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Abstract. Lake salinity is an important parameter to characterize physical and biogeochemical processes and
a fundamental indicator to evaluate lake water quality. However, its estimation in inland waters has been chal-
lenging because passive microwave salinity satellites lack sufficient spatial resolution, and optical satellites can-
not directly measure it. To address it, we constructed a framework for estimating lake salinity by combining
Synthetic Aperture Radar (SAR) and Multi-Spectral Instrument (MSI) data. It can be summarized in step 1:
construct a salinity mechanism model based on SAR data using the Elfouhaily spectrum, dielectric constant,
and small perturbation method (SPM) models; step 2: develop four machine learning (ML) salinity algorithms
using quasi-synchronous salinity and MSI with SAR imagery; and step 3: build an ensemble model to estimate
salinity by coupling the mechanism and ML models via a generalized additive model. The proposed integrated
algorithm (N = 84, RMSE= 0.60 ppt, and MAPE= 2.3 %) outperformed single-satellite microwave mechanis-
tic or ML models across all eleven lakes in the Inner Mongolia Xinjiang Lake zone. On this basis, we recon-
structed the lake salinity dataset for 2016–2024 and conducted independent validation (N = 65, R2

= 0.97, and
RMSE= 0.89 ppt) and pixel-level histogram validation confirmed dataset quality, with no significant systematic
bias across lake types. The reconstruction revealed a spatial pattern of smooth transition from the nearshore to
the center and trends with significant increases in Lake Daihai and Lake Dalinor. The dataset and its development
framework will facilitate exploration of salinity status and trends in inland lakes, providing scientific evidence
and methodological support for salinization prevention and global lake salinity budget research. The dataset
(10 m spatial resolution, TIF format) is publicly available via Zenodo (https://doi.org/10.5281/zenodo.18371515,
Deng et al., 2026) and includes annual/seasonal salinity rasters and statistical files.

1 Introduction

Lakes are important reservoirs of surface water resources and
can serve as indicators and regulators of the global water cy-
cle and regional climate (Williamson et al., 2009; Gleeson
et al., 2020). Salinity (total dissolved salt concentration) as a
critical parameter characterizing the physicochemical prop-
erties of lake water controls biological, physical, and chem-
ical processes within lake ecosystems (Zhao and Temimi,

2016; Wurtsbaugh et al., 2017), including microbial commu-
nity structure, species abundance, vertical mixing of water
masses, water resource utilization, and nitrogen transforma-
tion (Liu et al., 2023a; Florencia Gutierrez et al., 2018; Lad-
wig et al., 2023; Kaushal et al., 2021; Jiang et al., 2023). Re-
cently, climate change in the lake hydrological system caused
water salinization, weakening the stability of lake ecosys-
tems, particularly in arid and semi-arid regions (Jeppesen
et al., 2015; Wurtsbaugh et al., 2017). Therefore, frequent
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and effective monitoring of water salinity is necessary for
salinization prevention and sustainable development. How-
ever, the low density of salinity field measurements cannot
reveal its spatial patterns and long-term trends, limiting the
perceptions of salinity for lake communities. Existing inland
lake salinity datasets (e.g., Xu et al., 2024, Tibetan Plateau:
RMSE= 12.51 g L−1, > 1 km resolution) lack high spatial
detail and arid-region specificity, whereas our dataset pro-
vides 10 m resolution and targets IMXL’s multi-type lakes
(freshwater to oligosaline).

Satellite remote sensing enables the frequent detection of
substance concentrations in lake waters by utilizing different
electromagnetic wavebands to address the issues of data spar-
sity and discontinuity. The response of microwave sensors
to the dielectric properties of water allows it to be uniquely
advantageous for salinity observation (Le Vine et al., 2022).
Missions designed to measure water salinity from space have
made progress in the oceanographic field, with satellite sen-
sors including SMOS, SMAP, and Aquarius. However, their
spatial resolution of 40–150 km is too coarse for small-scale
inland lakes (Reul et al., 2020). The Sentinel-1 Synthetic
Aperture Radar (SAR), operating at 5.405 GHz with 10 m
spatial resolution, has an acquisition orbit for both ascend-
ing and descending and a revisit interval of 6 d (dual-satellite
constellation), which supports the space observations of lake
salinity (Torres et al., 2012). The backscatter coefficient
of water surfaces measured by SAR is mainly determined
by radar-related parameters (frequency and incidence angle,
etc.), water surface geometry (roughness), and water physical
properties (dielectric constant and temperature, etc.) (Peake,
1959; Reul et al., 2020). Changes in salinity directly affect
the dielectric constant of water, which in turn influences the
Fresnel reflection coefficient at the water surface and ulti-
mately causes variations in the lake water backscatter coef-
ficient. Clearly, when radar parameters are fixed, the con-
tribution of the water surface geometry must be separated
to solve for salinity from the SAR backscatter coefficient
(Hwang et al., 2011; Meissner et al., 2014; Ma et al., 2021;
Taillade et al., 2023). The microwave backscatter coefficient
model combined with the wave spectrum model was com-
monly used to quantify the contribution of surface roughness
because it effectively described the energy information of
wind waves (Xie et al., 2019). The dielectric constant model
was essential for inverting salinity after removing the con-
tributions from roughness. However, the current predomi-
nant dielectric constant model was developed by seawater ex-
periments with simple ionic compositions (Klein and Swift,
1977), whereas inland lakes receive substantial exogenous
sources that result in complex ionic compositions (Zou et
al., 2024). Salinity estimation at the lake inlet region or in
optically complex waters (such as high variability in sus-
pended minerals and phytoplankton) may introduce uncer-
tainty using the present dielectric constant models (Chen and
Hu, 2017; González-Gambau et al., 2022; Xue et al., 2025).

Hence, this study attempts to supplement mechanism-based
microwave salinity estimation with optical data.

Optical data can effectively retrieve optically active con-
stituents (OACs) in lake water, and it has been demonstrated
that the colored dissolved organic matter (CDOM) absorp-
tion coefficient [ag(λ), m−1] and Secchi Disk Depth (SDD,
m) can serve as salinity tracers for inland lakes, which con-
firmed the feasibility of optical data in salinity detection (Bai
et al., 2013; Liu et al., 2023b). But the tracer method was
constrained by the accuracy of indirect parameters and prone
to errors. Furthermore, their correlations with salinity vary
across different lakes and seasons to limit model transferabil-
ity (Liu et al., 2014; Chen and Hu, 2017). Machine learning
(ML) algorithms could handle the nonlinear relationship be-
tween salinity and remote sensing reflectance [Rrs(λ), sr−1]
to avoid errors caused by the traces. It is becoming an in-
novative approach for retrieving non-OACs (e.g., salinity)
from optical satellite imagery (Deng et al., 2024; Guo et al.,
2023; Liu et al., 2024). The Sentinel-2 Multi-Spectral Instru-
ment (Sentinel-2 MSI) with high spatial resolution (10–60 m)
and temporal resolution (5 d) (Drusch et al., 2012), enables
the detection of water salinity. However, relying on optical
data for salinity estimation is insufficient at the mechanism
level, while microwave data compensates for this deficiency
as it has a clear physical mechanism. Despite its potential,
the combination of microwave and optical data for regional
and long-term salinity monitoring remains underexplored,
restricting the advancement of space observation missions
for inland lake salinity.

This study aims to: (1) develop a microwave-optical inte-
grated framework for high-precision salinity estimation; (2)
produce a 10 m resolution Inner Mongolia Xinjiang Lake
zone (IMXL) lake salinity dataset (2016–2024); and (3)
validate dataset quality and analyze salinity spatiotemporal
trends.

2 Data and Methods

2.1 Dataset coverage

The IMXL spans 70–120° E longitude and 30–50° N latitude,
covering 11 arid or semi-arid inland lakes (Ma et al., 2011).
The topographic patterns of alternating mountains and basins
direct surface water and groundwater into the depressions,
forming numerous terminal lakes. The salinity of lakes in
this region spans multiple magnitudes (Table 1). Referenc-
ing the classification criteria for lake salinity (Hammer, 1986;
Zheng et al., 2002), the lakes were categorized as fresh-
water (< 1 g L−1), brackish (1–3 g L−1), and oligosaline (3–
35 g L−1) types. The salinity dataset to be produced covers
the time span from 2016 to 2024 and the geographical cover-
age of 11 typical lakes within IMXL (Fig. 1). Notably, some
years are missing data for Lake Hulun and Lake Juyan due
to insufficient SAR imagery or multi-source data matching
pairs.
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Figure 1. (a) Spatial distribution of sampled lakes covered by the dataset, inlet rivers, and sub-basins. (b–l) Eleven study lakes in the IMXL
from east to west and its surface water occurrence frequency (Pekel et al., 2016), including Lake Hulun, Lake Dalinor, Lake Chagannaoer,
Lake Daihai, Lake Nanhaizi, Lake Hongjiannao, Lake Ulansuhai, Lake Juyan, Lake Ulungur, Lake Bosten, and Lake Sayram. Cross symbols
in each lake denote the field salinity sampling points. The frequency of surface water occurrence refers to the normalized count of pixels that
were identified as water in Landsat imagery from 1984 to 2021.

2.2 Data products

Data products for each lake contain both raw data and de-
rived data. The raw data includes Sentinel-1 SAR backscat-
ter data and incidence angle, Sentinel-2 MSI remote sensing
reflectance, and Landsat-8 Thermal Infrared Sensor (TIRS)
temperature data. Derived data comprise daily, quarterly,
yearly and all-season average salinity rasters, along with their
mean and standard deviation statistical files (Table 2). All
raw or derived raster data is stored in TIF format based on
the WGS1984_UTM_Zone projection with a spatial resolu-

tion of 10 m. The statistical documents are compiled in Excel
format.

2.3 Metadata

2.3.1 Sensors parameters

Sentinel-1 SAR Level-1 GRD data operates at a center wave-
length in the C-band, acquired in Interferometric Wide Swath
(IW) mode with a pixel spacing of 10 m. It possesses both
VV and VH polarization and simultaneously measures the

Earth Syst. Sci. Data, 18, 903–925, 2026 https://doi.org/10.5194/essd-18-903-2026
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Table 2. Attribute names and descriptions of derived data.

Attribute Description

LakeName Customized simplified names for each lake in this study.

Daily salinity rasters Produced individual salinity data by the proposed framework, naming convention:
[LakeName]_[YYYYMMDD]_ [ProductType]_ [Resolution].tif

Quarterly salinity
rasters

Calculated season-average salinity data, naming convention:
[LakeName]_[YYYY]_[Season]_[ProductType]_[Resolution].tif

Yearly salinity rasters Calculated annual-average salinity data, naming convention:
[LakeName]_[YYYY]_[ProductType]_[Resolution].tif

All-season salinity
rasters

Calculated all-season average salinity data, naming convention:
[LakeName]_[Season]_[ProductType]_[Resolution].tif

Statistical files Compiled mean value and standard deviation of salinity images for each lake, name:
[IMXLSAL]_[MeanSTD]_[2016–2024].xlsx

incidence angle. Sentinel-2 MSI Level-1C images provide
13 spectral bands covering visible optical, near-infrared, and
shortwave infrared, with red, green, blue, and near-infrared
bands having 10 m spatial resolution, while other bands offer
20 or 60 m resolution. Landsat-8 TIRS is a dual-band push-
broom radiometer containing band 10 (10.9 µm) and band 11
(12.0 µm) with a spatial resolution of 100 m and a radiomet-
ric resolution of 12-bit.

2.3.2 Processing procedure

The Copernicus Data Space Ecosystem (CDSE) offers free
Sentinel-1 SAR data that can be loaded directly at the Google
Earth Engine (GEE) platform. These products were pro-
cessed with thermal noise removal, radiometric calibration,
terrain correction, and debelization. Additionally, we em-
ployed a 3× 3 window Lee filter to restrain coherent spot
noise in the radar imagery. Lastly, the backscattering coef-
ficients of VV and VH as well as the incident angle were
acquired.

Sentinel-2 MSI Level-1C images were also downloaded
from CDSE. ACOLITE processors designed for water pro-
cessing have demonstrated excellent performance in inland
waters (Deng et al., 2024). This study derives multi-band
Rrs(λ) data with a spatial resolution of 10 m from MSI im-
ages using the Dark Spectrum Fitting algorithm (DSF) al-
ready embedded within the ACOLITE processor (Knaeps
et al., 2015; Vanhellemont, 2019). It produced 11 bands,
namely, Rrs (443), Rrs (492), Rrs (559), Rrs (665), Rrs (704),
Rrs (740), Rrs (780), Rrs (833), Rrs (864), Rrs (1610), and Rrs
(2186).

Landsat-8 TIRS data was provided by the U.S. Geologi-
cal Survey and can be loaded at the GEE platform with the
Level-2 product, namely surface temperature data. The raw
values were corrected to degrees Celsius (°C) with a scaling
factor. The lake surface temperature (LST) data was then re-

sampled with 10 m and calibrated to align with SAR and MSI
data.

Sentinel-1 SAR, Sentinel-2 MSI, and Landsat-8 TIRS LST
images were matched with a 3 d time window to ensure salin-
ity consistency over short periods. Eventually, a total of 385
multi-source satellite image pairs were obtained.

2.3.3 Quality controls

High-quality Sentinel-2 MSI images with few clouds covered
(< 10 %) were selected by visual interpretation and down-
loaded for all ice-free periods. Invalid pixels of clouds and
cloud shadows covered in band 10 of Landsat-8 TIRS were
masked with the QA_PIXEL band. Furthermore, the study
extracted water and removed aquatic vegetation in the MSI
image processing to avoid outliers generated by the model in
sub-observed pixels. Using lake outline data from the Lake-
Watershed Science Data Center (http://lake.geodata.cn, last
access: 23 August 2025) as the lake’s initial boundary (Ma
et al., 2011). Calculate normalized difference water index
(NDWI) and combine it with the OTSU algorithm to set
thresholds for extracting water from MSI imagery. The float-
ing algae index (FAI) allows for spectral diagnosis of floating
algae scum and was also useful in inland lakes (Hu, 2009).
The FAI threshold was defined as 0.03 after multiple adjust-
ments in the grassland lake Ulansuhai to exclude aquatic veg-
etation. A three-pixel inner buffer was created to mask out
mixed pixels and minimize uncertainties in salinity estima-
tion caused by bottom reflections (Feng et al., 2012), after
which the lake area was counted.

2.4 Field dataset

From July 2017 to October 2024, 322 field survey data were
collected from 11 lakes using two approaches: uniformly dis-
tributed field measurements and the China National Environ-
ment Monitoring Centre (CNEMC, https://www.cnemc.cn/,

https://doi.org/10.5194/essd-18-903-2026 Earth Syst. Sci. Data, 18, 903–925, 2026
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last access: 1 June 2025). These data were divided into
Dataset one and Dataset two. Dataset one contains 257 field
salinity data, with 69 sets of collected surface water sam-
ples (depth< 0.5 m) and simultaneously measured SDD and
in situ spectral data. Dataset one was used for training, test-
ing, and five-fold cross-validation (CV) of the ML salin-
ity algorithm and also as the initial driver for the salinity
mechanistic model. Dataset two contains salinity data trans-
formed from conductivity measurements by CNEMC or the
latest data not involved in modeling. The conversion function
was established based on synchronized measured conductiv-
ity and salinity in the IMXL (R2

= 0.99, RMSE= 1.76 ppt,
and MAPE= 28.4 %) (Rusydi, 2018), as shown in Table 3.
Dataset two (65 samples) was selected to ensure spatial inde-
pendence (no overlap with Dataset 1’s sampling points) and
temporal coverage (2017–2024, including 10 % of 2024 data
not used in modelling) to validate generalization. The surface
water salinity (units ppt) and conductivity (units µS cm−1) of
the lake were in situ measured using a YSI multi-parameter
water quality instrument (YSI ProDSS, USA). Spectral Evo-
lution PSR-1100f (350–1050 nm, 1 nm spectral resolution)
was used to measure water surface upward radiance (Lsw),
sky radiance (Lsky), and gray plate radiance (Lp) at an obser-
vation direction of 40° from the nadir and 135 degrees from
the Sun (Mobley, 1999; Mueller et al., 2003). These radiance
data were further used to calculate Rrs(λ), with the formula
given as follows (Mobley, 1999):

Rrs (λ)=
[(
Lsw− ρ×Lsky

)
× ρp

]
/π ×Lp (1)

where ρ represents the water-air interface reflectance,
assumed to be 0.0028 under calm conditions (wind
speed< 4 m s−1), and ρp denotes the reflectance of the ref-
erence gray plate defined as 0.30. We calculated it by set-
ting Rrs(λ) between 950 and 1050 nm to zero, since a low
signal-to-noise ratio was observed within this range (Lee et
al., 2016). Finally, convolve Rrs(λ) through the spectral re-
sponse function (SRF) to simulate bands of the MSI.

Field water samples were stored in polyethylene bottles
and rapidly transported back to the laboratory for analysis
at the end of the cruise. Water samples were filtered us-
ing Whatman GF/F films with a 0.7 µm pore size to extract
chlorophyll a (Chl a, µg L−1), suspended particulate matter
(mg L−1), and CDOM samples. Laboratory measurements of
these parameter concentrations can be found in Deng et al.
(2024).

2.5 Ancillary data

ERA5 land reanalysis data was published by the European
Center for Medium-Range Weather Forecasts (ECMWF,
https://cds.climate.copernicus.eu/, last access: 1 June 2025)
and can be downloaded for free. This product provides
hourly meteorological variables in GeoTIF format with a
spatial resolution of approximately 11 km (Muñoz Sabater,

2019). It has been available since 1980 and provides a con-
tinuous record that can compensate for gaps in field meteo-
rological observations. We downloaded hourly wind speed
(WS, m s−1), temperature (TEMP, °C), evaporation (EVP,
mm) and precipitation (PRE, mm) data for each lake from
GEE during 2016–2024 and calculated daily data on this ba-
sis. Additionally, nighttime light (NTL, nW cm−2 sr−1) in the
Lake Daihai sub-basin was derived from the Visible Infrared
Imaging Radiometer Suite (VIIRS). Population (POP) data
were sourced from the statistical yearbook.

2.6 Construction of salinity model

This study proposed a brand-new framework integrating mi-
crowave and optical data to estimate lake salinity, as illus-
trated in Fig. 2. It consists of three modules: data processing
and feature building, model construction and ensemble, and
lake salinity estimation. Module 2 is the core of the frame-
work, aiming to use wave spectrum, backscatter coefficient,
and dielectric constant models as forward models to build
a salinity mechanistic model, then establish ML models, and
finally construct an ensemble model by coupling mechanistic
and ML results via a Generalized Additive Models (GAM)
model.

2.6.1 Mechanistic salinity model

1. Construct a lake surface roughness model. The wave
spectrum was used to rapidly calculate roughness pa-
rameters. The roughness of a lake surface can be char-
acterized by the height standard deviation (kσ ) and the
correlation length (kL). The Elfouhaily spectrum con-
siders the long-wave and short-wave effects simultane-
ously and defines the inverse wave age as a function of
wind speed and fetch. It was widely used to describe the
energy information of surface wind waves, and its basic
formula was given as follows (Elfouhaily et al., 1997):

9 (k,ϕ)=
1
k
S (k)φ (k,ϕ) (2)

S (k)= (Bl+Bh)/k3 (3)

where k is the wave number (rad m−1), ϕ is the direction
angle, 9(k,ϕ) is the directional spectrum, S(k) is the
omnidirectional spectrum,Bl is the long-wave curvature
spectrum, and Bh is the short-wave curvature spectrum.
Parameter adjustments to the Elfouhaily model were re-
quired due to the significant differences in wave forma-
tion and magnitude between lakes and oceans. Fetch
was parameterized as a function of lake area (Fetch=
e×
√

area) to adjust the inverse wave age, which influ-
ences the wave mode of the Elfouhaily model. e is an
empirical coefficient of 0.65 determined by several field
observations and published lake experiments (Young
and Verhagen, 1996). The Elfouhaily model can cal-
culate the height variance (η2) and mean square slope
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Table 3. Conversion equation and factors for salinity and conductivity of lakes in the IMXL.

Salinity (ppt) Salinity = conductivity · factors/1000

Conductivity (µS cm−1) < 1000 1000–
10 000

10 000–
20 000

20 000–
30 000

30 000–
45 000

45 000–
60 000

60 000–
65 000

> 65 000

Factors 0.50 0.55 0.58 0.60 0.65 0.70 0.725 0.75

R2 0.99

95 % CI 0.98–1.00

Figure 2. A brand-new lake water salinity estimation framework by a stacking salinity model, consisting of three steps: step one, data
processing and feature construction; step two, model construction and ensemble; and step three, salinity estimation. Details of individual
steps and the meaning of the symbols are described below.
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(mss) of surface waves, with the specific formulas de-
tailed in Elfouhaily et al. (1997). The kσ and slope can
be obtained by taking the square root of these two pa-
rameters, respectively. Due to the small scale of lake
waves, the study assumed kL as the maximum distance
between wave peaks and troughs and defined it as the ra-
tio of kσ to slope based on trigonometric relationships.
Therefore, the initial lake roughness can be calculated
by using the adjusted Elfouhaily model in combination
with wind speed and lake area.

2. Calculate pixel-based roughness by combining the
backscatter coefficient model and cost function. The
small perturbation method (SPM), a backscatter coef-
ficient simulation model, is suitable for water surfaces
with small undulations dominated by capillary waves
(Johnson and Zhang, 1999; Khenchaf, 2001; Shareef et
al., 2016), whose fundamental formula is as follows:

σ 0
pq (dB)= 4kL2kσ 2cos4θ

∣∣αpq
∣∣2exp(−(kLsinθ )2) (4)

aVV =
(εr− 1)[sin2θ − εr(1+ sin2θ )]

(εr cosθ +
√
εr− sin2θ )2

(5)

εr (ω,LST,SAL)= ε∞+
εs− ε∞

1+ (iωτ )1−α − i
σ

ωε0
(6)

where σ 0
pq (dB) represents the water backscattering co-

efficient simulated by the SPM model at different polar-
izations, apq is the Fresnel reflection coefficient for VV
or HH polarization, θ is the incident angle, and εr is the
water dielectric constant calculated using the Klein and
Swift (K&S) model with parameter details as shown in
Klein and Swift (1977). Construct a cost function and
iteratively optimize it using the least squares algorithm
to derive pixel-based roughness from SAR images:

Xi [kσ,kL]=[
σmeasure

vv − σmodel
vv (θi ,SAL,LST,kσ,kL)

]2
σ 2

vvmeasure

i ∈ [1,N ] (7)

where σmeasure
vv is the backscattering coefficient mea-

sured by SAR at VV polarization, σmodel
vv denotes the

C-band backscattering coefficient simulated by the SPM
model at VV polarization, i is the ith pixel, N is the to-
tal number of pixels, θi is the ith pixel incident angle,
and Xi [kσ , kL] is the ith pixel roughness.

3. Stepwise salinity retrieval based on the SPM and K&S
models. Step one, the avv was calculated using the SPM
model based on pixel-based roughness images. Step
two, the dielectric constant was deduced by the Fresnel
reflection model with the Newton method. Step three,
the K&S model was employed to iteratively solve for
salinity via the Newton method, using TEMP and initial
salinity as inputs.

2.6.2 Machine learning salinity models

The ML salinity models will be developed utilizing four al-
gorithms, including gradient boosting (XGB), random forest
regressor (RFR), deep neural networks (DNN), and convo-
lutional neural networks (CNN). 70 % of dataset one will be
used for training and 30 % for testing, with the entire dataset
applied to five-fold CV. The XGB and RFR are typical en-
semble learning models with decision trees as the funda-
mental units. The XGB predictions are the weighted sum of
each tree’s score, while the RFR results are averages of all
tree predictions (Breiman, 2001; Chen and Guestrin, 2016).
DNN and CNN are typical neural network models made up
of interconnected neurons. Their parameters are updated via
backpropagation to optimize the loss function, and the final
predictions are output by fully connected layers (LeCun et
al., 2015; Alzubaidi et al., 2021).

The construction of four salinity algorithms involves fea-
ture selection, model training, model testing, and five-fold
CV. A total of 18 features were selected, including Rrs (443),
Rrs (497), Rrs (560), Rrs (664), Rrs(704), Rrs (740), Rrs
(842), B4/(B4+B3), B4/(B2+B3), B4/B2, NDWI, chro-
maticity angle (alpha), lake area, VV, theta, kσ , kL, and
LST. Visible and near-infrared bands are considered sensitive
to water salinity (Urquhart et al., 2012; Bayati and Danesh-
Yazdi, 2021), while alpha synthesized abundant information
from the visible bands (Wang et al., 2023b). Lake area as a
proxy for lake water volume is closely correlated with salin-
ity (McGrath et al., 2025). The selected microwave features
are the crucial variables in the mechanistic model. Model
hyperparameters were determined using grid search during
the training process. The hyperparameters to be determined
for each model are detailed in Table 4. For the assessment
of model stability and generalization performance, five-fold
CV was subsequently conducted after determining the model
structures and hyperparameters (Cao et al., 2024). The entire
dataset was randomly divided into five folds, each serving
sequentially as the test set while the remaining folds were
used for training. Model performance was assessed by aver-
aging the statistical metrics obtained from the five rounds. To
improve ML model interpretability, Shapley Additive Predic-
tion (SHAP) values were used to quantify the contribution of
each feature (Lundberg et al., 2020; Gao et al., 2025). And
then four ML salinity models were applied to estimate lake
salinity from MSI and SAR data.

2.6.3 Stacking salinity model

The GAM model is an interpretable statistical model that
can handle nonlinear relationships between covariates and
response variables by using smoothing functions (Yee and
Wild, 1996). It can work with response variables of various
distribution types and provides multiple link functions. Par-
tial dependency plots (PDP) provide a highly interpretable
visualization of the smoothing functions for GAM response
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Table 4. Listed key hyperparameters for each machine learning model, with specific parameter settings available in Table S1 of the Zenodo
repository.

Model Key hyperparameters

XGB Trees, Learning rate, Maximum tree depth, Colsample_bytree, Subsample rate, Min_child_weight, Regularization

RFR Trees, Maximum depth, Maximum features at node splitting

DNN Hidden layer number, Each layer neurons, Learning rate, Activation function, Optimizer, Alpha, Maximum training
epochs, Patience

CNN Convolutional layer kernels, Activation layers, Fully connected layer, Learning rate, Optimizer, Alpha, Maximum training
epochs, Patience

GAM Smoothing function, Link function, N_splines, Callbacks, Max_iter, Lam, Tol

BMA GLM.family, Prior, OR, maxCol

variables, and the tipping points defined the threshold for
variables contributing positively or negatively to the model.
The effective degree of freedom (edf) parameter can be used
to measure the nonlinear complexity of each response vari-
able’s smoothing term. An integrated salinity model was con-
structed based on the estimation results from mechanistic
and ML models under the assumption that variables follow
a Gaussian distribution, and it is structured as follows:

g(E(Y ))= a0+ s1(XGB)+ s2(RFR)+ s3(DNN)

+ s4(CNN)+ s5(Mechanistic) (8)

where g(E(Y )) represents the predicted salinity with a
unit of ppt, a0 is the intercept term, and s1 (XGB) de-
notes the smoothing term constructed using thin-plate re-
gression spline functions for the XGB-predicted salin-
ity, with smoothing terms for other variables consis-
tent with this approach. The key hyperparameters of the
GAM model are listed in Table 4, with specific con-
figurations shown in Table S1 of the Zenodo repository
(https://doi.org/10.5281/zenodo.18371515). This integrated
model combines the powerful diagnostic capabilities of sev-
eral ML models with the prior knowledge of mechanistic
models to enable collaborative estimation of lake salinity us-
ing optical and microwave data.

2.7 Accuracy evaluation

The differences between estimated and measured salinity
were evaluated by using several statistical metrics named
R2, root mean square error (RMSE), mean absolute error
(MAE), bias (system error), and mean absolute percentage
error (MAPE). These metrics were calculated as follows:

RMSE=

√
1
n

∑n

i=1

(
yi − ŷi

)2 (9)

MAE=
1
n

∑n

i=1

∣∣yi − ŷi∣∣ (10)

Bias=
1
n

∑n

i=1

(
yi − ŷi

)
(11)

MAPE=
1
n

∑n

i=1

∣∣∣∣yi − ŷiŷi

∣∣∣∣× 100% (12)

where yi is the field measured salinity, ŷi is the model esti-
mated salinity, i denotes the ith sampling point data, and n is
the number of sampling point pairs.

3 Results and analysis

3.1 Model performance

The constructed stacking model (N = 84, RMSE= 0.60 ppt,
and MAPE= 2.3 %) outperformed four ML models and the
mechanistic model, and the predicted salinity distributed
consistently along the 1 : 1 line without significant under-
estimation or overestimation (Fig. 3). The five-fold CV
result for the stacking model was close to the accuracy
of the 30 % dataset test (N = 257, RMSE= 0.38 ppt, and
MAPE= 6.9 %), with the range of estimated salinity consis-
tent with measured salinity and no outliers observed, indi-
cating that the model has good generalization and stability
without significant dependence on the training set (Fig. 3j).
The performance of the mechanistic model was second only
to the ensemble model (N = 257, RMSE= 0.80 ppt, and
MAPE= 13.3 %), better than the results of five-fold CV
for each ML model (RMSE> 0.97 ppt and MAPE> 15.1 %)
(Fig. 3m). The XGB model showed the best accuracy among
the four ML models, followed by CNN and DNN, while the
RFR model was the worst performer (Fig. 3). Additionally,
the bar chart shows that the ensemble model outperforms the
ML algorithms in terms of accuracy (RMSE< 0.55 ppt and
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MAPE< 8.7 %) (Fig. 3k, l), indicating that incorporation of
the mechanistic model improves overall performance.

Figure 4 displays the SHAP values of the selected features
for four ML salinity models. Among these models, lake area,
theta, and VV exhibit significant contributions, as reflected in
their higher SHAP values compared to other variables. The
lake area contributes the most because it correlates with wa-
ter volume, which directly influences the degree of salinity
dilution (McGrath et al., 2025). VV and theta are important
parameters because of their sensitivity to water surface scat-
tering mechanisms, while salinity affects scattering intensity
by altering the dielectric constant of the water (Reul et al.,
2009). B6 reflectance ranks third in contribution within the
XGB, RFR, and DNN models, indicating it is an optically
sensitive band for salinity. In the CNN model, the VV band
contributes most significantly, while alpha was the most in-
fluential optical index.

A simpler positive correlation (edf= 2.19) with salinity
was found for s5 (Mechanistic) compared to the other vari-
ables (edf> 2.76) in the PDP of the ensemble model (Fig. 5).
The PDP curve of the mechanistic model has a broader range
of variation on the y axis than the ML models, with its 95 %
confidence region encompassing most of the sample data,
suggesting that the model contributes significantly and re-
liably to salinity prediction for the ensemble model. At a
salinity range of 0–4.71 ppt, XGB, RFR, CNN, and Mech-
anistic models contribute negatively to the ensemble model,
but their contributions turn positive at salinities exceeding
9.52 ppt. The contribution pattern of the DNN model differed
from those of the aforementioned models (Fig. 5c). Overall,
the integrated salinity model works admirably by effectively
coupling the virtues of both mechanistic and ML models,
making it successful for estimating lake salinity.

3.2 Single-scene analysis of different models

A single-scene comparison for lakes with matching field
sampling points was used to examine the spatial quality of
salinity data produced by the stacking model, ML model,
and mechanistic model (Fig. 6). Lake salinity maps gener-
ated by the stacking model show a smooth transition from
the shore to the center in 10 lakes, whereas a slight discon-
tinuity of salinity was observed in each lake using ML or
mechanistic models. Especially in nearshore waters, DNN,
CNN, and mechanistic models exhibit outliers due to land
adjacency effects, while the stacking model corrects predic-
tions by combining accurate salinity derived from XGB and
RFR, such as in Lake Hongjiannao, as shown in Fig. 6h2, h3.
However, salinity values in Lake Bosten’s nearshore pixels
were not fully corrected because the DNN and CNN models
overestimate salinity influenced by mixed pixels (Fig. 6c4,
c5, c7). The stacking model successfully captured the spatial
variations of freshwater dilute salinity by combining the ca-
pabilities of ML models in salinity estimates at river inlets
into lakes, compensating for the limitations of mechanistic

models, as shown in Fig. 6i7. Furthermore, the RMSE of the
stacking model was observed to be lower than other algo-
rithms across nine lakes in single-scene comparisons, with
only the mechanistic model performing better in Lake Juyan.
Finally, it was observed that the stacking model effectively
suppressed salinity outliers to guarantee the quality of the
dataset. In brief, the stacking model produced maps of lake
salinity with smoother spatial variations and richer detail,
yielding a higher-quality dataset.

3.3 Comparison with previous single-satellite algorithms

Comparisons between the MSI-based XGB salinity algo-
rithm (Deng et al., 2025) and the SAR-based mechanistic al-
gorithm were performed for each lake (Fig. 7), and it can be
revealed that the stacking algorithm has higher and more sta-
ble accuracy with an average RMSE of 0.24 ppt. Although
the XGB and the mechanistic models outperformed the
stacking algorithm in some lakes, including Lake Ulungur,
Lake Juyan, and Lake Nanhaizi, both models (with RMSE
of 0.45 and 0.57 ppt, respectively) still showed slightly lower
precision across the entire region. The stacking model and
the mechanistic model outperformed the XGB salinity model
in oligosaline-type lakes, suggesting that the mechanistic
model improves the accuracy of the stacking algorithm un-
der salinity exceeding 3 ppt. In addition, the points for the
three models were concentrated on the Taylor plots of several
lakes. It can be deduced that the mechanistic model and XGB
model also exhibit reliable performance to provide rational
data support for constructing the stacking model. Overall, the
proposed algorithm combines the strengths of both the phys-
ically constrained model and the data-driven model in that it
avoids the single model or data source as well as improving
the precision in complex inland water.

3.4 Independent validation

To further objectively evaluate the accuracy and scientific
validity of the proposed framework, independent validation
was performed using Dataset 2, which was not involved in
model training, testing, or CV. The validation density was
insufficient due to the absence of some lake stations and
historical salinity data. The independent validation (Fig. 8)
demonstrates that salinity estimates from the integrated al-
gorithm predominantly align well with measured salinity
along the 1 : 1 line (N = 65, R2

= 0.97, RMSE= 0.89 ppt,
and MAPE= 37.6 %). Only Lake Ulansuhai showed a slight
overestimation, likely affected by aquatic vegetation pix-
els. An underestimated validation point was observed in the
southern part of the Juyan Lake, associated with the com-
plex water characteristics in the river inlet region. No sig-
nificant underestimation or overestimation was observed in
other lakes. These results confirm that the integrated algo-
rithm combining microwave and optical data has consider-
able accuracy in retrieving salinity in inland lakes.
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Figure 3. (a–i) Scatter plots of 30 % test data (N = 84) for XGB (R2
= 0.98 and RMSE= 0.58 ppt), RFR (R2

= 0.97 and RMSE= 0.87 ppt),
DNN (R2

= 0.97 and RMSE= 0.82 ppt), CNN (R2
= 0.98 and RMSE= 0.79 ppt), and stacking model (R2

= 0.98 and RMSE= 0.60 ppt);
(j) Five-fold CV for stacking model (N = 257, RMSE= 0.38 ppt, and MAPE= 6.9 %); (k–l) RMSE/MAPE comparison; (m) Mechanistic
model field validation (N = 257, RMSE= 0.80 ppt, and MAPE= 13.3 %).

3.5 All salinity images pixel-based statistical validation

Pixel-based histogram statistics were performed on the salin-
ity raster generated by the stacking model for each lake
(Fig. 9). Using frequency instead of pixel counts in tra-
ditional histograms, the mean salinity, standard deviation
(STD), and frequency proportions of different salinity ranges
were calculated. The distribution patterns of salinity can be
visualized through a frequency histogram, which helps iden-
tify outliers and objectively assess salinity map quality. Out-
liers are usually found dispersed and dramatically changed,
appearing as discontinuities in histograms. A single peak pat-

tern of salinity histogram was observed in most freshwater
or brackish lakes, including Lake Sayram, Lake Ulungur,
Lake Bosten, Lake Nanhaizi, and Lake Hulun. These min-
imal spatial and interannual variations within the lakes align
with the field measurements found. A double-peak character-
istic was observed in Lake Juyan and Lake Ulansuhai, with
the primary and subsidiary peaks distributed consecutively,
caused by the differences between the northern and south-
ern regions for the lake salinity. However, the subpeaks in
the bimodal distribution of Lake Chagannaoer showed low
frequency and discontinuity, indicating that this portion of
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Figure 4. (a–d) SHAP plots for XGB, RFR, DNN, and CNN. B1–B6 and B8 correspond to Rrs (443)–Rrs (740) and Rrs (833), respectively.

Figure 5. (a–e) Partial dependence plots for XGB, RFR, DNN, and CNN models, the red dots represent the tipping point for the model
variables contribute positively or negatively to salinity predictions.

the data may be abnormal. The oligosaline-type lakes (e.g.,
Lake Hongjiannao, Lake Daihai, and Lake Dalinor) com-
monly showed multi-peak characteristics and wide fluctua-
tion ranges, suggesting high interannual or spatial variations
in salinity.

Further analyze image quality by examining the pixel fre-
quency across different salinity ranges. The pixel frequency
in Lake Sayram, Lake Ulungur, Lake Bosten, and Lake Nan-
haizi was more than 90 % within the interval of 0–2 ppt. Lake
Juyan (46.6 %), Lake Ulansuhai (89.1 %), and Lake Daihai
(88.2 %) accounted for the highest pixel proportions within
salinity ranges of 4–6, 0–4, and 8–16 ppt, respectively. Lake

Hongjiannao and Lake Dalinor had the highest pixel pro-
portions in the range of 4–8 ppt, with 68.5 % and 70.4 %.
These high-proportion intervals align with the distribution of
field measurement salinity, and the small proportion of ab-
normally low-frequency pixels demonstrated that the salinity
data generated by the stacking model had a good image qual-
ity with only a few outliers.

3.6 Spatial patterns and trends

The annual scale salinity map of 11 lakes was shown in
Fig. 10, with its color fluctuations effectively delineating the
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Figure 6. (a1–j7) Comparisons of water salinity estimated by XGB, RFR, DNN, CNN, mechanistic, and stacking models from MSI-derived
Rrs(λ) images and SAR data in 10 lakes, namely, Sayram, Ulungur, Bosten, Ulansuhai, Nanhaizi, Chagannaoer, Dalinor, Hongjiannao, Juyan,
and Daihai, respectively. For each lake, the first column shows a true color composite generated by MSI data.
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Figure 7. Comparison of multisource data-based stacking model with single-satellite model. (a–k) Comparison results using the salinity
dataset from Lake Sayram, Lake Ulungur, Lake Bosten, Lake Juyan, Lake Ulansuhai, Lake Nanhaizi, Lake Hongjiannao, Lake Daihai, Lake
Chagannaoer, Lake Dalinor, and Lake Hulun, respectively.

spatial differences in water salinity. The water salinity ex-
hibits spatial homogeneity within several lakes, such as Lake
Sayram, Lake Ulungur, and Lake Bosten. Lake salinity dis-
continuities were commonly observed in shore or river inflow
zones, such as the western part of Lake Ulansuhai, the south-
ern region of Lake Juyan, the northern part of Lake Chagan-
naoer, and the eastern part of Lake Hulun, which were pri-
marily affected by mixing pixels or freshwater dilution (Han

et al., 2021). This phenomenon with freshwater dilution of
water salinity is prevalent in inland lakes receiving surface
runoff, as well as lakes on the Tibetan Plateau (Wang et al.,
2023a). In addition, the salinity in Lake Nanhaizi was higher
in the east than in the west. Seasonal salinity patterns showed
greater spatial heterogeneity than annual patterns across all
lakes (Fig. 11), particularly in Lake Ulansuhai, Lake Nan-
haizi, and Lake Chagannaoer. It indicates that the spatial pat-
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Figure 8. Using Dataset two for independent validation, not all lakes have independent validation data.

tern of salinity is regulated by external environmental factors,
such as seasonal variations in precipitation, runoff, and evap-
oration (Rimmer et al., 2006; Yihdego and Webb, 2012; Jiang
et al., 2022).

Interannual salinity trends were calculated using the
Mann-Kendall trend test (significance level α = 0.05). Lake
Daihai (slope= 0.48 ppt yr−1, p < 0.01) and Lake Dalinor
(slope= 0.22 ppt yr−1, p < 0.05) showed significant increas-
ing trends (Fig. 12a), and the management agency requires
attention to this occurrence. Other lakes had non-significant
interannual trends, with a comparable proportion of them in-
creasing or decreasing in salinity. Significant seasonal vari-
ations of salinity (p < 0.05) were observed in some lakes
(Fig. 12c), with higher salinity in summer and autumn com-
pared to spring due to enhanced evaporation during summer,
including Lake Ulungur, Lake Ulansuhai, Lake Hongjiannao,
and Lake Chagannaoer. The other lakes did not present sig-
nificant seasonal changes, and the freshwater and brackish
lakes had lower seasonal salinity differences compared to
oligosaline lakes, likely due to their greater water storage ca-
pacity and more reliable water supply sources (Rusuli et al.,
2016).

4 Discussion

4.1 Feasibilities and limitations of algorithms in
observing lake salinity

The development of remote sensing algorithms for water
salinity has long presented technical challenges, particu-
larly in inland lakes. The lake salinity dataset generated us-
ing the proposed framework exhibits a spatial resolution of
10 m, significantly higher than ocean salinity products such
as SMOS, SMAP, and Aquarius (> 40 km) (Hu and Zhao,
2022; Jang et al., 2022; Zhang et al., 2023), thereby enabling
much greater spatial detail. It also demonstrates higher accu-
racy (RMSE= 0.60 ppt) compared to even a regional-scale
Tibetan Plateau lake salinity product (RMSE= 12.51 g L−1)

(Xu et al., 2024). To further confirm the scientific validity of
the GAM algorithm, it was compared with Bayesian Model
Averaging (BMA) (Hoeting et al., 1999), a method suited
for addressing model uncertainty, with the BMA model’s
key hyperparameters listed in Table 4. The GAM model out-
performed the BMA method (N = 84), with lower RMSE
(0.60 ppt vs. 0.88 ppt) and MAPE (2.3 % vs. 12.6 %) in both
the test and five-fold CV (Figs. 3 and 13). It suggested that
the GAM algorithm more effectively handled the nonlinear
relationship between the outputs of the mechanism and the
ML model, with its average edf of 6.58 (n_splines= 20) im-
plying moderate model complexity while avoiding overfit-
ting.

In Lake Juyan’s southern river estuary, the stacking model
showed higher RMSE (0.41 ppt) compared to open water
(0.19 ppt), due to suspended particulate matter interference.
This underestimation accounts for ∼ 5 % of total pixels in
estuary zones. Subsequent works will focus on integrating
Sentinel-2 shortwave infrared (SWIR) band data for cor-
recting this effect (Knaeps et al., 2015). And the spatial
heterogeneity stemming from the 3 d matching interval be-
tween TIRS and Sentinel data may introduce errors (Jin et
al., 2016), which future work will mitigate by combining
Sentinel-3 Sea and Land Surface Temperature Radiometer
(SLSTR) for temperature correction. Limited by the salinity
gradient of the training set (< 35 ppt), the salinity algorithm
has insufficient applicability in polysaline (35–50 g L−1) and
hypersaline lakes (> 50 g L−1) and will expand the bound-
aries of the model by adding high-salinity samples in the
future. The K&S model was designed for seawater, and its
application to complex ionic lakes (e.g., Lake Chagannaoer)
introduces about 5 % uncertainty (Fig. 6f7). This uncertainty
can be reduced in the future by developing lake-specific di-
electric constant models.
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Figure 9. (a–k) Pixel-based frequency statistics for all salinity images in each lake, and the STD represents the degree of deviation from the
mean salinity.

Table 5. The organizational architecture and file naming of the dataset.

Dataset Folder
name

Subfolder
name

Filename Format Spatial
resolution

Temporal
resolution

IMXSAL Lake name daily [LakeName]_[YYYYMMDD]_[ProductType]_[Resolution] TIF 10 m Daily
quarterly [LakeName]_[YYYY]_[Season]_[ProductType]_[Resolution] TIF 10 m Quarterly
yearly [LakeName]_[YYYY]_[ProductType]_[Resolution] TIF 10 m Yearly
All-season [LakeName]_[Season]_[ProductType]_[Resolution] TIF 10 m Nine-year

Lake_infor xlsx – –
IMXSAL_meta xlsx – –
IMXSAL_MeanSTD_2016-2024 xlsx – –
Field_salinity xlsx – –
Table S1 (https://doi.org/10.5281/zenodo.18371515) xlsx – –
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Figure 10. Annual spatial distribution and statistics values (mean±STD) of water salinity in each lake, with some years lacking salinity
maps due to insufficient matching image data.
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Figure 11. Seasonal spatial distribution and statistics values (mean±STD) of water salinity in each lake. Winter data are unavailable due to
ice cover.

Figure 12. (a) Long-term variations of water salinity in each lake, lakes from Sayram to Hulun are simply denoted as SL to HL, ∗ and ∗∗

indicate p < 0.05 and p < 0.01, (b) multi-year average salinity, and (c) seasonal salinity patterns in each lake, and the star denotes significant
seasonal differences with p < 0.05.
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Figure 13. (a–b) Performance of the ensemble model constructed
by using Bayesian model averaging in testing and five-fold CV.

4.2 Exploring the application potential of salinity dataset

Salinity significantly increased (slope= 0.48 ppt yr−1, p <
0.01) in Lake Daihai (Fig. 12a), which was selected for driv-
ing force analysis to demonstrate the potential application of
the dataset. The generalized linear model was used to quan-
tify the relative contribution of each factor, and the corre-
lation coefficient (r) was applied to examine the relation-
ship between salinity and factors. The lake area accounts
for 34.1 % of the variation in Daihai salinity, followed by
POP (32.5 %) and TEMP (17.0 %), with other factors con-
tributing less (Fig. 14a). Lake area (r =−0.89, p < 0.01)
and POP (r =−0.71, p < 0.05) showed negative correla-
tions with salinity, while TEMP (r = 0.69, p < 0.05) and
NTL (r = 0.95, p < 0.01) exhibited positive correlations,
and other variables were not significant (Fig. 14b). These in-
dicate that the lake area closely related to the water volume
is the dominant factor in the salinity change of Lake Dai-
hai, while climatic warming will aggravate the salinization
of inland lakes (Jeppesen et al., 2020). Overall, the dataset
supports UN SDG 6.3 (improve water quality) by providing
high-resolution salinity data for IMXL – an arid region with
30 % of China’s saline lakes – enabling local policymakers
to track salinization progress (e.g., Lake Daihai’s ecological
water replenishment with 2.57× 107 m3 in 2024 under SDG
6.6) (Liangcheng County, 2025).

5 Data availability

The IMXL salinity dataset (IMXSAL) was constructed with
a three-layer architecture and contains salinity images from
11 lakes during 2016–2024. Under the IMXSAL dataset, 11
data folders named for lakes and 5 tables were included.
Each data folder contains 4 subfolders for storing raster data,
named according to the data’s temporal scale (Table 5). The
dataset’s total uncompressed size is about 5.35 GB. Break-
down: (1) Salinity raster for 11 lakes at different temporal
scales (daily, quarterly, yearly, and all-season average), com-
prising 673 TIF files, each approximately 8 MB; (2) Excel
files, including lake basic information table, dataset meta-

data table, statistical table (mean and STD), field salinity ta-
ble, and Table S1, each approximately 100 KB. The dataset
was archived and publicly accessible via the Zenodo por-
tal: https://doi.org/10.5281/zenodo.18371515 (Deng et al.,
2026). Furthermore, to maintain the time-series integrity of
the dataset, it will be updated yearly with new Sentinel data
and expanded to cover Central Asian lakes to support trans-
boundary water resource management. Dataset versioning
follows [Major].[Minor] (e.g., v1.0: 2016–2024; v1.1: 2025
update, January 2026). Annual updates will continue for 10
years (through 2034) or until funding termination, with up-
date notifications posted on the Zenodo repository and Lake-
Watershed Science Data Center.

6 Conclusions

This study proposes an estimation framework for lake salin-
ity by integrating microwave and optical imagery, produc-
ing the first 10 m dataset covering 11 lakes in the IMXL
(2016–2024), filling a gap in high-resolution salinity data
for inland lakes in arid regions. The framework’s innova-
tion lies in the development of an ensemble model, which
couples microwave physical mechanisms with the nonlinear
fitting capabilities of ML to overcome the deficiencies of
single-satellite data monitoring in terms of spatial detail or
mechanism. Moreover, several technical improvements have
been made, the main ones being the adjustment of Elfouhaily
spectrum parameters to suit inland lakes, the establishment
of a rapidly calculated method for lake surface roughness,
the definition of the SPM model for simulating the water
backscattering coefficient, and the integration of the mech-
anistic and ML models via a GAM model. Compared to
the products generated from single-satellite data algorithms,
this dataset shows improvements in both accuracy and map-
ping details (RMSE= 0.60 ppt and MAPE= 2.3 %). The his-
togram validation at the pixel level for all salinity images
reconfirmed the satisfactory quality of the dataset. The long-
term salinity dataset revealed a spatial pattern of smooth tran-
sition from the nearshore to the center and trends with signif-
icant increases in Lake Daihai and Lake Dalinor.

The proposed integrated algorithms provide methodologi-
cal references for other lakes and help advance space-based
salinity observation missions for inland waters. The created
dataset supports salinization prevention (e.g., Lake Daihai
water diversion planning) and global lake salinity budget re-
search.
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Figure 14. Driver analysis of salinity variations in Lake Daihai from 2016 to 2024, (a) relative contributions of drive factors and (b)
correlations with lake salinity. Light blue colored zones indicate negative correlations. ∗ and ∗∗ denote p < 0.05 and p < 0.01, respectively.
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