Articles | Volume 18, issue 2
https://doi.org/10.5194/essd-18-903-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-18-903-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A lake salinity dataset produced via microwave and optical imageries
Mingming Deng
State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China
University of Chinese Academy of Sciences, Beijing 100049, China
Ronghua Ma
CORRESPONDING AUTHOR
State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China
University of Chinese Academy of Sciences, Nanjing 211135, China
Lixin Wang
School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China
Kun Xue
State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China
Junfeng Xiong
State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China
Related authors
No articles found.
Zijing Li, Zhiyong Li, Xuze Tong, Lei Dong, Ying Zheng, Jinghui Zhang, Bailing Miao, Lixin Wang, Liqing Zhao, Lu Wen, Guodong Han, Frank Yonghong Li, and Cunzhu Liang
Biogeosciences, 20, 2869–2882, https://doi.org/10.5194/bg-20-2869-2023, https://doi.org/10.5194/bg-20-2869-2023, 2023
Short summary
Short summary
We used random forest models and structural equation models to assess the relative importance of the present climate and paleoclimate as determinants of diversity and aboveground biomass. Results showed that paleoclimate changes and modern climate jointly determined contemporary biodiversity patterns, while community biomass was mainly affected by modern climate. These findings suggest that contemporary biodiversity patterns may be affected by processes at divergent temporal scales.
Cited articles
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaria, J., Fadhel, M. A., Al-Amidie, M., and Farhan, L.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions, J. Big Data, 8, 53, https://doi.org/10.1186/s40537-021-00444-8, 2021.
Bai, Y., Pan, D., Cai, W.-J., He, X., Wang, D., Tao, B., and Zhu, Q.: Remote sensing of salinity from satellite-derived CDOM in the Changjiang River dominated East China Sea, J. Geophys. Res.-Oceans, 118, 227–243, https://doi.org/10.1029/2012JC008467, 2013.
Bayati, M. and Danesh-Yazdi, M.: Mapping the spatiotemporal variability of salinity in the hypersaline Lake Urmia using Sentinel-2 and Landsat-8 imagery, J. Hydrol., 595, 126032, https://doi.org/10.1016/j.jhydrol.2021.126032, 2021.
Breiman, L.: Random forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.
Cao, Z., Wang, M., Ma, R., Zhang, Y., Duan, H., Jiang, L., Xue, K., Xiong, J., and Hu, M.: A decade-long chlorophyll-a data record in lakes across China from VIIRS observations, Remote Sensing of Environment, 301, 113953, https://doi.org/10.1016/j.rse.2023.113953, 2024.
Chen, S. and Hu, C.: Estimating sea surface salinity in the northern Gulf of Mexico from satellite ocean color measurements, Remote Sens. Environ., 201, 115–132, https://doi.org/10.1016/j.rse.2017.09.004, 2017.
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in: KDD'16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), New York, Web of Science, 785–794, https://doi.org/10.1145/2939672.2939785, 2016.
Deng, M., Ma, R., Loiselle, S. A., Hu, M., Xue, K., Cao, Z., Wang, L., Lin, C., and Gao, G.: Monitoring Salinity in Inner Mongolian Lakes Based on Sentinel-2 Images and Machine Learning, Remote Sens., 16, 3881, https://doi.org/10.3390/rs16203881, 2024.
Deng, M., Ma, R., Wang, L., Hu, M., Xue, K., Cao, Z., Xiong, J., and Yu, Z.: A non-optically active lake salinity dataset by satellite remote sensing, Sci. Data, 12, 1324, https://doi.org/10.1038/s41597-025-05686-2, 2025.
Deng, M., Ma, R., Wang, L., Hu, M., Xue, K., and Xiong, J.: A lake salinity dataset produced via microwave and optical imageries, Zenodo [data set], https://doi.org/10.5281/zenodo.18371515, 2026.
Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., and Bargellini, P.: Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services, Remote Sensing of Environment, 120, 25–36, https://doi.org/10.1016/j.rse.2011.11.026, 2012.
Elfouhaily, T., Chapron, B., Katsaros, K., and Vandemark, D.: A unified directional spectrum for long and short wind-driven waves, J. Geophys. Res.-Oceans, 102, 15781–15796, https://doi.org/10.1029/97JC00467, 1997.
Feng, L., Hu, C., Chen, X., Tian, L., and Chen, L.: Human induced turbidity changes in Poyang Lake between 2000 and 2010: Observations from MODIS, J. Geophys. Res.-Oceans, 117, C07006, https://doi.org/10.1029/2011JC007864, 2012.
Florencia Gutierrez, M., Tavsanoglu, U. N., Vidal, N., Yu, J., Teixeira-de Mello, F., Cakiroglu, A. I., He, H., Liu, Z., and Jeppesen, E.: Salinity shapes zooplankton communities and functional diversity and has complex effects on size structure in lakes, Hydrobiologia, 813, 237–255, https://doi.org/10.1007/s10750-018-3529-8, 2018.
Gao, Z., Li, X., Zuo, L., Zou, B., Wang, B., and Wang, W. J.: Unveiling soil salinity patterns in soda saline-alkali regions using Sentinel-2 and SDGSAT-1 thermal infrared data, Remote Sensing of Environment, 322, 114708, https://doi.org/10.1016/j.rse.2025.114708, 2025.
Gleeson, T., Wang-Erlandsson, L., Porkka, M., Zipper, S. C., Jaramillo, F., Gerten, D., Fetzer, I., Cornell, S. E., Piemontese, L., Gordon, L. J., Rockström, J., Oki, T., Sivapalan, M., Wada, Y., Brauman, K. A., Flörke, M., Bierkens, M. F. P., Lehner, B., Keys, P., Kummu, M., Wagener, T., Dadson, S., Troy, T. J., Steffen, W., Falkenmark, M., and Famiglietti, J. S.: Illuminating water cycle modifications and Earth system resilience in the Anthropocene, Water Resources Research, 56, e2019WR024957, https://doi.org/10.1029/2019WR024957, 2020.
González-Gambau, V., Olmedo, E., Turiel, A., González-Haro, C., García-Espriu, A., Martínez, J., Alenius, P., Tuomi, L., Catany, R., Arias, M., Gabarró, C., Hoareau, N., Umbert, M., Sabia, R., and Fernández, D.: First SMOS Sea Surface Salinity dedicated products over the Baltic Sea, Earth Syst. Sci. Data, 14, 2343–2368, https://doi.org/10.5194/essd-14-2343-2022, 2022.
Guo, H., Zhu, X., Huang, J. J., Zhang, Z., Tian, S., and Chen, Y.: An enhanced deep learning approach to assessing inland lake water quality and its response to climate and anthropogenic factors, J. Hydrol., 620, 129466, https://doi.org/10.1016/j.jhydrol.2023.129466, 2023.
Hammer, U. T.: Saline lake ecosystems of the world, Springer Science & Business Media, ISBN 978-90-6193-535-3, 1986.
Han, Y., Zhai, Y., Guo, M., Cao, X., Lu, H., Li, J., Wang, S., and Yue, W.: Hydrochemical and Isotopic Characterization of the Impact of Water Diversion on Water in Drainage Channels, Groundwater, and Lake Ulansuhai in China, Water, 13, https://doi.org/10.3390/w13213033, 2021.
Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T.: Bayesian model averaging: A tutorial, Stat. Sci., 14, 382–401, https://doi.org/10.1214/ss/1009212519, 1999.
Hu, C.: A novel ocean color index to detect floating algae in the global oceans, Remote Sens. Environ., 113, 2118–2129, https://doi.org/10.1016/j.rse.2009.05.012, 2009.
Hu, R. and Zhao, J.: Sea surface salinity variability in the western subpolar North Atlantic based on satellite observations, Remote Sens. Environ., 281, 113257, https://doi.org/10.1016/j.rse.2022.113257, 2022.
Hwang, P. A., Burrage, D. M., Wang, D. W., and Wesson, J. C.: An Advanced Roughness Spectrum for Computing Microwave L-Band Emissivity in Sea Surface Salinity Retrieval, IEEE Geosci. Remote Sens. Lett., 8, 547–551, https://doi.org/10.1109/LGRS.2010.2091393, 2011.
Jeppesen, E., Brucet, S., Naselli-Flores, L., Papastergiadou, E., Stefanidis, K., Noges, T., Noges, P., Attayde, J. L., Zohary, T., Coppens, J., Bucak, T., Menezes, R. F., Sousa Freitas, F. R., Kernan, M., Sondergaard, M., and Beklioglu, M.: Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity, Hydrobiologia, 750, 201–227, https://doi.org/10.1007/s10750-014-2169-x, 2015.
Jeppesen, E., Beklioglu, M., Ozkan, K., and Akyurek, Z.: Salinization Increase due to Climate Change Will Have Substantial Negative Effects on Inland Waters: A Call for Multifaceted Research at the Local and Global Scale, Innovation-Amsterdam, 1, 100030, https://doi.org/10.1016/j.xinn.2020.100030, 2020.
Jang, E., Kim, Y. J., Im, J., Park, Y.-G., and Sung, T.: Global sea surface salinity via the synergistic use of SMAP satellite and HYCOM data based on machine learning, Remote Sens. Environ., 273, 112980, https://doi.org/10.1016/j.rse.2022.112980, 2022.
Jiang, X., Fan, C., Liu, K., Chen, T., Cao, Z., and Song, C.: Centenary covariations of water salinity and storage of the largest lake of Northwest China reconstructed by machine learning, J. Hydrol., 612, 128095, https://doi.org/10.1016/j.jhydrol.2022.128095, 2022.
Jiang, X., Liu, C., Hu, Y., Shao, K., Tang, X., Zhang, L., Gao, G., and Qin, B.: Climate-induced salinization may lead to increased lake nitrogen retention, Water Res., 228, 119354, https://doi.org/10.1016/j.watres.2022.119354, 2023.
Jin, X., Zhu, Q., He, X., Chen, P., Wang, D., Hao, Z., and Huang, H.: Impact of sea surface temperature on satellite retrieval of sea surface salinity, in: Remote sensing of the ocean, sea ice, coastal waters, and large water regions, SPIE Remote Sensing, https://doi.org/10.1117/12.2240841, 2016.
Johnson, J. T. and Zhang, M.: Theoretical study of the small slope approximation for ocean polarimetric thermal emission, IEEE Trans. Geosci. Remote Sensing, 37, 2305–2316, https://doi.org/10.1109/36.789627, 1999.
Kaushal, S. S., Likens, G. E., Pace, M. L., Reimer, J. E., Maas, C. M., Galella, J. G., Utz, R. M., Duan, S., Kryger, J. R., Yaculak, A. M., Boger, W. L., Bailey, N. W., Haq, S., Wood, K. L., Wessel, B. M., Park, C. E., Collison, D. C., Aisin, B. Y. 'aaqob, Gedeon, T. M., Chaudhary, S. K., Widmer, J., Blackwood, C. R., Bolster, C. M., Devilbiss, M. L., Garrison, D. L., Halevi, S., Kese, G. Q., Quach, E. K., Rogelio, C. M. P., Tan, M. L., Wald, H. J. S., and Woglo, S. A.: Freshwater salinization syndrome: from emerging global problem to managing risks, Biogeochemistry, 154, 255–292, https://doi.org/10.1007/s10533-021-00784-w, 2021.
Khenchaf, A.: Bistatic scattering and depolarization by randomly rough surfaces: application to the natural rough surfaces in X-band, Waves Random Media, 11, 61–89, https://doi.org/10.1088/0959-7174/11/2/301, 2001.
Klein, L. and Swift, C.: Improved Model for Dielectric-Constant of Sea-Water at Microwave-Frequencies, IEEE Trans. Antennas Propag., 25, 104–111, https://doi.org/10.1109/TAP.1977.1141539, 1977.
Knaeps, E., Ruddick, K. G., Doxaran, D., Dogliotti, A. I., Nechad, B., Raymaekers, D., and Sterckx, S.: A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters, Remote Sensing of Environment, 168, 66–79, https://doi.org/10.1016/j.rse.2015.06.022, 2015.
Ladwig, R., Rock, L. A., and Dugan, H. A.: Impact of salinization on lake stratification and spring mixing, Limnol. Oceanogr. Lett., 8, 93–102, https://doi.org/10.1002/lol2.10215, 2023.
Le Vine, D. M., Lang, R. H., Zhou, Y., Dinnat, E. P., and Meissner, T.: Status of the Dielectric Constant of Sea Water at L-Band for Remote Sensing of Salinity, IEEE Trans. Geosci. Remote Sensing, 60, 4210114, https://doi.org/10.1109/TGRS.2022.3207944, 2022.
LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521, 436–444, 2015.
Lee, Z., Shang, S., Lin, G., Chen, J., and Doxaran, D.: On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the visible to shortwave-infrared domain, Appl. Optics, 55, 1738–1750, https://doi.org/10.1364/AO.55.001738, 2016.
Liangcheng County: The surface area of Lake Daihai in Liangcheng county has reached a 10-year high, Liangcheng County People's Government, https://www.liangcheng.gov.cn (last access: 20 December 2025), 2025.
Liu, C., Wu, F., Jiang, X., Hu, Y., Shao, K., Tang, X., Qin, B., and Gao, G.: Climate Change Causes Salinity To Become Determinant in Shaping the Microeukaryotic Spatial Distribution among the Lakes of the Inner Mongolia-Xinjiang Plateau, Microbiol. Spectr., 11, e03178-22, https://doi.org/10.1128/spectrum.03178-22, 2023a.
Liu, C., Zhu, L., Wang, J., Ju, J., Ma, Q., and Kou, Q.: The decrease of salinity in lakes on the Tibetan Plateau between 2000 and 2019 based on remote sensing model inversions, Int. J. Digit. Earth, 16, 2644–2659, https://doi.org/10.1080/17538947.2023.2233469, 2023b.
Liu, D., Shi, K., Chen, P., Yan, N., Ran, L., Kutser, T., Tyler, A. N., Spyrakos, E., Woolway, R. I., Zhang, Y., and Duan, H.: Substantial increase of organic carbon storage in Chinese lakes, Nat. Commun., 15, 8049, https://doi.org/10.1038/s41467-024-52387-2, 2024.
Liu, Y., Bao A., and Chen X.: Measuring salinity of low salinity lake by optical remote sensing: A case study of Bosten Lake, Journal of Remote Sensing, 18, 902–911, 2014.
Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., and Lee, S.-I.: From local explanations to global understanding with explainable AI for trees, Nat. Mach. Intell., 2, 56–67, https://doi.org/10.1038/s42256-019-0138-9, 2020.
Ma, R., Yang, G., Duan, H., Jiang, J., Wang, S., Feng, X., Li, A., Kong, F., Xue, B., Wu, J., and Li, S.: China's lakes at present: Number, area and spatial distribution, Sci. China-Earth Sci., 54, 283–289, https://doi.org/10.1007/s11430-010-4052-6, 2011.
Ma, W., Liu, G., Yu, Y., and Du, Y.: Roughness correction method for salinity remote sensing using combined active/passive observations, Acta Oceanol. Sin., 40, 189–195, https://doi.org/10.1007/s13131-021-1744-z, 2021.
McGrath, G. S., Huntley, B., and Venarsky, M. P.: Variation of salinity with water level in shallow lakes is complex and rich in information, J. Hydrol., 660, 133347, https://doi.org/10.1016/j.jhydrol.2025.133347, 2025.
Meissner, T., Wentz, F. J., and Ricciardulli, L.: The emission and scattering of L-band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor, J. Geophys. Res.-Oceans, 119, 6499–6522, https://doi.org/10.1002/2014JC009837, 2014.
Mobley, C. D.: Estimation of the remote-sensing reflectance from above-surface measurements, Appl. Optics, 38, 7442–7455, https://doi.org/10.1364/AO.38.007442, 1999.
Mueller, J. L., Morel, A., Frouin, R., Davis, C., Arnone, R., Carder, K., Lee, Z. P., Steward, R. G., Hooker, S., and Mobley, C. D.: Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 4, Vol. 3, Radiometric Measurements and Data Analysis Protocols, NASA Goddard Space Flight Center, https://seabass.gsfc.nasa.gov/wiki (last access: 12 March 2025), 2003.
Muñoz Sabater, J.: ERA5-Land monthly averaged data from 1950 to present, Climate Data Store [data set], https://doi.org/10.24381/cds.68d2bb30, 2019.
Peake, W.: The Interaction of Electromagnetic Waves with Some Natural Surfaces, 111 pp., IEEE, https://doi.org/10.1109/TAP.1959.1144736, 1959.
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution mapping of global surface water and its long-term changes, Nature, 540, 418–422, https://doi.org/10.1038/nature20584, 2016.
Reul, N., Saux-Picart, S., Chapron, B., Vandemark, D., Tournadre, J., and Salisbury, J.: Demonstration of ocean surface salinity microwave measurements from space using AMSR-E data over the Amazon plume, Geophys. Res. Lett., 36, L13607, https://doi.org/10.1029/2009GL038860, 2009.
Reul, N., Grodsky, S. A., Arias, M., Boutin, J., Catany, R., Chapron, B., D'Amico, F., Dinnat, E., Donlon, C., Fore, A., Fournier, S., Guimbard, S., Hasson, A., Kolodziejczyk, N., Lagerloef, G., Lee, T., Le Vine, D. M., Lindstrom, E., Maes, C., Mecklenburg, S., Meissner, T., Olmedo, E., Sabia, R., Tenerelli, J., Thouvenin-Masson, C., Turiel, A., Vergely, J. L., Vinogradova, N., Wentz, F., and Yueh, S.: Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019), Remote Sens. Environ., 242, 111769, https://doi.org/10.1016/j.rse.2020.111769, 2020.
Rimmer, A., Boger, M., Aota, Y., and Kumagai, M.: A lake as a natural integrator of linear processes: Application to Lake Kinneret (Israel) and Lake Biwa (Japan), J. Hydrol., 319, 163–175, https://doi.org/10.1016/j.jhydrol.2005.07.018, 2006.
Rusuli, Y., Li, L., Li, F., and Eziz, M.: Water-level regulation for freshwater management of Bosten Lake in Xinjiang, China, Water Sci. Technol.-Water Supply, 16, 828–836, https://doi.org/10.2166/ws.2016.002, 2016.
Rusydi, A. F.: Correlation between conductivity and total dissolved solid in various type of water: A review, in: 1st Global Colloquium on GeoSciences and Engineering 2017 (GCGE), Bristol, IoP Conference Series – Earth and Environmental Science, Web of Science, 012019, https://doi.org/10.1088/1755-1315/118/1/012019, 2018.
Shareef, M. A., Toumi, A., and Khenchaf, A.: Estimating Of Water Quality Parameters Using SAR And Thermal Microwave Remote Sensing Data, in: 2016 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), New York, Web of Science, 586–590, https://doi.org/10.1109/ATSIP.2016.7523149, 2016.
Taillade, T., Engdahl, M., and Fernandez, D.: Can We Retrieve Sea Surface Salinity With Polarimetric Radar Measurements?, IEEE Geoscience and Remote Sensing Letters, 20, https://doi.org/10.1109/LGRS.2023.3286436, 2023.
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B., Floury, N., Brown, M., Traver, I. N., Deghaye, P., Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L'Abbate, M., Croci, R., Pietropaolo, A., Huchler, M., and Rostan, F.: GMES Sentinel-1 mission, Remote Sens. Environ., 120, 9–24, https://doi.org/10.1016/j.rse.2011.05.028, 2012.
Urquhart, E. A., Zaitchik, B. F., Hoffman, M. J., Guikema, S. D., and Geiger, E. F.: Remotely sensed estimates of surface salinity in the Chesapeake Bay: A statistical approach, Remote Sens. Environ., 123, 522–531, https://doi.org/10.1016/j.rse.2012.04.008, 2012.
Vanhellemont, Q.: Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives, Remote Sens. Environ., 225, 175–192, https://doi.org/10.1016/j.rse.2019.03.010, 2019.
Wang, D., Huang, Y., and Yang, H.: Seasonal Differences of Lake Bacterial Community Structures and Their Driving Mechanisms in the Northeastern of the Qinghai-Tibet Plateau, Journal of Lake Sciences, 35, 267–282, 2023a.
Wang, S., Jiang, X., Spyrakos, E., Li, J., Mcglinchey, C., Constantinescu, A. M., and Tyler, A. N.: Water color from Sentinel-2 MSI data for monitoring large rivers: Yangtze and Danube, Geo-Spat. Inf. Sci., https://doi.org/10.1080/10095020.2023.2258950, 2023b.
Williamson, C. E., Saros, J. E., and Schindler, D. W.: Sentinels of Change, Science, 323, 887–888, https://doi.org/10.1126/science.1169443, 2009.
Wurtsbaugh, W. A., Miller, C., Null, S. E., DeRose, R. J., Wilcock, P., Hahnenberger, M., Howe, F., and Moore, J.: Decline of the world's saline lakes, Nat. Geosci., 10, 816–821, https://doi.org/10.1038/ngeo3052, 2017.
Xie, D., Chen, K.-S., and Yang, X.: Effects of Wind Wave Spectra on Radar Backscatter From Sea Surface at Different Microwave Bands: A Numerical Study, IEEE Trans. Geosci. Remote Sensing, 57, 6325–6334, https://doi.org/10.1109/TGRS.2019.2905558, 2019.
Xu, P., Liu, K., Shi, L., and Song, C.: Machine learning modeling reveals the spatial variations of lake water salinity on the endorheic Tibetan Plateau, J. Hydrol.-Reg. Stud., 56, 102042, https://doi.org/10.1016/j.ejrh.2024.102042, 2024.
Xue, K., Ma, R., Wang, M., Wei, X., Liu, H., Hu, M., Jiang, L., Shen, M., and Cao, Z.: A state-of-art algorithm to retrieve particulate organic carbon concentration in optically complex waters via multiple satellite missions, Remote Sens. Environ., 329, 114914, https://doi.org/10.1016/j.rse.2025.114914, 2025.
Yee, T. W. and Wild, C. J.: Vector generalized additive models, J. R. Stat. Soc. Ser. B-Stat. Methodol., 58, 481–493, 1996.
Yihdego, Y. and Webb, J.: Modelling of seasonal and long-term trends in lake salinity in southwestern Victoria, Australia, J. Environ. Manage., 112, 149–159, https://doi.org/10.1016/j.jenvman.2012.07.002, 2012.
Young, I. R. and Verhagen, L. A.: The growth of fetch limited waves in water of finite depth. Part 1. Total energy and peak frequency, Coastal Engineering, 29, 47–78, https://doi.org/10.1016/S0378-3839(96)00006-3, 1996.
Zhang, L., Zhang, Y., and Yin, X.: Aquarius sea surface salinity retrieval in coastal regions based on deep neural networks, Remote Sens. Environ., 284, 113357, https://doi.org/10.1016/j.rse.2022.113357, 2023.
Zhao, J. and Temimi, M.: An Empirical Algorithm for Retreiving Salinity in the Arabian Gulf: Application to Landsat-8 Data, in: 2016 36th IEEE International Geoscience and Remote Sensing Symposium (IGARSS), New York, Web of Science, 4645–4648, https://doi.org/10.1109/IGARSS.2016.7730212, 2016.
Zheng, X., Zhang, M., Xu, C., and Li, B.: China Salt Lakes Record, Beijing: Science Press, ISBN 703010059X, 2002.
Zou, J., Sun, B., Zhao, S., Pan, X., and Ye, F.: Analysis of changes in water chemistry characteristics and influencing factors of three major lakes in Inner Mongolia in the last decade, Journal of Environmental Engineering Technology, 14, 1247–1259, 2024.
Short summary
Lake salinity is an important parameter to characterize physical and biogeochemical processes. We proposed a microwave-optical integrated framework for high-precision salinity estimation, producing a 10 m resolution Inner Mongolia Xinjiang Lake zone lake salinity dataset (2016–2024). Salinity increased significantly in Lake Daihai and Lake Dalinor. The dataset can contribute to research on salinization prevention and salinity budget research.
Lake salinity is an important parameter to characterize physical and biogeochemical processes....
Altmetrics
Final-revised paper
Preprint