum flux are required to understand how gravity waves reach the mesosphere–lower thermosphere and how they there interact with background flow. To this end we propose flying two CubeSats, each deploying a spatial heterodyne spectrometer for limb observation of the airglow. End-to-end simulations demonstrate that individual gravity waves are retrieved faithfully for the expected instrument performance.
Manfred Ern, Peter Preusse, and Martin Riese
Atmos. Chem. Phys., 22, 15093–15133, https://doi.org/10.5194/acp-22-15093-2022, https://doi.org/10.5194/acp-22-15093-2022, 2022
Short summary
Short summary
Based on data from the HIRDLS and SABER infrared limb sounding satellite instruments, we investigate the intermittency of global distributions of gravity wave (GW) potential energies and GW momentum fluxes in the stratosphere and mesosphere using probability distribution functions (PDFs) and Gini coefficients. We compare GW intermittency in different regions, seasons, and altitudes. These results can help to improve GW parameterizations and the distributions of GWs resolved in models.
Mohamadou A. Diallo, Felix Ploeger, Michaela I. Hegglin, Manfred Ern, Jens-Uwe Grooß, Sergey Khaykin, and Martin Riese
Atmos. Chem. Phys., 22, 14303–14321, https://doi.org/10.5194/acp-22-14303-2022, https://doi.org/10.5194/acp-22-14303-2022, 2022
Short summary
Short summary
The quasi-biennial oacillation disruption events in both 2016 and 2020 decreased lower-stratospheric water vapour and ozone. Differences in the strength and depth of the anomalous lower-stratospheric circulation and ozone are due to differences in tropical upwelling and cold-point temperature induced by lower-stratospheric planetary and gravity wave breaking. The differences in water vapour are due to higher cold-point temperature in 2020 induced by Australian wildfire.
Cornelia Strube, Peter Preusse, Manfred Ern, and Martin Riese
Atmos. Chem. Phys., 21, 18641–18668, https://doi.org/10.5194/acp-21-18641-2021, https://doi.org/10.5194/acp-21-18641-2021, 2021
Short summary
Short summary
High gravity wave (GW) momentum fluxes in the lower stratospheric southern polar vortex around 60° S are still poorly understood. Few GW sources are found at these latitudes. We present a ray tracing case study on waves resolved in high-resolution global model temperatures southeast of New Zealand. We show that lateral propagation of more than 1000 km takes place below 20 km altitude, and a variety of orographic and non-orographic sources located north of 50° S generate the wave field.
Manfred Ern, Mohamadou Diallo, Peter Preusse, Martin G. Mlynczak, Michael J. Schwartz, Qian Wu, and Martin Riese
Atmos. Chem. Phys., 21, 13763–13795, https://doi.org/10.5194/acp-21-13763-2021, https://doi.org/10.5194/acp-21-13763-2021, 2021
Short summary
Short summary
Details of the driving of the semiannual oscillation (SAO) of the tropical winds in the middle atmosphere are still not known. We investigate the SAO and its driving by small-scale gravity waves (GWs) using satellite data and different reanalyses. In a large altitude range, GWs mainly drive the SAO westerlies, but in the upper mesosphere GWs seem to drive both SAO easterlies and westerlies. Reanalyses reproduce some features of the SAO but are limited by model-inherent damping at upper levels.
Markus Geldenhuys, Peter Preusse, Isabell Krisch, Christoph Zülicke, Jörn Ungermann, Manfred Ern, Felix Friedl-Vallon, and Martin Riese
Atmos. Chem. Phys., 21, 10393–10412, https://doi.org/10.5194/acp-21-10393-2021, https://doi.org/10.5194/acp-21-10393-2021, 2021
Short summary
Short summary
A large-scale gravity wave (GW) was observed spanning the whole of Greenland. The GWs proposed in this paper come from a new jet–topography mechanism. The topography compresses the flow and triggers a change in u- and
v-wind components. The jet becomes out of geostrophic balance and sheds energy in the form of GWs to restore the balance. This topography–jet interaction was not previously considered by the community, rendering the impact of the gravity waves largely unaccounted for.
Mohamadou Diallo, Manfred Ern, and Felix Ploeger
Atmos. Chem. Phys., 21, 7515–7544, https://doi.org/10.5194/acp-21-7515-2021, https://doi.org/10.5194/acp-21-7515-2021, 2021
Short summary
Short summary
Despite good agreement in the spatial structure, there are substantial differences in the strength of the Brewer–Dobson circulation (BDC) and its modulations in the UTLS and upper stratosphere. The tropical upwelling is generally weaker in ERA5 than in ERAI due to weaker planetary and gravity wave breaking in the UTLS. Analysis of the BDC trend shows an acceleration of the BDC of about 1.5 % decade-1 due to the long-term intensification in wave breaking, consistent with climate predictions.
Isabell Krisch, Manfred Ern, Lars Hoffmann, Peter Preusse, Cornelia Strube, Jörn Ungermann, Wolfgang Woiwode, and Martin Riese
Atmos. Chem. Phys., 20, 11469–11490, https://doi.org/10.5194/acp-20-11469-2020, https://doi.org/10.5194/acp-20-11469-2020, 2020
Short summary
Short summary
In 2016, a scientific research flight above Scandinavia acquired various atmospheric data (temperature, gas composition, etc.). Through advanced 3-D reconstruction methods, a superposition of multiple gravity waves was identified. An in-depth analysis enabled the characterisation of these waves as well as the identification of their sources. This work will enable a better understanding of atmosphere dynamics and could lead to improved climate projections.
Cornelia Strube, Manfred Ern, Peter Preusse, and Martin Riese
Atmos. Meas. Tech., 13, 4927–4945, https://doi.org/10.5194/amt-13-4927-2020, https://doi.org/10.5194/amt-13-4927-2020, 2020
Short summary
Short summary
We present how inertial instabilities affect gravity wave background removal filters on different temperature data sets. Vertical filtering has to remove a part of the gravity wave spectrum to eliminate inertial instability remnants, while horizontal filtering leaves typical gravity wave scales untouched. In addition, we show that it is possible to separate inertial instabilities from gravity wave perturbations for infrared limb-sounding satellite profiles using a cutoff zonal wavenumber of 6.
Ales Kuchar, Gunter Stober, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Manfred Ern, Damian Murphy, Diego Janches, Tracy Moffat-Griffin, Nicholas Mitchell, and Christoph Jacobi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2827, https://doi.org/10.5194/egusphere-2025-2827, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
We studied how the healing of the Antarctic ozone layer is affecting winds high above the South Pole. Using ground-based radar, satellite data, and computer models, we found that winds in the upper atmosphere have become stronger over the past two decades. These changes appear to be linked to shifts in the lower atmosphere caused by ozone recovery. Our results show that human efforts to repair the ozone layer are also influencing climate patterns far above Earth’s surface.
Christoph Jacobi, Khalil Karami, Ales Kuchar, Manfred Ern, Toralf Renkwitz, Ralph Latteck, and Jorge L. Chau
Adv. Radio Sci., 23, 21–31, https://doi.org/10.5194/ars-23-21-2025, https://doi.org/10.5194/ars-23-21-2025, 2025
Short summary
Short summary
Half-hourly mean winds have been obtained using ground-based low-frequency and very high frequency radio observations of the mesopause region at Collm, Germany, since 1984. Long-term changes of wind variances, which are proxies for short-period atmospheric gravity waves, have been analysed. Gravity wave amplitudes increase with time in winter, but mainly decrease in summer. The trends are consistent with mean wind changes according to wave theory.
Gerald Wetzel, Anne Kleinert, Sören Johansson, Felix Friedl-Vallon, Michael Höpfner, Jörn Ungermann, Tom Neubert, Valéry Catoire, Cyril Crevoisier, Andreas Engel, Thomas Gulde, Patrick Jacquet, Oliver Kirner, Erik Kretschmer, Thomas Kulessa, Johannes C. Laube, Guido Maucher, Hans Nordmeyer, Christof Piesch, Peter Preusse, Markus Retzlaff, Georg Schardt, Johan Schillings, Herbert Schneider, Axel Schönfeld, Tanja Schuck, Wolfgang Woiwode, Martin Riese, and Peter Braesicke
EGUsphere, https://doi.org/10.5194/egusphere-2025-1838, https://doi.org/10.5194/egusphere-2025-1838, 2025
Short summary
Short summary
We present vertical trace gas profiles from the first balloon flight of the newly developed GLORIA-B limb-imaging Fourier-Transform spectrometer. Longer-lived gases are compared to external measurements to assess the quality of the GLORIA-B observations. Diurnal changes of photochemically active species are compared to model simulations. GLORIA-B demonstrates the capability of balloon-borne limb imaging to provide high-resolution vertical profiles of trace gases up to the middle stratosphere.
Florian Voet, Felix Ploeger, Johannes Laube, Peter Preusse, Paul Konopka, Jens-Uwe Grooß, Jörn Ungermann, Björn-Martin Sinnhuber, Michael Höpfner, Bernd Funke, Gerald Wetzel, Sören Johansson, Gabriele Stiller, Eric Ray, and Michaela I. Hegglin
Atmos. Chem. Phys., 25, 3541–3565, https://doi.org/10.5194/acp-25-3541-2025, https://doi.org/10.5194/acp-25-3541-2025, 2025
Short summary
Short summary
This study refines estimates of the stratospheric “age of air”, a measure of how long air circulates in the stratosphere. By analyzing correlations between trace gases measurable by satellites, the research introduces a method that reduces uncertainties and detects small-scale atmospheric features. This improved understanding of stratospheric circulation is crucial for better climate models and predictions, enhancing our ability to assess the impacts of climate change on the atmosphere.
Rasul Baikhadzhaev, Felix Ploeger, Peter Preusse, Manfred Ern, and Thomas Birner
EGUsphere, https://doi.org/10.5194/egusphere-2024-4088, https://doi.org/10.5194/egusphere-2024-4088, 2025
Short summary
Short summary
Across four reanalyses, shallow branch of the stratospheric overturning circulation was found to be driven by the largest waves with wavenumbers 1 to 3, and deep branch of the circulation was found to be driven by smaller-scale waves. Yet, the height of the level separating the branches is depended on the reanalysis considered. Thus using the appropriate separation levels in model inter-comparisons could reduce the spread between models regarding climatology and trends in the circulation.
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024, https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary
Short summary
We investigate the capabilities of a proposed satellite mission, CAIRT, for observing gravity waves throughout the middle atmosphere and present the necessary methodology for in-depth wave analysis. Our findings suggest that such a satellite mission is highly capable of resolving individual wave parameters and could give new insights into the role of gravity waves in general atmospheric circulation and atmospheric processes.
Sören Johansson, Michael Höpfner, Felix Friedl-Vallon, Norbert Glatthor, Thomas Gulde, Vincent Huijnen, Anne Kleinert, Erik Kretschmer, Guido Maucher, Tom Neubert, Hans Nordmeyer, Christof Piesch, Peter Preusse, Martin Riese, Björn-Martin Sinnhuber, Jörn Ungermann, Gerald Wetzel, and Wolfgang Woiwode
Atmos. Chem. Phys., 24, 8125–8138, https://doi.org/10.5194/acp-24-8125-2024, https://doi.org/10.5194/acp-24-8125-2024, 2024
Short summary
Short summary
We present airborne infrared limb sounding GLORIA measurements of ammonia (NH3) in the upper troposphere of air masses within the Asian monsoon and of those connected with biomass burning. Comparing CAMS (Copernicus Atmosphere Monitoring Service) model data, we find that the model reproduces the measured enhanced NH3 within the Asian monsoon well but not that within biomass burning plumes, where no enhanced NH3 is measured in the upper troposphere but considerable amounts are simulated by CAMS.
Björn Linder, Peter Preusse, Qiuyu Chen, Ole Martin Christensen, Lukas Krasauskas, Linda Megner, Manfred Ern, and Jörg Gumbel
Atmos. Meas. Tech., 17, 3829–3841, https://doi.org/10.5194/amt-17-3829-2024, https://doi.org/10.5194/amt-17-3829-2024, 2024
Short summary
Short summary
The Swedish research satellite MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is designed to study atmospheric waves in the mesosphere and lower thermosphere. These waves perturb the temperature field, and thus, by observing three-dimensional temperature fluctuations, their properties can be quantified. This pre-study uses synthetic MATS data generated from a general circulation model to investigate how well wave properties can be retrieved.
Konstantin Ntokas, Jörn Ungermann, Martin Kaufmann, Tom Neubert, and Martin Riese
Atmos. Meas. Tech., 16, 5681–5696, https://doi.org/10.5194/amt-16-5681-2023, https://doi.org/10.5194/amt-16-5681-2023, 2023
Short summary
Short summary
A nanosatellite was developed to obtain 1-D vertical temperature profiles in the mesosphere and lower thermosphere, which can be used to derive wave parameters needed for atmospheric models. A new processing method is shown, which allows one to extract two 1-D temperature profiles. The location of the two profiles is analyzed, as it is needed for deriving wave parameters. We show that this method is feasible, which however will increase the requirements of an accurate calibration and processing.
Michael Kiefer, Dale F. Hurst, Gabriele P. Stiller, Stefan Lossow, Holger Vömel, John Anderson, Faiza Azam, Jean-Loup Bertaux, Laurent Blanot, Klaus Bramstedt, John P. Burrows, Robert Damadeo, Bianca Maria Dinelli, Patrick Eriksson, Maya García-Comas, John C. Gille, Mark Hervig, Yasuko Kasai, Farahnaz Khosrawi, Donal Murtagh, Gerald E. Nedoluha, Stefan Noël, Piera Raspollini, William G. Read, Karen H. Rosenlof, Alexei Rozanov, Christopher E. Sioris, Takafumi Sugita, Thomas von Clarmann, Kaley A. Walker, and Katja Weigel
Atmos. Meas. Tech., 16, 4589–4642, https://doi.org/10.5194/amt-16-4589-2023, https://doi.org/10.5194/amt-16-4589-2023, 2023
Short summary
Short summary
We quantify biases and drifts (and their uncertainties) between the stratospheric water vapor measurement records of 15 satellite-based instruments (SATs, with 31 different retrievals) and balloon-borne frost point hygrometers (FPs) launched at 27 globally distributed stations. These comparisons of measurements during the period 2000–2016 are made using robust, consistent statistical methods. With some exceptions, the biases and drifts determined for most SAT–FP pairs are < 10 % and < 1 % yr−1.
Roland Eichinger, Sebastian Rhode, Hella Garny, Peter Preusse, Petr Pisoft, Aleš Kuchař, Patrick Jöckel, Astrid Kerkweg, and Bastian Kern
Geosci. Model Dev., 16, 5561–5583, https://doi.org/10.5194/gmd-16-5561-2023, https://doi.org/10.5194/gmd-16-5561-2023, 2023
Short summary
Short summary
The columnar approach of gravity wave (GW) schemes results in dynamical model biases, but parallel decomposition makes horizontal GW propagation computationally unfeasible. In the global model EMAC, we approximate it by GW redistribution at one altitude using tailor-made redistribution maps generated with a ray tracer. More spread-out GW drag helps reconcile the model with observations and close the 60°S GW gap. Polar vortex dynamics are improved, enhancing climate model credibility.
Manfred Ern, Mohamadou A. Diallo, Dina Khordakova, Isabell Krisch, Peter Preusse, Oliver Reitebuch, Jörn Ungermann, and Martin Riese
Atmos. Chem. Phys., 23, 9549–9583, https://doi.org/10.5194/acp-23-9549-2023, https://doi.org/10.5194/acp-23-9549-2023, 2023
Short summary
Short summary
Quasi-biennial oscillation (QBO) of the stratospheric tropical winds is an important mode of climate variability but is not well reproduced in free-running climate models. We use the novel global wind observations by the Aeolus satellite and radiosondes to show that the QBO is captured well in three modern reanalyses (ERA-5, JRA-55, and MERRA-2). Good agreement is also found also between Aeolus and reanalyses for large-scale tropical wave modes in the upper troposphere and lower stratosphere.
Sebastian Rhode, Peter Preusse, Manfred Ern, Jörn Ungermann, Lukas Krasauskas, Julio Bacmeister, and Martin Riese
Atmos. Chem. Phys., 23, 7901–7934, https://doi.org/10.5194/acp-23-7901-2023, https://doi.org/10.5194/acp-23-7901-2023, 2023
Short summary
Short summary
Gravity waves (GWs) transport energy vertically and horizontally within the atmosphere and thereby affect wind speeds far from their sources. Here, we present a model that identifies orographic GW sources and predicts the pathways of the excited GWs through the atmosphere for a better understanding of horizontal GW propagation. We use this model to explain physical patterns in satellite observations (e.g., low GW activity above the Himalaya) and predict seasonal patterns of GW propagation.
Qiuyu Chen, Konstantin Ntokas, Björn Linder, Lukas Krasauskas, Manfred Ern, Peter Preusse, Jörn Ungermann, Erich Becker, Martin Kaufmann, and Martin Riese
Atmos. Meas. Tech., 15, 7071–7103, https://doi.org/10.5194/amt-15-7071-2022, https://doi.org/10.5194/amt-15-7071-2022, 2022
Short summary
Short summary
Observations of phase speed and direction spectra as well as zonal mean net gravity wave momentum flux are required to understand how gravity waves reach the mesosphere–lower thermosphere and how they there interact with background flow. To this end we propose flying two CubeSats, each deploying a spatial heterodyne spectrometer for limb observation of the airglow. End-to-end simulations demonstrate that individual gravity waves are retrieved faithfully for the expected instrument performance.
Manfred Ern, Peter Preusse, and Martin Riese
Atmos. Chem. Phys., 22, 15093–15133, https://doi.org/10.5194/acp-22-15093-2022, https://doi.org/10.5194/acp-22-15093-2022, 2022
Short summary
Short summary
Based on data from the HIRDLS and SABER infrared limb sounding satellite instruments, we investigate the intermittency of global distributions of gravity wave (GW) potential energies and GW momentum fluxes in the stratosphere and mesosphere using probability distribution functions (PDFs) and Gini coefficients. We compare GW intermittency in different regions, seasons, and altitudes. These results can help to improve GW parameterizations and the distributions of GWs resolved in models.
Mohamadou A. Diallo, Felix Ploeger, Michaela I. Hegglin, Manfred Ern, Jens-Uwe Grooß, Sergey Khaykin, and Martin Riese
Atmos. Chem. Phys., 22, 14303–14321, https://doi.org/10.5194/acp-22-14303-2022, https://doi.org/10.5194/acp-22-14303-2022, 2022
Short summary
Short summary
The quasi-biennial oacillation disruption events in both 2016 and 2020 decreased lower-stratospheric water vapour and ozone. Differences in the strength and depth of the anomalous lower-stratospheric circulation and ozone are due to differences in tropical upwelling and cold-point temperature induced by lower-stratospheric planetary and gravity wave breaking. The differences in water vapour are due to higher cold-point temperature in 2020 induced by Australian wildfire.
William G. Read, Gabriele Stiller, Stefan Lossow, Michael Kiefer, Farahnaz Khosrawi, Dale Hurst, Holger Vömel, Karen Rosenlof, Bianca M. Dinelli, Piera Raspollini, Gerald E. Nedoluha, John C. Gille, Yasuko Kasai, Patrick Eriksson, Christopher E. Sioris, Kaley A. Walker, Katja Weigel, John P. Burrows, and Alexei Rozanov
Atmos. Meas. Tech., 15, 3377–3400, https://doi.org/10.5194/amt-15-3377-2022, https://doi.org/10.5194/amt-15-3377-2022, 2022
Short summary
Short summary
This paper attempts to provide an assessment of the accuracy of 21 satellite-based instruments that remotely measure atmospheric humidity in the upper troposphere of the Earth's atmosphere. The instruments made their measurements from 1984 to the present time; however, most of these instruments began operations after 2000, and only a few are still operational. The objective of this study is to quantify the accuracy of each satellite humidity data set.
Merritt Deeter, Gene Francis, John Gille, Debbie Mao, Sara Martínez-Alonso, Helen Worden, Dan Ziskin, James Drummond, Róisín Commane, Glenn Diskin, and Kathryn McKain
Atmos. Meas. Tech., 15, 2325–2344, https://doi.org/10.5194/amt-15-2325-2022, https://doi.org/10.5194/amt-15-2325-2022, 2022
Short summary
Short summary
The MOPITT (Measurements of Pollution in the Troposphere) satellite instrument uses remote sensing to obtain retrievals (measurements) of carbon monoxide (CO) in the atmosphere. This paper describes the latest MOPITT data product, Version 9. Globally, the number of daytime MOPITT retrievals over land has increased by 30 %–40 % compared to the previous product. The reported improvements in the MOPITT product should benefit a wide variety of applications including studies of pollution sources.
Sumanta Sarkhel, Gunter Stober, Jorge L. Chau, Steven M. Smith, Christoph Jacobi, Subarna Mondal, Martin G. Mlynczak, and James M. Russell III
Ann. Geophys., 40, 179–190, https://doi.org/10.5194/angeo-40-179-2022, https://doi.org/10.5194/angeo-40-179-2022, 2022
Short summary
Short summary
A rare gravity wave event was observed on the night of 25 April 2017 over northern Germany. An all-sky airglow imager recorded an upward-propagating wave at different altitudes in mesosphere with a prominent wave front above 91 km and faintly observed below. Based on wind and satellite-borne temperature profiles close to the event location, we have found the presence of a leaky thermal duct layer in 85–91 km. The appearance of this duct layer caused the wave amplitudes to diminish below 91 km.
Patrick E. Sheese, Kaley A. Walker, Chris D. Boone, Adam E. Bourassa, Doug A. Degenstein, Lucien Froidevaux, C. Thomas McElroy, Donal Murtagh, James M. Russell III, and Jiansheng Zou
Atmos. Meas. Tech., 15, 1233–1249, https://doi.org/10.5194/amt-15-1233-2022, https://doi.org/10.5194/amt-15-1233-2022, 2022
Short summary
Short summary
This study analyzes the quality of two versions (v3.6 and v4.1) of ozone concentration measurements from the ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer), by comparing with data from five satellite instruments between 2004 and 2020. It was found that although the v3.6 data exhibit a better agreement than v4.1 with respect to the other instruments, v4.1 exhibits much better stability over time than v3.6. The stability of v4.1 makes it suitable for ozone trend studies.
Heba S. Marey, James R. Drummond, Dylan B. A. Jones, Helen Worden, Merritt N. Deeter, John Gille, and Debbie Mao
Atmos. Meas. Tech., 15, 701–719, https://doi.org/10.5194/amt-15-701-2022, https://doi.org/10.5194/amt-15-701-2022, 2022
Short summary
Short summary
In this study, an analysis has been performed to understand the improvements in observational coverage over Canada in the new MOPITT V9 product. Temporal and spatial analysis of V9 indicates a general coverage gain of 15–20 % relative to V8, which varies regionally and seasonally; e.g., the number of successful MOPITT retrievals in V9 was doubled over Canada in winter. Also, comparison with the corresponding IASI instrument indicated generally good agreement, with about a 5–10 % positive bias.
Dina Khordakova, Christian Rolf, Jens-Uwe Grooß, Rolf Müller, Paul Konopka, Andreas Wieser, Martina Krämer, and Martin Riese
Atmos. Chem. Phys., 22, 1059–1079, https://doi.org/10.5194/acp-22-1059-2022, https://doi.org/10.5194/acp-22-1059-2022, 2022
Short summary
Short summary
Extreme storms transport humidity from the troposphere to the stratosphere. Here it has a strong impact on the climate. With ongoing global warming, we expect more storms and, hence, an enhancement of this effect. A case study was performed in order to measure the impact of the direct injection of water vapor into the lower stratosphere. The measurements displayed a significant transport of water vapor into the lower stratosphere, and this was supported by satellite and reanalysis data.
Cornelia Strube, Peter Preusse, Manfred Ern, and Martin Riese
Atmos. Chem. Phys., 21, 18641–18668, https://doi.org/10.5194/acp-21-18641-2021, https://doi.org/10.5194/acp-21-18641-2021, 2021
Short summary
Short summary
High gravity wave (GW) momentum fluxes in the lower stratospheric southern polar vortex around 60° S are still poorly understood. Few GW sources are found at these latitudes. We present a ray tracing case study on waves resolved in high-resolution global model temperatures southeast of New Zealand. We show that lateral propagation of more than 1000 km takes place below 20 km altitude, and a variety of orographic and non-orographic sources located north of 50° S generate the wave field.
Xiao Liu, Jiyao Xu, Jia Yue, You Yu, Paulo P. Batista, Vania F. Andrioli, Zhengkuan Liu, Tao Yuan, Chi Wang, Ziming Zou, Guozhu Li, and James M. Russell III
Earth Syst. Sci. Data, 13, 5643–5661, https://doi.org/10.5194/essd-13-5643-2021, https://doi.org/10.5194/essd-13-5643-2021, 2021
Short summary
Short summary
Based on the gradient balance wind theory and the SABER observations, a dataset of monthly mean zonal wind has been developed at heights of 18–100 km and latitudes of 50° Sndash;50° N from 2002 to 2019. The dataset agrees with the zonal wind from models (MERRA2, UARP, HWM14) and observations by meteor radar and lidar at seven stations. The dataset can be used to study seasonal and interannual variations and can serve as a background for wave studies of tides and planetary waves.
Manfred Ern, Mohamadou Diallo, Peter Preusse, Martin G. Mlynczak, Michael J. Schwartz, Qian Wu, and Martin Riese
Atmos. Chem. Phys., 21, 13763–13795, https://doi.org/10.5194/acp-21-13763-2021, https://doi.org/10.5194/acp-21-13763-2021, 2021
Short summary
Short summary
Details of the driving of the semiannual oscillation (SAO) of the tropical winds in the middle atmosphere are still not known. We investigate the SAO and its driving by small-scale gravity waves (GWs) using satellite data and different reanalyses. In a large altitude range, GWs mainly drive the SAO westerlies, but in the upper mesosphere GWs seem to drive both SAO easterlies and westerlies. Reanalyses reproduce some features of the SAO but are limited by model-inherent damping at upper levels.
Markus Geldenhuys, Peter Preusse, Isabell Krisch, Christoph Zülicke, Jörn Ungermann, Manfred Ern, Felix Friedl-Vallon, and Martin Riese
Atmos. Chem. Phys., 21, 10393–10412, https://doi.org/10.5194/acp-21-10393-2021, https://doi.org/10.5194/acp-21-10393-2021, 2021
Short summary
Short summary
A large-scale gravity wave (GW) was observed spanning the whole of Greenland. The GWs proposed in this paper come from a new jet–topography mechanism. The topography compresses the flow and triggers a change in u- and
v-wind components. The jet becomes out of geostrophic balance and sheds energy in the form of GWs to restore the balance. This topography–jet interaction was not previously considered by the community, rendering the impact of the gravity waves largely unaccounted for.
Lukas Krasauskas, Jörn Ungermann, Peter Preusse, Felix Friedl-Vallon, Andreas Zahn, Helmut Ziereis, Christian Rolf, Felix Plöger, Paul Konopka, Bärbel Vogel, and Martin Riese
Atmos. Chem. Phys., 21, 10249–10272, https://doi.org/10.5194/acp-21-10249-2021, https://doi.org/10.5194/acp-21-10249-2021, 2021
Short summary
Short summary
A Rossby wave (RW) breaking event was observed over the North Atlantic during the WISE measurement campaign in October 2017. Infrared limb sounding measurements of trace gases in the lower stratosphere, including high-resolution 3-D tomographic reconstruction, revealed complex spatial structures in stratospheric tracers near the polar jet related to previous RW breaking events. Backward-trajectory analysis and tracer correlations were used to study mixing and stratosphere–troposphere exchange.
Felix Ploeger, Mohamadou Diallo, Edward Charlesworth, Paul Konopka, Bernard Legras, Johannes C. Laube, Jens-Uwe Grooß, Gebhard Günther, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 21, 8393–8412, https://doi.org/10.5194/acp-21-8393-2021, https://doi.org/10.5194/acp-21-8393-2021, 2021
Short summary
Short summary
We investigate the global stratospheric circulation (Brewer–Dobson circulation) in the new ECMWF ERA5 reanalysis based on age of air simulations, and we compare it to results from the preceding ERA-Interim reanalysis. Our results show a slower stratospheric circulation and higher age for ERA5. The age of air trend in ERA5 over the 1989–2018 period is negative throughout the stratosphere, related to multi-annual variability and a potential contribution from changes in the reanalysis system.
Mohamadou Diallo, Manfred Ern, and Felix Ploeger
Atmos. Chem. Phys., 21, 7515–7544, https://doi.org/10.5194/acp-21-7515-2021, https://doi.org/10.5194/acp-21-7515-2021, 2021
Short summary
Short summary
Despite good agreement in the spatial structure, there are substantial differences in the strength of the Brewer–Dobson circulation (BDC) and its modulations in the UTLS and upper stratosphere. The tropical upwelling is generally weaker in ERA5 than in ERAI due to weaker planetary and gravity wave breaking in the UTLS. Analysis of the BDC trend shows an acceleration of the BDC of about 1.5 % decade-1 due to the long-term intensification in wave breaking, consistent with climate predictions.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki T. Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis E. Remsberg, Alexei Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan A. Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data, 13, 1855–1903, https://doi.org/10.5194/essd-13-1855-2021, https://doi.org/10.5194/essd-13-1855-2021, 2021
Short summary
Short summary
An overview of the SPARC Data Initiative is presented, to date the most comprehensive assessment of stratospheric composition measurements spanning 1979–2018. Measurements of 26 chemical constituents obtained from an international suite of space-based limb sounders were compiled into vertically resolved, zonal monthly mean time series. The quality and consistency of these gridded datasets are then evaluated using a climatological validation approach and a range of diagnostics.
Irene Bartolome Garcia, Reinhold Spang, Jörn Ungermann, Sabine Griessbach, Martina Krämer, Michael Höpfner, and Martin Riese
Atmos. Meas. Tech., 14, 3153–3168, https://doi.org/10.5194/amt-14-3153-2021, https://doi.org/10.5194/amt-14-3153-2021, 2021
Short summary
Short summary
Cirrus clouds contribute to the general radiation budget of the Earth. Measuring optically thin clouds is challenging but the IR limb sounder GLORIA possesses the necessary technical characteristics to make it possible. This study analyses data from the WISE campaign obtained with GLORIA. We developed a cloud detection method and derived characteristics of the observed cirrus-like cloud top, cloud bottom or position with respect to the tropopause.
Jörn Ungermann, Irene Bartolome, Sabine Griessbach, Reinhold Spang, Christian Rolf, Martina Krämer, Michael Höpfner, and Martin Riese
Atmos. Meas. Tech., 13, 7025–7045, https://doi.org/10.5194/amt-13-7025-2020, https://doi.org/10.5194/amt-13-7025-2020, 2020
Short summary
Short summary
This study examines the potential of new IR limb imager instruments and tomographic methods for cloud detection purposes. Simple color-ratio-based methods are examined and compared against more involved nonlinear convex optimization. In a second part, 3-D measurements of the airborne limb sounder GLORIA taken during the Wave-driven ISentropic Exchange campaign are used to exemplarily derive the location and extent of small-scale cirrus clouds with high spatial accuracy.
Sabine Wüst, Michael Bittner, Jeng-Hwa Yee, Martin G. Mlynczak, and James M. Russell III
Atmos. Meas. Tech., 13, 6067–6093, https://doi.org/10.5194/amt-13-6067-2020, https://doi.org/10.5194/amt-13-6067-2020, 2020
Short summary
Short summary
With airglow spectrometers, the temperature in the upper mesosphere/lower thermosphere can be derived each night. The data allow to estimate the amount of energy which is transported by small-scale atmospheric waves, known as gravity waves. In order to do this, information about the Brunt–Väisälä frequency and its evolution during the year is necessary. This is provided here for low and midlatitudes based on 18 years of satellite data.
Martina Krämer, Christian Rolf, Nicole Spelten, Armin Afchine, David Fahey, Eric Jensen, Sergey Khaykin, Thomas Kuhn, Paul Lawson, Alexey Lykov, Laura L. Pan, Martin Riese, Andrew Rollins, Fred Stroh, Troy Thornberry, Veronika Wolf, Sarah Woods, Peter Spichtinger, Johannes Quaas, and Odran Sourdeval
Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, https://doi.org/10.5194/acp-20-12569-2020, 2020
Short summary
Short summary
To improve the representations of cirrus clouds in climate predictions, extended knowledge of their properties and geographical distribution is required. This study presents extensive airborne in situ and satellite remote sensing climatologies of cirrus and humidity, which serve as a guide to cirrus clouds. Further, exemplary radiative characteristics of cirrus types and also in situ observations of tropical tropopause layer cirrus and humidity in the Asian monsoon anticyclone are shown.
Isabell Krisch, Manfred Ern, Lars Hoffmann, Peter Preusse, Cornelia Strube, Jörn Ungermann, Wolfgang Woiwode, and Martin Riese
Atmos. Chem. Phys., 20, 11469–11490, https://doi.org/10.5194/acp-20-11469-2020, https://doi.org/10.5194/acp-20-11469-2020, 2020
Short summary
Short summary
In 2016, a scientific research flight above Scandinavia acquired various atmospheric data (temperature, gas composition, etc.). Through advanced 3-D reconstruction methods, a superposition of multiple gravity waves was identified. An in-depth analysis enabled the characterisation of these waves as well as the identification of their sources. This work will enable a better understanding of atmosphere dynamics and could lead to improved climate projections.
Cornelia Strube, Manfred Ern, Peter Preusse, and Martin Riese
Atmos. Meas. Tech., 13, 4927–4945, https://doi.org/10.5194/amt-13-4927-2020, https://doi.org/10.5194/amt-13-4927-2020, 2020
Short summary
Short summary
We present how inertial instabilities affect gravity wave background removal filters on different temperature data sets. Vertical filtering has to remove a part of the gravity wave spectrum to eliminate inertial instability remnants, while horizontal filtering leaves typical gravity wave scales untouched. In addition, we show that it is possible to separate inertial instabilities from gravity wave perturbations for infrared limb-sounding satellite profiles using a cutoff zonal wavenumber of 6.
Cited articles
Alexander, M. J.: Global and seasonal variations in three-dimensional gravity
wave momentum flux from satellite limb-sounding temperatures, Geophys. Res.
Lett., 42, 6860–6867, https://doi.org/10.1002/2015GL065234, 2015. a, b, c, d
Alexander, M. J. and Dunkerton, T. J.: A spectral parameterization of
mean-flow forcing due to breaking gravity waves, J. Atmos. Sci., 56,
4167–4182, 1999. a
Alexander, M. J. and Rosenlof, K. H.: Gravity-wave forcing in the
stratosphere: Observational constraints from Upper Atmosphere Research
Satellite and implications for parameterization in global models, J. Geophys.
Res., 108, 4597, https://doi.org/10.1029/2003JD003373, 2003. a
Alexander, M. J., Gille, J., Cavanaugh, C., Coffey, M., Craig, C., Eden, T.,
Francis, G., Halvorson, C., Hannigan, J., Khosravi, R., Kinnison, D., Lee,
H., Massie, S., Nardi, B., Barnett, J., Hepplewhite, C., Lambert, A., and
Dean, V.: Global estimates of gravity wave momentum flux from High Resolution
Dynamics Limb Sounder Observations, J. Geophys. Res., 113, D15S18,
https://doi.org/10.1029/2007JD008807, 2008. a, b, c
Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P.,
Sassi, F., Sato, K., Eckermann, S. D., Ern, M., Hertzog, A., Kawatani, Y.,
Pulido, M., Shaw, T., Sigmond, M., Vincent, R., and Watanabe, S.: Recent
developments in gravity-wave effects in climate models and the global
distribution of gravity-wave momentum flux from observations and models,
Q. J. Roy. Meteor. Soc., 136, 1103–1124, https://doi.org/10.1002/qj.637, 2010. a, b, c, d
Barnett, J. J., Hepplewhite, C. L., Osprey, S., Gille, J. C., and Khosravi,
R.: Cross-validation of HIRDLS and COSMIC radio-occultation retrievals,
particularly in relation to fine vertical structure, Proc. SPIE, 7082,
708216, https://doi.org/10.1117/12.800702, 2008. a
Beres, J. H., Alexander, M. J., and Holton, J. R.: A method of specifying the
gravity wave spectrum above convection based on latent heating properties and
background wind, J. Atmos. Sci., 61, 324–337, 2004. a
Bushell, A. C., Butchart, N., Derbyshire, S. H., Jackson, D. R., Shutts, G.
J., Vosper, S. B., and Webster, S.: Parameterized gravity wave momentum
fluxes from sources related to convection and large-scale precipitation
processes in a global atmosphere model, J. Atmos. Sci., 72, 4349–4371, 2015. a
Charron, M. and Manzini, E.: Gravity waves from fronts: Parameterization and
middle atmosphere response in a general circulation model, J. Atmos. Sci.,
59, 923–941, 2002. a
Choi, H.-J., Chun, H.-Y., and Song, I.-S.: Gravity wave temperature variance
calculated using the ray-based spectral parameterization of convective
gravity waves and its comparison with Microwave Limb Sounder observations, J.
Geophys. Res., 114, D08111, https://doi.org/10.1029/2008JD011330, 2009. a
Choi, H.-J., Chun, H.-Y., Gong, J., and Wu, D. L.: Comparison of gravity wave
temperature variances from ray-based spectral parameterization of convective
gravity wave drag with AIRS observations, J. Geophys. Res., 117, D05115,
https://doi.org/10.1029/2011JD016900, 2012. a
Chun, H.-Y. and Baik, J.-J.: Momentum flux by thermally induced internal
gravity waves and its approximation for large-scale models, J. Atmos. Sci.,
55, 3299–3310, 1998. a
Chun, H.-Y. and Baik, J.-J.: An updated parameterization of convectively
forced gravity wave drag for use in large-scale models, J. Atmos. Sci., 59,
1006–1017, 2002. a
Delisi, D. P. and Dunkerton, T. J.: Seasonal variation of the semiannual
oscillation, J. Atmos. Sci., 45, 2772–2787, 1988. a
de la Cámara, A. and Lott, F.: A parameterization of gravity waves emitted
by fronts and jets, Geophys. Res. Lett., 42, 2071–2078,
https://doi.org/10.1002/2015GL063298, 2015. a, b
de la Torre, A., Schmidt, T., and Wickert, J.: A global analysis of wave
potential energy in the lower stratosphere derived from 5 years of GPS radio
occultation data with CHAMP, Geophys. Res. Lett., 33, L24809,
https://doi.org/10.1029/2006GL027696, 2006. a
de la Torre, A., Alexander, P., Schmidt, T., Llamedo, P., and Hierro, R.: On
the distortions in calculated GW parameters during slanted atmospheric
soundings, Atmos. Meas. Tech., 11, 1363–1375,
https://doi.org/10.5194/amt-11-1363-2018, 2018. a, b
Dunkerton, T. J.: The role of gravity waves in the quasi-biennial
oscillation, J. Geophys. Res., 102, 26053–26076, 1997. a
Eckermann, S. D.: Explicitly stochastic parameterization of nonorographic
gravity wave drag, J. Atmos. Sci., 68, 1749–1765, 2011. a
Eckermann, S. D. and Preusse, P.: Global measurements of stratospheric
mountain waves from space, Science, 286, 1534–1537,
https://doi.org/10.1126/science.286.5444.1534, 1999. a, b
Ern, M. and Preusse, P.: Wave fluxes of equatorial Kelvin waves and QBO zonal
wind forcing derived from SABER and ECMWF temperature space-time spectra,
Atmos. Chem. Phys., 9, 3957–3986, https://doi.org/10.5194/acp-9-3957-2009, 2009.
Ern, M. and Preusse, P.: Gravity wave momentum flux spectra observed from
satellite in the summertime subtropics: Implications for global modeling,
Geophys. Res. Lett., 39, L15810, https://doi.org/10.1029/2012GL052659, 2012. a
Ern, M., Preusse, P., and Warner, C. D.: Some experimental constraints for
spectral parameters used in the Warner and McIntyre gravity wave
parameterization scheme, Atmos. Chem. Phys., 6, 4361–4381,
https://doi.org/10.5194/acp-6-4361-2006, 2006. a, b, c
Ern, M., Preusse, P., Krebsbach, M., Mlynczak, M. G., and Russell III, J. M.:
Equatorial wave analysis from SABER and ECMWF temperatures, Atmos. Chem.
Phys., 8, 845–869, https://doi.org/10.5194/acp-8-845-2008, 2008. a, b
Ern, M., Lehmann, C., Kaufmann, M., and Riese, M.: Spectral wave analysis at
the mesopause from SCIAMACHY airglow data compared to SABER temperature
spectra, Ann. Geophys., 27, 407–416, https://doi.org/10.5194/angeo-27-407-2009, 2009. a, b
Ern, M., Preusse, P., Gille, J. C., Hepplewhite, C. L., Mlynczak, M. G.,
Russell III, J. M., and Riese, M.: Implications for atmospheric dynamics
derived from global observations of gravity wave momentum flux in
stratosphere and mesosphere, J. Geophys. Res., 116, D19107,
https://doi.org/10.1029/2011JD015821, 2011. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q
Ern, M., Ploeger, F., Preusse, P., Gille, J. C., Gray, L. J., Kalisch, S.,
Mlynczak, M. G., Russell III, J. M., and Riese, M.: Interaction of gravity
waves with the QBO: A satellite perspective, J. Geophys. Res.-Atmos., 119,
2329–2355, https://doi.org/10.1002/2013JD020731, 2014. a, b, c, d
Ern, M., Trinh, Q. T., Kaufmann, M., Krisch, I., Preusse, P., Ungermann, J.,
Zhu, Y., Gille, J. C., Mlynczak, M. G., Russell III, J. M., Schwartz, M. J.,
and Riese, M.: Satellite observations of middle atmosphere gravity wave
absolute momentum flux and of its vertical gradient during recent
stratospheric warmings, Atmos. Chem. Phys., 16, 9983–10019,
https://doi.org/10.5194/acp-16-9983-2016, 2016. a, b, c, d
Faber, A., Llamedo, P., Schmidt, T., de la Torre, A., and Wickert, J.: On the
determination of gravity wave momentum flux from GPS radio occultation data,
Atmos. Meas. Tech., 6, 3169–3180, https://doi.org/10.5194/amt-6-3169-2013, 2013. a, b
Fovell, R., Durran, D., and Holton, J. R.: Numerical simulations of
convectively generated stratospheric gravity waves, J. Atmos. Sci., 49,
1427–1442, 1992. a
Fritts, D. C. and Rastogi, P. K.: Convective and dynamical instabilities due
to gravity wave motions in the lower and middle atmosphere: Theory and
observations, Radio Sci., 20, 1247–1277, 1985. a
Fröhlich, K., Schmidt, T., Ern, M., Preusse, P., de la Torre, A., Wickert,
J., and Jacobi, Ch.: The global distribution of gravity wave energy in the
lower stratosphere derived from GPS data and gravity wave modelling: Attempt
and challenges, J. Atmos. Sol.-Terr. Phy., 69, 2238–2248, 2007. a
Gardner, C. S.: Diffusive filtering theory of gravity wave spectra in the
atmosphere, J. Geophys. Res., 99, 20601–20622, 1994. a
Gavrilov, N. M.: Structure of the mesoscale variability of the troposphere
and stratosphere found from radio refraction measurements via CHAMP
satellites, Izv. Atmos. Ocean. Phys., 47, 451–460,
https://doi.org/10.1134/S000143380704007X, 2007. a
Geller, M. A., Alexander, M. J., Love, P. T., Bacmeister, J., Ern, M.,
Hertzog, A., Manzini, E., Preusse, P., Sato, K., Scaife, A. A., and Zhou, T.:
A comparison between gravity wave momentum fluxes in observations and climate
models, J. Climate, 26, 6383–6405, https://doi.org/10.1175/JCLI-D-12-00545.1, 2013. a, b, c, d, e
Gille, J. C., Barnett, J. J., Whitney, J., Dials, M., Woodard, D., Rudolf,
W., Lambert, A., and Mankin, W.: The High Resolution Dynamics Limb Sounder
(HIRDLS) experiment on Aura, Proc. SPIE, 5152, 162–171, 2003. a
Gille, J. C., Barnett, J., Arter, P., Barker, M., Bernath, P., Boone, C.,
Cavanaugh, C., Chow, J., Coffey, M., Craft, J., Craig, C., Dials, M., Dean,
V., Eden, T., Edwards, D. P., Francis, G., Halvorson, C., Harvey, L.,
Hepplewhite, C., Khosravi, R., Kinnison, D., Krinsky, C., Lambert, A., Lee,
H., Lyjak, L., Loh, J., Mankin, W., Massie, S., McInerney, J., Moorhouse, J.,
Nardi, B., Packman, D., Randall, C., Reburn, J., Rudolf, W., Schwartz, M.,
Serafin, J., Stone, K., Torpy, B., Walker, K., Waterfall, A., Watkins, R.,
Whitney, J., Woodard, D., and Young, G.: High Resolution Dynamics Limb
Sounder: Experiment overview, recovery, and validation of initial temperature
data, J. Geophys. Res., 113, D16S43, https://doi.org/10.1029/2007JD008824, 2008. a
Gille, J. C., Gray, L. J., Cavanaugh, C., Choi, K. Y., Coffey, M., Craig, C.,
Karol, S., Hepplewhite, C., Khosravi, R., Kinnison, D., Massie, S., Nardi,
B., Belmonte Rivas, M., Smith, L., Waterfall, A., and Wright, C.: High
Resolution Dynamics Limb Sounder Earth Observing System (EOS): Data
description and quality, Version 6, available at:
http://archive-eos.acom.ucar.edu/hirdls/data/products/HIRDLS-DQD_V6-1.pdf
(last access: 14 September 2017), 2011. a, b, c, d, e, f
Gong, J., Yue, J., and Wu, D. L.: Global survey of concentric gravity waves
in AIRS images and ECMWF analysis, J. Geophys. Res.-Atmos., 120, 2210–2228,
https://doi.org/10.1002/2014JD022527, 2015. a
Hertzog, A., Vial, F., Mechoso, C. R., Basdevant, C., and Coquerez, Ph.:
Quasi-Lagrangian measurements in the lower stratosphere reveal an energy peak
associated with near-inertial waves, Geophys. Res. Lett., 29, 1229,
https://doi.org/10.1029/2001GL014083, 2002. a
Hertzog, A., Boccara, G., Vincent, R. A., Vial, F., and Coquerez, Ph.:
Estimation of gravity-wave momentum flux and phase speeds from long-duration
stratospheric balloon flights: 2. Results from the Vorcore campaign in
Antarctica, J. Atmos. Sci., 65, 3056–3070, 2008. a
Hertzog, A., Alexander, M. J., and Plougonven, R.: On the intermittency of
gravity wave momentum flux in the stratosphere, J. Atmos. Sci., 69,
3433–3448, 2012. a
Hindley, N. P., Wright, C. J., Smith, N. D., and Mitchell, N. J.: The
southern stratospheric gravity wave hot spot: individual waves and their
momentum fluxes measured by COSMIC GPS-RO, Atmos. Chem. Phys., 15,
7797–7818, https://doi.org/10.5194/acp-15-7797-2015, 2015. a
Hines, C. O.: Doppler-spread parameterization of gravity-wave momentum
deposition in the middle atmosphere. Part 1: Basic formulation, J. Atmos.
Sol.-Terr. Phy., 54, 371–386, 1997. a
Holton, J. R.: The role of gravity wave induced drag and diffusion in the
momentum budget of the mesosphere, J. Atmos. Sci., 39, 791–799, 1982. a
Holton, J. R.: The influence of gravity wave breaking on the general
circulation of the middle atmosphere, J. Atmos. Sci., 40, 2497–2507, 1983. a
Jewtoukoff, V., Hertzog, A., Plougonven, R., de la Camara, A., and Lott, F.:
Comparison of gravity waves in the southern hemisphere derived from balloon
observations and the ECMWF analyses, J. Atmos. Sci., 72, 3449–3468,
https://doi.org/10.1175/JAS-D-14-0324.1, 2015. a
Jiang, J. H., Wang, B., Goya, K., Hocke, K., Eckermann, S. D., Ma, J., Wu, D.
L., and Read, W. G.: Geographical distribution and interseasonal variability
of tropical deep convection: UARS MLS observations and analyses, J. Geophys.
Res., 109, D03111, https://doi.org/10.1029/2003JD003756, 2004. a
Kalisch, S., Preusse, P., Ern, M., Eckermann, S. D., and Riese, M.:
Differences in gravity wave drag between realistic oblique and assumed
vertical propagation, J. Geophys. Res.-Atmos., 119, 10,081–10,099,
https://doi.org/10.1002/2014JD021779, 2014. a, b
Kalisch, S., Chun, H.-Y., Ern, M., Preusse, P., Trinh, Q. T., Eckermann, S.
D., and Riese, M.: Comparison of simulated and observed convective gravity
waves, J. Geophys. Res.-Atmos., 121, 13474–13492,
https://doi.org/10.1002/2016JD025235, 2016. a
Kim, Y.-H., Bushell, A. C., Jackson, D. R., and Chun, H.-Y.: Impacts of
introducing a convective gravity-wave parameterization upon the QBO in the
Met Office Unified Model, Geophys. Res. Lett., 40, 1873–1877,
https://doi.org/10.1002/grl.50353, 2013. a
Kim, Y.-J., Eckermann, S. D., and Chun, H.-Y.: An overview of the past,
present and future of gravity-wave drag parameterization for numerical
climate and weather prediction models — Survey article, Atmos. Ocean, 41,
65–98, https://doi.org/10.3137/ao.410105, 2003. a
Krebsbach, M. and Preusse, P.: Spectral analysis of gravity wave activity in
SABER temperature data, Geophys. Res. Lett., 34, L03814,
https://doi.org/10.1029/2006GL028040, 2007. a
Krisch, I., Preusse, P., Ungermann, J., Dörnbrack, A., Eckermann, S. D.,
Ern, M., Friedl-Vallon, F., Kaufmann, M., Oelhaf, H., Rapp, M., Strube, C.,
and Riese, M.: First tomographic observations of gravity waves by the
infrared limb imager GLORIA, Atmos. Chem. Phys., 17, 14937–14953,
https://doi.org/10.5194/acp-17-14937-2017, 2017. a
Lehmann, C. I., Kim, Y.-H., Preusse, P., Chun, H.-Y., Ern, M., and Kim,
S.-Y.: Consistency between Fourier transform and small-volume few-wave
decomposition for spectral and spatial variability of gravity waves above a
typhoon, Atmos. Meas. Tech., 5, 1637–1651, https://doi.org/10.5194/amt-5-1637-2012,
2012. a
Li, H. Y., Huang, C. M., Zhang, S. D., Huang, K. M., Zhang, Y., Gong, Y.,
Gan, Q., and Jia, Y.: Low-frequency oscillations of the gravity wave energy
density in the lower atmosphere at low latitudes revealed by U.S. radiosonde
data, J. Geophys. Res.-Atmos., 121, 13458–13473, https://doi.org/10.1002/2016JD025435,
2016. a
Lindzen, R. S. and Holton, J. R.: A theory of the quasi-biennial oscillation,
J. Atmos. Sci., 25, 1095–1107, 1968. a
Lott, F., Guez, L., and Maury, P.: A stochastic parameterization of
non-orographic gravity waves: Formalism and impact on the equatorial
stratosphere, Geophys. Res. Lett., 39, L06807, https://doi.org/10.1029/2012GL051001,
2012. a
Manney, G. L., Santee, M. L., Rex, M., Livesey, N. J., Pitts, M. C.,
Veefkind, P., Nash, E. R., Wohltmann, I., Lehmann, R., Froidevaux, L., Poole,
L. R., Schoeberl, M. R., Haffner, D. P., Davies, J., Dorokhov, V., Gernandt,
H., Johnson, B., Kivi, R., Kyro, E., Larsen, N., Levelt, P. F., Makshtas, A.,
McElroy, C. T., Nakajima, H., Concepcion Parrondo, M., Tarasick, D. W., von
der Gathen, P., Walker, K. A., and Zinoviev, N. S.: Unprecedented Arctic
ozone loss in 2011, Nature, 478, 469–477, https://doi.org/10.1038/nature10556, 2011. a
McDonald, A. J.: Gravity wave occurrence statistics derived from paired
COSMIC/FORMOSAT3 observations, J. Geophys. Res., 117, D15106,
https://doi.org/10.1029/2011JD016715, 2012. a
Meyer, C. I., Ern, M., Hoffmann, L., Trinh, Q. T., and Alexander, M. J.:
Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations,
Atmos. Meas. Tech., 11, 215–232, https://doi.org/10.5194/amt-11-215-2018, 2018. a, b
Mlynczak, M. G.: Energetics of the mesosphere and lower thermosphere and the
SABER instrument, Adv. Space Res., 44, 1177–1183, 1997. a
Nastrom, G. D., Hansen, A. R., Tsuda, T., Nishida, M., and Ware, R. H.: A
comparison of gravity wave energy observed by VHF radar and GPS/MET over
central North America, J. Geophys. Res., 105, 4685–4687, 2000. a
Orr, A., Bechtold, P., Scinocca, J. F., Ern, M., and Janiskova, M.: Improved
middle atmosphere climate and forecasts in the ECMWF model through a
nonorographic gravity wave drag parameterization, J. Climate, 23, 5905–5926,
https://doi.org/10.1175/2010JCLI3490.1, 2010. a, b
Pfister, L., Scott, S., Loewenstein, M., Bowen, S., and Legg, M.: Mesoscale
disturbances in the tropical stratosphere excited by convection: Observations
and effects on the stratospheric momentum budget, J. Atmos. Sci., 50,
1058–1075, 1993. a
Piani, C., Durran, D., Alexander, M. J., and Holton, J. R.: A numerical study
of three-dimensional gravity waves triggered by deep tropical convection and
their role in the dynamics of the QBO, J. Atmos. Sci., 57, 3689–3702, 2000. a
Placke, M., Hoffmann, P., Gerding, M., Becker, E., and Rapp, M.: Testing
linear gravity wave theory with simultaneous wind and temperature data from
the mesosphere, J. Atmos. Sol.-Terr. Phy., 93, 57–69,
https://doi.org/10.1016/j.jastp.2012.11.012, 2013. a
Plougonven, R. and Zhang, F.: Internal gravity waves from atmospheric jets
and fronts, Rev. Geophys., 52, 33–76, https://doi.org/10.1002/2012RG000419, 2014. a
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.:
Numerical recipes in Fortran 77: The art of scientific computing, 2nd Edn.,
Cambridge Univ. Press, New York, 933 pp., 1992. a
Preusse, P., Eckermann, S. D., Oberheide, J., Hagan, M. E., and Offermann, D.:
Modulation of gravity waves by tides as seen in CRISTA temperatures,
Adv. Space Res., 27, 1773–1778, 2001. a
Preusse, P., Dörnbrack, A., Eckermann, S. D., Riese, M., Schaeler, B.,
Bacmeister, J. T., Broutman, D., and Grossmann, K. U.: Space-based
measurements of stratospheric mountain waves by CRISTA, 1. Sensitivity,
analysis method, and a case study, J. Geophys. Res., 106, 8178,
https://doi.org/10.1029/2001JD000699, 2002. a, b, c, d, e, f, g, h, i, j, k, l
Preusse, P., Ern, M., Eckermann, S. D., Warner, C. D., Picard, R. H.,
Knieling, P., Krebsbach, M., Russell III, J. M., Mlynczak, M. G., Mertens, C.
J., and Riese, M.: Tropopause to mesopause gravity waves in August:
Measurement and modeling, J. Atmos. Sol.-Terr. Phy., 68, 1730–1751,
https://doi.org/10.1016/j.jastp.2005.10.019, 2006. a, b
Preusse, P., Schroeder, S., Hoffmann, L., Ern, M., Friedl-Vallon, F.,
Ungermann, J., Oelhaf, H., Fischer, H., and Riese, M.: New perspectives on
gravity wave remote sensing by spaceborne infrared limb imaging, Atmos. Meas.
Tech., 2, 299–311, https://doi.org/10.5194/amt-2-299-2009, 2009a. a, b, c, d
Preusse, P., Eckermann, S. D., Ern, M., Oberheide, J., Picard, R. H., Roble,
R. G., Riese, M., Russell III, J. M., and Mlynczak, M. G.: Global ray tracing
simulations of the SABER gravity wave climatology, J. Geophys. Res., 114,
D08126, https://doi.org/10.1029/2008JD011214, 2009b. a, b
Preusse, P., Ern, M., Bechtold, P., Eckermann, S. D., Kalisch, S., Trinh, Q.
T., and Riese, M.: Characteristics of gravity waves resolved by ECMWF, Atmos.
Chem. Phys., 14, 10483–10508, https://doi.org/10.5194/acp-14-10483-2014, 2014. a, b, c
Randel, W., Udelhofen, P., Fleming, E., Geller, M., Gelman, M., Hamilton, K.,
Karoly, D., Ortland, D., Pawson, S., Swinbank, R., Wu, F., Baldwin, M.,
Chanin, M.-L., Keckhut, P., Labitzke, K., Remsberg, E., Simmons, A., and Wu,
D. L.: The SPARC intercomparison of middle-atmosphere climatologies, J.
Climate, 17, 986–1003, 2004. a, b, c, d, e, f, g, h, i, j
Remsberg, E. E., Gordley, L. L., Marshall, B. T., Thompson, R. E., Burton,
J., Bhatt, P., Harvey, V. L., Lingenfelser, G., and Natarajan, M.: The Nimbus
7 LIMS version 6 radiance conditioning and temperature retrieval methods and
results, J. Quant. Spectrosc. Ra., 86, 395–424,
https://doi.org/10.1016/j.jqsrt.2003.12.007, 2004. a
Remsberg, E. E., Marshall, B. T., Garcia-Comas, M., Krueger, D.,
Lingenfelser, G. S., Martin-Torres, J., Mlynczak, M. G., Russell III, J. M.,
Smith, A. K., Zhao, Y., Brown, C., Gordley, L. L., Lopez-Gonzalez, M. J.,
Lopez-Puertas, M., She, C.-Y., Taylor, M. J., and Thompson, R. E.: Assessment
of the quality of the Version 1.07 temperature-versus-pressure profiles of
the middle atmosphere from TIMED/SABER, J. Geophys. Res., 113, D17101,
https://doi.org/10.1029/2008JD010013, 2008. a, b, c, d, e
Ribstein, B. and Achatz, U.: The interaction between gravity waves and solar
tides in a linear tidal model with a 4-D ray-tracing gravity-wave
parameterization, J. Geophys. Res.-Space, 121, 8936–8950,
https://doi.org/10.1002/2016JA022478, 2016. a
Richter, J. H., Sassi, F., and Garcia, R. R.: Toward a physically based
gravity wave source parameterization in a general circulation model,
J. Atmos. Sci., 67, 136–156, 2010. a
Riese, M., Spang, R., Preusse, P., Ern, M., Jarisch, M., Offermann, D., and
Grossmann, K. U.: Cryogenic Infrared Spectrometers and Telescopes for the
Atmosphere (CRISTA) data processing and atmospheric temperature and trace gas
retrieval, J. Geophys. Res.-Atmos., 104, 16349–16367,
https://doi.org/10.1029/1998JD100057, 1999. a
Riese, M., Friedl-Vallon, F., Spang, R., Preusse, P., Schiller, C., Hoffmann,
L., Konopka, P., Oelhaf, H., von Clarmann, T., and Höpfner, M.: GLObal limb
Radiance Imager for the Atmosphere (GLORIA): Scientific objectives, Adv.
Space Res., 36, 989–995, https://doi.org/10.1016/j.asr.2005.04.115, 2005. a, b
Riese, M., Oelhaf, H., Preusse, P., Blank, J., Ern, M., Friedl-Vallon, F.,
Fischer, H., Guggenmoser, T., Höpfner, M., Hoor, P., Kaufmann, M.,
Orphal, J., Plöger, F., Spang, R., Suminska-Ebersoldt, O., Ungermann, J.,
Vogel, B., and Woiwode, W.: Gimballed Limb Observer for Radiance Imaging of
the Atmosphere (GLORIA) scientific objectives, Atmos. Meas. Tech., 7,
1915–1928, https://doi.org/10.5194/amt-7-1915-2014, 2014. a, b
Russell III, J. M., Mlynczak, M. G., Gordley, L. L., Tansock, J., and Esplin,
R.: An overview of the SABER experiment and preliminary calibration results,
Proc. SPIE, 3756, 277–288, https://doi.org/10.1117/12.366382, 1999. a
Sato, K., Watanabe, S., Kawatani, Y., Tomikawa, Y., Miyazaki, K., and
Takahashi, M.: On the origins of mesospheric gravity waves, Geophys. Res.
Lett., 36, L19801, https://doi.org/10.1029/2009GL039908, 2009. a
Sato, K., Tateno, S., Watanabe, S., and Kawatani, Y.: Gravity wave
characteristics in the southern hemisphere revealed by a high-resolution
middle-atmosphere general circulation model, J. Atmos. Sci., 69, 1378–1396,
https://doi.org/10.1175/JAS-D-11-0101.1, 2012. a
Schmidt, T., Alexander, P., and de la Torre, A.: Stratospheric gravity wave
momentum flux from radio occultations, J. Geophys. Res.-Atmos., 121,
4443–4467, https://doi.org/10.1002/2015JD024135, 2016. a
Schroeder, S., Preusse, P., Ern, M., and Riese, M.: Gravity waves resolved in
ECMWF and measured by SABER, Geophys. Res. Lett., 36, L10805,
https://doi.org/10.1029/2008GL037054, 2009. a
Scinocca, J. F.: An accurate spectral nonorographic gravity wave drag
parameterization for general circulation models, J. Atmos. Sci., 60,
667–682, 2003. a
Scinocca, J. F. and McFarlane, N. A.: The parametrization of drag induced by
stratified flow over anisotropic orography, Q. J. Roy. Meteor. Soc., 126,
2353–2393, 2000. a
Song, R., Kaufmann, M., Ungermann, J., Ern, M., Liu, G., and Riese, M.:
Tomographic reconstruction of atmospheric gravity wave parameters from
airglow observations, Atmos. Meas. Tech., 10, 4601–4612,
https://doi.org/10.5194/amt-10-4601-2017, 2017a. a
Song, R., Kaufmann, M., Ern, M., Ungermann, J., Liu, G., and Riese, M.: 3-D
tomographic reconstruction of atmospheric gravity waves in the mesosphere and
lower thermosphere (MLT), Atmos. Meas. Tech. Discuss.,
https://doi.org/10.5194/amt-2017-424, in review, 2017b. a
Stephan, C. and Alexander, M. J.: Realistic simulations of atmospheric
gravity waves over the continental U.S. using precipitation radar data,
J. Adv. Model. Earth Syst., 7, 823–835, https://doi.org/10.1002/2014MS000396, 2015. a
van Zandt, T. E.: A model for gravity wave spectra observed by Doppler
sounding system, Radio Sci., 20, 1323–1330, 1985. a
Wang, L. and Alexander, M. J.: Global estimates of gravity wave parameters
from GPS radio occultaton temperature data, J. Geophys. Res., 115, D21122,
https://doi.org/10.1029/2010JD013860, 2010. a, b
Wang, L., Geller, M., and Alexander, M. J.: Spatial and temporal variations
of gravity wave parameters. Part I: Intrinsic frequency, wavelength, and
vertical propagation direction, J. Atmos. Sci., 62, 125–142, 2005. a
Wright, C. J. and Gille, J. C.: Detecting overlapping gravity waves using the
S-Transform, Geophys. Res. Lett., 40, 1850–1855, https://doi.org/10.1002/grl.50378,
2013. a
Wright, C. J., Osprey, S. M., Barnett, J. J., Gray, L. J., and Gille, J. C.:
High Resolution Dynamics Limb Sounder measurements of gravity wave activity
in the 2006 Arctic stratosphere, J. Geophys. Res., 115, D02105,
https://doi.org/10.1029/2009JD011858, 2010. a
Wright, C. J., Rivas, M. B., and Gille, J. C.: Intercomparisons of HIRDLS,
COSMIC and SABER for the detection of stratospheric gravity waves, Atmos.
Meas. Tech., 4, 1581–1591, https://doi.org/10.5194/amt-4-1581-2011, 2011. a
Wright, C. J., Osprey, S. M., and Gille, J. C.: Global observations of
gravity wave intermittency and its impact on the observed momentum flux
morphology, J. Geophys. Res.-Atmos., 118, 10,980–10,993,
https://doi.org/10.1002/jgrd.50869, 2013. a
Wright, C. J., Hindley, N. P., Hoffmann, L., Alexander, M. J., and Mitchell,
N. J.: Exploring gravity wave characteristics in 3-D using a novel
S-transform technique: AIRS/Aqua measurements over the Southern Andes and
Drake Passage, Atmos. Chem. Phys., 17, 8553–8575,
https://doi.org/10.5194/acp-17-8553-2017, 2017. a
Wu, D. L. and Waters, J. W.: Satellite observations of atmospheric variances:
A possible indication of gravity waves, Geophys. Res. Lett., 23, 3631–3634,
1996. a
Yigit, E., Aylward, A. D., and Medvedev, A. S.:
Parameterization of the effects of vertically propagating gravity
waves for thermosphere general circulation models: Sensitivity study,
J. Geophys. Res., 113, D19106, https://doi.org/10.1029/2008JD010135, 2008.
a
Zhu, X.: Radiative damping revisited: Parameterization of damping rate in the
middle atmosphere, J. Atmos. Sci., 50, 3008–3021, 1993. a
Short summary
The gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE) is a global data set of gravity wave (GW) distributions in the stratosphere and the mesosphere observed by the infrared limb sounding satellite instruments HIRDLS and SABER. Typical distributions of multiple GW parameters are provided. Possible applications are scientific studies, comparison with other observations, or comparison with resolved or parametrized GW distributions in models.
The gravity wave climatology based on atmospheric infrared limb emissions observed by satellite...
Altmetrics
Final-revised paper
Preprint