Articles | Volume 18, issue 2
https://doi.org/10.5194/essd-18-823-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-18-823-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The INFLUX network – eddy covariance in and around an urban environment
Jason P. Horne
Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, 16802, State College, PA, USA
Scott J. Richardson
Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, 16802, State College, PA, USA
Samantha L. Murphy
Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, 16802, State College, PA, USA
Helen C. Kenion
Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, 16802, State College, PA, USA
Bernd J. Haupt
Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, 16802, State College, PA, USA
Benjamin J. Ahlswede
Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, 16802, State College, PA, USA
Natasha L. Miles
Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, 16802, State College, PA, USA
Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, 16802, State College, PA, USA
Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, 16802, State College, PA, USA
Related authors
No articles found.
Jean-Francois Lamarque, Pierre Friedlingstein, Brian Osias, Steve Strongin, Venkatramani Balaji, Kevin W. Bowman, Josep G. Canadell, Philippe Ciais, Heidi Cullen, Kenneth J. Davis, Scott C. Doney, Kevin R. Gurney, Alicia R. Karspeck, Charles D. Koven, Galen McKinley, Glen P. Peters, Julia Pongratz, Britt Stephens, and Colm Sweeney
EGUsphere, https://doi.org/10.5194/egusphere-2025-6457, https://doi.org/10.5194/egusphere-2025-6457, 2026
This preprint is open for discussion and under review for Earth System Dynamics (ESD).
Short summary
Short summary
This Perspective highlights requirements to scale the carbon credit market and enable the growth in climate solutions funded through such market. The requirements are on the understanding of the value of the proposed carbon credit projects, and on the availability of a verification system. This verification becomes particularly relevant as the carbon credit market scales to significant impacts on CO2 (or other greenhouse gases), such that attribution to collective actions can be identified.
Tobias Gerken, Kenneth J. Davis, Klaus Keller, and Sha Feng
Atmos. Chem. Phys., 25, 13327–13341, https://doi.org/10.5194/acp-25-13327-2025, https://doi.org/10.5194/acp-25-13327-2025, 2025
Short summary
Short summary
We apply the Patient Rule Induction Method (PRIM) technique to airborne CO2 and meteorological data to better understand atmospheric conditions and implications for carbon dioxide model-observation-mismatches. We found PRIM is capable of separating observations from different seasons and levels based on atmospheric conditions. Large magnitude carbon dioxide model-observation-differences were associated with non-typical atmospheric conditions, with implications for transport model evaluation.
Yunsong Liu, Natasha Lynn Miles, Scott James Richardson, Zachary Robert Barkley, David Owen Miller, Jonathan Kofler, Philip Handley, Stephen DeVogel, and Kenneth James Davis
EGUsphere, https://doi.org/10.5194/egusphere-2025-4950, https://doi.org/10.5194/egusphere-2025-4950, 2025
Short summary
Short summary
This manuscript details laboratory and field-based testing of a tower-based methane and ethane measurement system to address the challenge of separating methane sources in oil and gas basins. We describe methods for managing water vapor, calibration, and estimating the various components of measurement uncertainty. With appropriate engineering and calibration, the instrument shows the capability to measure CH4 and C2H6 with sufficient stability to distinguish regional methane emission sources.
Bianca C. Baier, John B. Miller, Colm Sweeney, Scott J. Lehman, Chad Wolak, Joshua P. DiGangi, Yonghoon Choi, Kenneth Davis, Sha Feng, and Thomas Lauvaux
Atmos. Chem. Phys., 25, 10479–10497, https://doi.org/10.5194/acp-25-10479-2025, https://doi.org/10.5194/acp-25-10479-2025, 2025
Short summary
Short summary
CO2 radiocarbon content (Δ14CO2) is a unique tracer that helps to accurately quantify anthropogenic CO2 emitted into the atmosphere. Δ14CO2 measured in airborne flask samples is used to distinguish fossil versus biogenic CO2 sources. Mid-Atlantic US CO2 variability is found to be driven by the biosphere. Errors in modeled fossil fuel CO2 are evaluated using Δ14CO2 airborne data as an avenue to improving future regional models of atmospheric CO2 transport.
Daniel J. Varon, Daniel J. Jacob, Benjamin Hmiel, Ritesh Gautam, David R. Lyon, Mark Omara, Melissa Sulprizio, Lu Shen, Drew Pendergrass, Hannah Nesser, Zhen Qu, Zachary R. Barkley, Natasha L. Miles, Scott J. Richardson, Kenneth J. Davis, Sudhanshu Pandey, Xiao Lu, Alba Lorente, Tobias Borsdorff, Joannes D. Maasakkers, and Ilse Aben
Atmos. Chem. Phys., 23, 7503–7520, https://doi.org/10.5194/acp-23-7503-2023, https://doi.org/10.5194/acp-23-7503-2023, 2023
Short summary
Short summary
We use TROPOMI satellite observations to quantify weekly methane emissions from the US Permian oil and gas basin from May 2018 to October 2020. We find that Permian emissions are highly variable, with diverse economic and activity drivers. The most important drivers during our study period were new well development and natural gas price. Permian methane intensity averaged 4.6 % and decreased by 1 % per year.
Zachary Barkley, Kenneth Davis, Natasha Miles, Scott Richardson, Aijun Deng, Benjamin Hmiel, David Lyon, and Thomas Lauvaux
Atmos. Chem. Phys., 23, 6127–6144, https://doi.org/10.5194/acp-23-6127-2023, https://doi.org/10.5194/acp-23-6127-2023, 2023
Short summary
Short summary
Using methane monitoring instruments attached to towers, we measure methane concentrations and quantify methane emissions coming from the Marcellus and Permian oil and gas basins. In the Marcellus, emissions were 3 times higher than the state inventory across the entire monitoring period. In the Permian, we see a sharp decline in emissions aligning with the onset of the COVID-19 pandemic. Tower observational networks can be utilized in other basins for long-term monitoring of emissions.
Rory A. Barton-Grimley, Amin R. Nehrir, Susan A. Kooi, James E. Collins, David B. Harper, Anthony Notari, Joseph Lee, Joshua P. DiGangi, Yonghoon Choi, and Kenneth J. Davis
Atmos. Meas. Tech., 15, 4623–4650, https://doi.org/10.5194/amt-15-4623-2022, https://doi.org/10.5194/amt-15-4623-2022, 2022
Short summary
Short summary
HALO is a multi-functional lidar that measures CH4 columns and profiles of H2O mixing ratio and aerosol/cloud optical properties. HALO supports carbon cycle, weather dynamics, and radiation science suborbital research and is a technology testbed for future space-based differential absorption lidar missions. In 2019 HALO collected CH4 columns and aerosol/cloud profiles during the ACT-America campaign. Here we assess HALO's CH4 accuracy and precision compared to co-located in situ observations.
Vanessa C. Monteiro, Natasha L. Miles, Scott J. Richardson, Zachary Barkley, Bernd J. Haupt, David Lyon, Benjamin Hmiel, and Kenneth J. Davis
Earth Syst. Sci. Data, 14, 2401–2417, https://doi.org/10.5194/essd-14-2401-2022, https://doi.org/10.5194/essd-14-2401-2022, 2022
Short summary
Short summary
We describe a network of five ground-based in situ towers, equipped to measure concentrations of methane, carbon dioxide, hydrogen sulfide, and the isotopic ratio of methane, in the Permian Basin, United States. The main goal is to use methane concentrations with atmospheric models to determine methane emissions from one of the Permian sub-basins. These datasets can improve emissions estimations, leading to best practices in the oil and natural gas industry, and policies for emissions reduction.
David F. Baker, Emily Bell, Kenneth J. Davis, Joel F. Campbell, Bing Lin, and Jeremy Dobler
Geosci. Model Dev., 15, 649–668, https://doi.org/10.5194/gmd-15-649-2022, https://doi.org/10.5194/gmd-15-649-2022, 2022
Short summary
Short summary
The OCO-2 satellite measures many closely spaced column-averaged CO2 values around its orbit. To give these data proper weight in flux inversions, their error correlations must be accounted for. Here we lay out a 1-D error model with correlations that die out exponentially along-track to do so. A correlation length scale of ∼20 km is derived from column CO2 measurements from an airborne lidar flown underneath OCO-2 for use in this model. The model's performance is compared to previous ones.
Tao Zheng, Sha Feng, Kenneth J. Davis, Sandip Pal, and Josep-Anton Morguí
Geosci. Model Dev., 14, 3037–3066, https://doi.org/10.5194/gmd-14-3037-2021, https://doi.org/10.5194/gmd-14-3037-2021, 2021
Short summary
Short summary
Carbon dioxide is the most important greenhouse gas. We develop the numerical model that represents carbon dioxide transport in the atmosphere. This model development is based on the MPAS model, which has a variable-resolution capability. The purpose of developing carbon dioxide transport in MPAS is to allow for high-resolution transport model simulation that is not limited by the lateral boundaries. It will also form the base for a future development of MPAS-based carbon inversion system.
David R. Lyon, Benjamin Hmiel, Ritesh Gautam, Mark Omara, Katherine A. Roberts, Zachary R. Barkley, Kenneth J. Davis, Natasha L. Miles, Vanessa C. Monteiro, Scott J. Richardson, Stephen Conley, Mackenzie L. Smith, Daniel J. Jacob, Lu Shen, Daniel J. Varon, Aijun Deng, Xander Rudelis, Nikhil Sharma, Kyle T. Story, Adam R. Brandt, Mary Kang, Eric A. Kort, Anthony J. Marchese, and Steven P. Hamburg
Atmos. Chem. Phys., 21, 6605–6626, https://doi.org/10.5194/acp-21-6605-2021, https://doi.org/10.5194/acp-21-6605-2021, 2021
Short summary
Short summary
The Permian Basin (USA) is the world’s largest oil field. We use tower- and aircraft-based approaches to measure how methane emissions in the Permian Basin changed throughout 2020. In early 2020, 3.3 % of the region’s gas was emitted; then in spring 2020, the loss rate temporarily dropped to 1.9 % as oil price crashed. We find this short-term reduction to be a result of reduced well development, less gas flaring, and fewer abnormal events despite minimal reductions in oil and gas production.
Cited articles
Aubinet, M., Vesala T., and Papale, D.: Eddy Covariance, edited by: Aubinet, M., Vesala, T., and Papale, D., Springer Netherlands, Dordrecht, 438 pp., ISBN 978-94-007-2351-1, 2012.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities, B. Am. Meteorol. Soc., 82, 2415–2434, https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.
Barr, A. G., Richardson, A. D., Hollinger, D. Y., Papale, D., Arain, M. A., Black, T. A., Bohrer, G., Dragoni, D., Fischer, M. L., Gu, L., Law, B. E., Margolis, H. A., McCaughey, J. H., Munger, J. W., Oechel, W., and Schaeffer, K.: Use of change-point detection for friction–velocity threshold evaluation in eddy-covariance studies, Agricultural and Forest Meteorology, 171–172, 31–45, https://doi.org/10.1016/j.agrformet.2012.11.023, 2013.
Biraud, S., Chen, J., Christen, A., Davis, K., Lin, J., McFadden, J., Miller, C., Nemitz, E., Schade, G., Stagakis, S., Turnbull, J., and Vogt, T.: Eddy Covariance Measurements in Urban Environments: White paper prepared by the AmeriFlux Urban Fluxes ad hoc committee, AmeriFlux, https://ameriflux.lbl.gov/wp-content/uploads/2021/09/EC-in-Urban-Environment-2021-07-31-Final.pdf (last access: 2 April 2025), 2021.
Bou-Zeid, E., Anderson, W., Katul, G. G., and Mahrt, L.: The Persistent Challenge of Surface Heterogeneity in Boundary-Layer Meteorology: A Review, Boundary Layer Meteorol., 177, 227–245, https://doi.org/10.1007/s10546-020-00551-8, 2020.
Burba, G.: Eddy Covariance Method for Scientific, Industrial, Agricultural, and Regulatory Applications; a field book on measuring ecosystem gas exchange and areal emission rates, LI-COR Biosciences, Lincoln, Nebraska, 331 pp., ISBN 9780615768274, 2013.
Butterworth, B. J., Desai, A. R., Metzger, S., Townsend, P. A., Schwartz, M. D., Petty, G. W., Mauder, M., Vogelmann, H., Andresen, C. G., Augustine, T. J., Bertram, T. H., Brown, W. O. J., Buban, M., Cleary, P., Durden, D. J., Florian, C. R., Ruiz, E. G., Iglinski, T. J., Kruger, E. L., Lantz, K., Lee, T. R., Meyers, T. P., Mineau, J. K., Olson, E. R., Oncley, S. P., Paleri, S., Pertzborn, R. A., Pettersen, C., Plummer , D. M., Riihimaki, L., Sedlar, J., Smith, E. N., Speidel, J., Stoy, P. C., Sühring, M., Thom, J. E., Turner, D. D., Vermeuel, M. P., Wagner, T.J., Wang, Z., Wanner, L., White, L. D., Wilczak, J. M. M., Wright, D. B., and Zheng, T.: Connecting Land-Atmosphere Interactions to Surface Heterogeneity in CHEESEHEAD19, Bulletin of the American Meteorological Society, 102, E421–E445, https://doi.org/10.1175/BAMS-D-19-0346.1, 2021.
Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., and Zona, D.: Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites, Agric. For. Meteorol., 301–302, https://doi.org/10.1016/j.agrformet.2021.108350, 2021.
Crawford, B. and Christen, A.: Spatial source attribution of measured urban eddy covariance CO2 fluxes, Theor. Appl. Climatol., 119, 733–755, https://doi.org/10.1007/s00704-014-1124-0, 2015.
Davis, K., Zaitchik, B., Asa-Awuku, A., Bou-Zeid, E., Baidar, S., Boxe, C., Brewer, W. A., Chiao, S., Damoah, R., Decarlo, P., Demoz, B., Dickerson, R., Giometto, M., Gonzalez-Cruz, J., Jensen, M., Kuang, C., Lamer, K., Li, X., Lombardo, K., Miles, N., Niyogi, D., Pan, Y., Peters, J., Ramamurthy, P., Peng, W., Richardson, S., Sakai, R., Waugh, D., and Zhang, J.: Coastal-Urban-Rural Atmospheric Gradient Experiment (CoURAGE) Science Plan, U.S. Department of Energy Office of Science, 50 pp., DOE/SC-ARM-24-016, 2024.
Davis, K. J.: AmeriFlux BASE US-INa INFLUX – Cemetery Turfgrass Tower, Ver. 1–5, AmeriFlux AMP (data set), https://doi.org/10.17190/AMF/2001300, 2023a.
Davis, K. J.: AmeriFlux BASE US-INb INFLUX – Golf Course, Ver. 1–5, AmeriFlux AMP, (data set), https://doi.org/10.17190/AMF/2001301, 2023b.
Davis, K. J.: AmeriFlux BASE US-INc INFLUX – Downtown Indianapolis (Site-3), Ver. 1–5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/1987603, 2023c.
Davis, K. J.: AmeriFlux BASE US-INd INFLUX – Agricultural Site East near Pittsboro, Ver. 1–5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/2001302, 2023d.
Davis, K. J.: AmeriFlux BASE US-INe INFLUX – Agricultural Site West near Pittsboro, Ver. 1–5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/2001303, 2023e.
Davis, K. J.: AmeriFlux BASE US-INf INFLUX – East 21st St (Site 2), Ver. 1–5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/2001304, 2023f.
Davis, K. J.: AmeriFlux BASE US-INg INFLUX – Wayne Twp Comm (Site-7), Ver. 1–5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/2001305, 2023g.
Davis, K. J.: AmeriFlux BASE US-INi INFLUX – Agricultural Site East of Indianapolis (Site-9a), Ver. 1–5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/2001306, 2023h.
Davis, K. J.: AmeriFlux BASE US-INj INFLUX – Agricultural Site East of Indianapolis (Site-9b), Ver. 1–5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/2001307, 2023i.
Davis, K. J.: AmeriFlux BASE US-INn INFLUX – Agricultural Site West of Indianapolis (Site-14a), Ver. 1–5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/2001308, 2023j.
Davis, K. J.: AmeriFlux BASE US-INn INFLUX – Agricultural Site West of Indianapolis (Site-14b), Ver. 1–5, AmeriFlux AMP [data set], https://doi.org/10.17190/AMF/2001309, 2023k.
Davis, K. J., Bakwin, P. S., Berger, B. W., Yi, C., Zhao, C., Teclaw, R. M., and Isebrands, J. G.: The annual cycle of CO2 and H2O exchange over a northern mixed forest as observed from a very tall tower, Global Change Biology, 9, 1278–1293, https://doi.org/10.1046/j.1365-2486.2003.00672.x, 2003.
Davis, K. J., Deng, A., Lauvaux, T., Miles, N. L., Richardson, S. J., Sarmiento, D. P., Gurney, K. R., Hardesty, R. M., Bonin, T. A., Brewer, W. A., Lamb, B. K., Shepson, P. B., Harvey, R. M., Cambaliza, M. O., Sweeney, C., Turnbull, J. C., Whetstone, J., and Karion, A.: The Indianapolis Flux Experiment (INFLUX): A test-bed for developing urban greenhouse gas emission measurements, Elementa: Science of the Anthropocene, 5, https://doi.org/10.1525/elementa.188, 2017.
Dennis, L., Richardson, S., Miles, N., Woda, J., Brantley, S., and Davis, K.: Measurements of Atmospheric Methane Emissions from Stray Gas Migration: A Case Study from the Marcellus Shale, ACS Earth Space Chem., 6, 909–919, https://doi.org/10.1021/acsearthspacechem.1c00312, 2022.
Desjardins, R. L.,Schuepp, P. H., MacPherson, J. I., and Buckley, D. J.: Spatial and temporal variations of the fluxes of carbon dioxide and sensible and latent heat over the FIFE site, J. Geophys. Res., 97, 18467–18475, 1992.
Deng, A., Lauvaux, T., Miles, N. L., Davis, K. J., and Barkley, Z. R.: Meteorological fields over Indianapolis, IN from the Weather Research and Forecasting model (WRF v3.5.1), Penn State DataCommons [data set], https://doi.org/10.26208/z04g-3h91, 2020.
Dewitz, J.: National Land Cover Database (NLCD) 2021 Products, U.S. Geological Survey data release [data set], https://doi.org/10.5066/P9JZ7AO3, 2023.
Dragoni, D., Schmid, H. P., Wayson, C., Potters, H., Grimmond, S., and Randolph, J.: Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA, Glob. Chang. Biol., 17, 886–897, https://doi.org/10.1111/j.1365-2486.2010.02281.x, 2011.
Eder, F., Schmidt, M., Damian, T., Träumner, K., and Mauder, M.: Mesoscale Eddies Affect Near-Surface Turbulent Exchange: Evidence from Lidar and Tower Measurements, J. Appl. Meteorol. Climatol., 54, 189–206, https://doi.org/10.1175/JAMC-D-14-0140.1, 2015a.
Eder, F., De Roo, F., Rotenberg, E., Yakir, D., Schmid, H. P., and Mauder, M.: Secondary circulations at a solitary forest surrounded by semi-arid shrubland and their impact on eddy-covariance measurements, Agric. For. Meteorol., 211–212, 115–127, https://doi.org/10.1016/j.agrformet.2015.06.001, 2015b.
European Union: Accelerating cities' transition to net zero emissions by 2030 (NetZeroCities): Fact sheet, European Commission, grant no. 101036519, https://doi.org/10.3030/101036519, 2025.
Feigenwinter, C., Vogt, R., and Christen, A.: Eddy Covariance Measurements Over Urban Areas, in: Eddy Covariance, Springer Netherlands, Dordrecht, 377–397, https://doi.org/10.1007/978-94-007-2351-1_16, 2012.
Foken, T.: Micrometeorology, Springer Berlin, Heidelberg, 362 pp., o ISBN 978-3-642-25440-6, 2008.
Foken, T. and Wichura, B.: Tools for quality assessment of surface-based flux measurements, Agric. For. Meteorol., 78, 83–105, https://doi.org/10.1016/0168-1923(95)02248-1, 1996.
Goulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C., and Wofsy, S. C.: Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of accuracy, Glob. Chang. Biol., 2, 169–182, https://doi.org/10.1111/j.1365-2486.1996.tb00070.x, 1996.
Gurney, K. R., Razlivanov, I., Song, Y., Zhou, Y., Benes, B., and Abdul-Massih, M.: Quantification of Fossil Fuel CO2 Emissions on the Building/Street Scale for a Large U.S. City, Environ. Sci. Technol. 46, 12194–12202, https://doi.org/10.1021/es3011282, 2012.
Gurney, K. R., Patarasuk R., Liang, J., Yuyu, Z., O'Keeffe, D., Hutchins, M., Huang, J., Song, Y., Rao, P., Wong, T. M., and Whetstone, J. R.: Hestia Fossil Fuel Carbon Dioxide Emissions for Indianapolis, Indiana, National Institute of Standards and Technology, NIST Public Data Repository [data set], https://doi.org/10.18434/T4/1503341, 2018.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.
Horne, J. P. and Davis, K. J.: Vegetation Photosynthesis and Respiration Model (VPRM) run for 2019 over Indianapolis, IN, using a turfgrass PFT, Penn State DataCommons [data set], https://doi.org/10.26208/zs32-5n02, 2024.
Horne, J. P., Jin, C., Miles, N. L., Richardson, S. J., Murphy, S. L., Wu, K., and Davis, K. J.: The Impact of Turfgrass on Urban Carbon Dioxide Fluxes in Indianapolis, Indiana, USA, https://doi.org/10.1029/2024JG008477, 2025a.
Horne, J., Davis, K. J., Richardson, S. J., Miles. N. L., Murphy, S., Haupt, B. J., Kenion, H., and Ahlswede, B.: Turfgrass INFLUX Eddy Covariance Towers – Processed 30-Minute Data, Penn State Data Commons [data set], https://doi.org/10.26208/BV87-RP98, 2025b.
Horne, J., Davis, K. J., Richardson, S. J., Miles. N. L., Murphy, S., Haupt, B. J., Kenion, H., and Ahlswede, B.: Mixed Urban INFLUX Eddy Covariance Towers – Processed 30-Minute Data, Penn State Data Commons [data set], https://doi.org/10.26208/BV87-RP98, 2025c.
Horne, J., Davis, K. J., Richardson, S. J., Miles. N. L., Murphy, S., Haupt, B. J., Kenion, H., and Ahlswede, B.: Agricultural INFLUX Eddy Covariance Towers – Processed 30-Minute Data, Penn State Data Commons [data set], https://doi.org/10.26208/900V-YJ22, 2025d.
Horst, T. W. and Weil, J. C.: Footprint estimation for scalar flux measurements in the atmospheric surface layer, Boundary Layer Meteorol., 59, 279–296, 1992.
Ishidoya, S., Sugawara, H., Terao, Y., Kaneyasu, N., Aoki, N., Tsuboi, K., and Kondo, H.: O2 : CO2 exchange ratio for net turbulent flux observed in an urban area of Tokyo, Japan, and its application to an evaluation of anthropogenic CO2 emissions, Atmos. Chem. Phys., 20, 5293–5308, https://doi.org/10.5194/acp-20-5293-2020, 2020.
Järvi, L., Rannik, Ü., Kokkonen, T. V., Kurppa, M., Karppinen, A., Kouznetsov, R. D., Rantala, P., Vesala, T., and Wood, C. R.: Uncertainty of eddy covariance flux measurements over an urban area based on two towers, Atmos. Meas. Tech., 11, 5421–5438, https://doi.org/10.5194/amt-11-5421-2018, 2018.
Jongen, H. J., Steeneveld, G. J., Beringer, J., Christen, A., Chrysoulakis, N., Fortuniak, K., Hong, J., Hong, J. W., Jacobs, C. M. J., Järvi, L., Meier, F., Pawlak, W., Roth, M., Theeuwes, N. E., Velasco, E., Vogt, R., and Teuling, A. J.: Urban Water Storage Capacity Inferred From Observed Evapotranspiration Recession, Geophys. Res. Lett., 49, https://doi.org/10.1029/2021GL096069, 2022.
Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: Spectral characteristics of surface-layer turbulence, Quarterly Journal of the Royal Meteorological Society, 98, 563–589, https://doi.org/10.1002/qj.49709841707, 1972.
Kang, S., Davis, K. J., and LeMone, M. A.: Observations of the ABL structures over a heterogeneous land surface during IHOP_2002, J. Hydrometeorology, 8, 221–244, https://doi.org/10.1175/JHM567.1, 2007.
Karion, A., Ghosh, S., Lopez-Coto, I., Mueller, K., Gourdji, S., Pitt, J., and Whetstone, J.: Methane Emissions Show Recent Decline but Strong Seasonality in Two US Northeastern Cities, Environ. Sci. Technol., 57, 19565–19574, https://doi.org/10.1021/acs.est.3c05050, 2023.
Kenion, H. C., Davis, K. J., Miles, N. L., Monteiro, V. C., Richardson, S. J., and Horne, J. P.: Estimation of Urban Greenhouse Gas Fluxes from Mole Fraction Measurements Using Monin–Obukhov Similarity Theory, J. Atmos. Ocean. Technol., 41, 833–846, https://doi.org/10.1175/JTECH-D-23-0164.1, 2024.
Kent, C. W., Lee, K., Ward, H. C., Hong, J. W., Hong, J., Gatey, D., and Grimmond, S.: Aerodynamic roughness variation with vegetation: analysis in a suburban neighbourhood and a city park, Urban Ecosyst., 21, 227–243, https://doi.org/10.1007/s11252-017-0710-1, 2018.
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP), Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, 2015.
Kona, A., Bertoldi, P., Monforti-Ferrario, F., Rivas, S., and Dallemand, J. F.: Covenant of Mayors signatories leading the way towards 1.5 degree global warming pathway, Sustain. Cities Soc., 41, 568–575, https://doi.org/10.1016/j.scs.2018.05.017, 2018.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of the Köppen-Geiger climate classification updated, Meteorologische Zeitschrift, 15, 259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006.
Kotthaus, S. and Grimmond, C. S. B.: Energy exchange in a dense urban environment – Part I: Temporal variability of long-term observations in central London, Urban Clim., 10, 261–280, https://doi.org/10.1016/j.uclim.2013.10.002, 2014.
Lan, C., Mauder, M., Stagakis, S., Loubet, B., D'Onofrio, C., Metzger, S., Durden, D., and Herig-Coimbra, P.-H.: Intercomparison of eddy-covariance software for urban tall-tower sites, Atmos. Meas. Tech., 17, 2649–2669, https://doi.org/10.5194/amt-17-2649-2024, 2024.
Lauvaux, T., Gurney, K. R., Miles, N. L., Davis, K. J., Richardson, S. J., Deng, A., Nathan, B. J., Oda, T., Wang, J. A., Hutyra, L., and Turnbull, J.: Policy-relevant assessment of urban CO2 emissions, Environ. Sci. Technol., 54, 10237–10245, https://doi.org/10.1021/acs.est.0c00343, 2020.
Lee, X. and Massman, W. J.: A Perspective on Thirty Years of the Webb, Pearman and Leuning Density Corrections, Boundary Layer Meteorol., 139, 37–59, https://doi.org/10.1007/s10546-010-9575-z, 2011.
Lee, X., Massman, W., and Law, B.: Handbook of Micrometeorology, edited by: Lee, X., Massman, W., and Law, B., Springer Netherlands, Dordrecht, 250 pp., https://doi.org/10.1007/1-4020-2265-4, 2004.
Lee, K., Hong, J.-W., Kim, J., and Hong, J.: Partitioning of net CO2 exchanges at the city-atmosphere interface into biotic and abiotic components, MethodsX, 8, 101231, https://doi.org/10.1016/j.mex.2021.101231, 2021.
Lipson, M., Grimmond, S., Best, M., Chow, W. T. L., Christen, A., Chrysoulakis, N., Coutts, A., Crawford, B., Earl, S., Evans, J., Fortuniak, K., Heusinkveld, B. G., Hong, J.-W., Hong, J., Järvi, L., Jo, S., Kim, Y.-H., Kotthaus, S., Lee, K., Masson, V., McFadden, J. P., Michels, O., Pawlak, W., Roth, M., Sugawara, H., Tapper, N., Velasco, E., and Ward, H. C.: Harmonized gap-filled datasets from 20 urban flux tower sites, Earth Syst. Sci. Data, 14, 5157–5178, https://doi.org/10.5194/essd-14-5157-2022, 2022.
Liu, H. Z., Feng, J. W., Järvi, L., and Vesala, T.: Four-year (2006–2009) eddy covariance measurements of CO2 flux over an urban area in Beijing, Atmos. Chem. Phys., 12, 7881–7892, https://doi.org/10.5194/acp-12-7881-2012, 2012.
Lwasa, S., Seto, K. C., Bai, X., Blanco, H., Gurney, K. R., Kılkış, Ş., Lucon O., J. Murakami, J. P., Sharifi, A., and Yamagata, Y.: Urban Systems and Other Settlements, in: Climate Change 2022 – Mitigation of Climate Change, Cambridge University Press, 861–952, https://doi.org/10.1017/9781009157926.010, 2023.
Mahrt, L., Vickers, D., and Sun, J.: Spatial variations of surface moisture flux from aircraft data, Advances in Water Resources, 24, 1133–1141, https://doi.org/10.1016/S0309-1708(01)00045-8, 2001.
Mauder, M. and Foken, T.: Documentation and Instruction Manual of the Eddy Covariance Software Package TK2, Universität Bayreuth, Abteilung Mikrometeorologie Bayreuth, Germany, p. 1, https://epub.uni-bayreuth.de/id/eprint/884/1/ARBERG026.pdf (last access: 4 February 2025), 2004.
Mauder, M., Foken, T., and Cuxart, J.: Surface-Energy-Balance Closure over Land: A Review, Boundary Layer Meteorol., 177, 395–426, https://doi.org/10.1007/s10546-020-00529-6, 2020.
Menzer, O. and McFadden, J. P.: Statistical partitioning of a three-year time series of direct urban net CO2 flux measurements into biogenic and anthropogenic components, Atmos. Environ., 170, 319–333, https://doi.org/10.1016/j.atmosenv.2017.09.049, 2017.
Miles, N. L., Richardson, S. J., Lauvaux, T., Davis, K. J., Balashov, N. V., Deng, A., Turnbull, J. C., Sweeney, C., Gurney, K. R., Patarasuk, R., Razlivanov, I., Cambaliza, M. O. L., and Shepson, P. B.: Quantification of urban atmospheric boundary layer greenhouse gas dry mole fraction enhancements in the dormant season: Results from the Indianapolis Flux Experiment (INFLUX), Elementa: Science of the Anthropocene, 5, https://doi.org/10.1525/elementa.127, 2017a.
Miles, N. L., Richardson, S. J., Davis, K. J., and Haupt, B. J.: In-situ tower atmospheric measurements of carbon dioxide, methane and carbon monoxide mole fraction for the Indianapolis Flux (INFLUX) project, Indianapolis, IN, USA, Penn State DataCommons [data set], https://doi.org/10.18113/D37G6P, 2017b.
Milesi, C., Running, S. W., Elvidge, C. D., Dietz, J. B., Tuttle, B. T., and Nemani, R. R.: Mapping and Modeling the Biogeochemical Cycling of Turf Grasses in the United States, Environ. Manage., 36, 426–438, https://doi.org/10.1007/s00267-004-0316-2, 2005.
Miller, J. B., Lehman, S. J., Verhulst, K. R., Miller, C. E., Duren, R. M., Yadav, V., Newman, S., and Sloop, C. D.: Large and seasonally varying biospheric CO2 fluxes in the Los Angeles megacity revealed by atmospheric radiocarbon, Proceedings of the National Academy of Sciences, 117, 26681–26687, https://doi.org/10.1073/pnas.2005253117, 2020.
Moncrieff, J. B., Massheder, J. M., de Bruin, H., Elbers, J., Friborg, T., Heusinkveld, B., Kabat, P., Scott, S., Soegaard, H., and Verhoef, A.: A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide, J. Hydrol. (Amst.), 188–189, 589–611, https://doi.org/10.1016/S0022-1694(96)03194-0, 1997.
Moore, C. J.: Frequency response corrections for eddy correlation systems, Boundary Layer Meteorol., 37, 17–35, https://doi.org/10.1007/BF00122754, 1986.
Murphy, S. L., Davis, K. J., and Miles, N. L.: Penn State Department of Meteorology Vegetation Photosynthesis and Respiration Model (VPRM) runs for Indianapolis, IN, from 2012 through 2021, Penn State DataCommons [data set], https://doi.org/10.26208/zs32-5n02, 2024.
Murphy, S. L., Davis, K. J., Miles, N. L., Barkley, Z. R., Deng, A., Horne, J. P., Richardson, S. J., and Gourdji, S. M.: Simulating complex CO2 background conditions for Indianapolis, IN, with a simple ecosystem CO2 flux model, Journal of Geophysical Research: Biogeosciences, 130, e2024JG008518, https://doi.org/10.1029/2024JG008518, 2025.
Ng, B. J. L., Hutyra, L. R., Nguyen, H., Cobb, A. R., Kai, F. M., Harvey, C., and Gandois, L.: Carbon fluxes from an urban tropical grassland, Environmental Pollution, 203, 227–234, https://doi.org/10.1016/j.envpol.2014.06.009, 2015.
Nicolini, G., Antoniella, G., Carotenuto, F., Christen, A., Ciais, P., Feigenwinter, C., Gioli, B., Stagakis, S., Velasco, E., Vogt, R., Ward, H. C., Barlow, J., Chrysoulakis, N., Duce, P., Graus, M., Helfter, C., Heusinkveld, B., Järvi, L., Karl, T., Marras, S., Masson, V., Matthews, B., Meier, F., Nemitz, E., Sabbatini, S., Scherer, D., Schume, H., Sirca, C., Steeneveld, G.-J., Vagnoli, C., Wang, Y., Zaldei, A., Zheng, B., and Papale, D.: Direct observations of CO2 emission reductions due to COVID-19 lockdown across European urban districts, Science of The Total Environment, 830, 154662, https://doi.org/10.1016/j.scitotenv.2022.154662, 2022.
Novick, K. A., Biederman, J. A., Desai, A. R., Litvak, M. E., Moore, D. J. P., Scott, R. L., and Torn, M. S.: The AmeriFlux network: A coalition of the willing, Agricultural and Forest Meteorology, 249, 444–456, https://doi.org/10.1016/j.agrformet.2017.10.009, 2018.
Oncley, S. P., Lenschow, D. H., Campos, T. L., Davis, K. J., and Mann, J.: Regional-scale surface flux observations across the boreal forest during BOREAS, Journal of Geophysical Research: Atmospheres, 102, 29147–29154, https://doi.org/10.1029/97JD00242, 1997.
Pahari, R., Leclerc, M. Y., Zhang, G., Nahrawi, H., and Raymer, P.: Carbon dynamics of a warm season turfgrass using the eddy-covariance technique, Agric. Ecosyst. Environ., 251, 11–25, https://doi.org/10.1016/j.agee.2017.09.015, 2018.
Papale, D., Andreas, C., Davis, K., Christian, F., Beniamino Gioli, Leena, J., Bradley, M., Erik, V., and Roland, V.: Eddy covariance flux observations, GAW Report, 275, 114–123, 2022.
Paw U, K. T., Baldocchi, D. D., Meyers, T. P., and Wilson, K. B.: Correction Of Eddy-Covariance Measurements Incorporating Both Advective Effects And Density Fluxes, Boundary Layer Meteorol., 97, 487–511, https://doi.org/10.1023/A:1002786702909, 2000.
Pawlak, W. and Fortuniak, K.: Eddy covariance measurements of the net turbulent methane flux in the city centre – results of 2-year campaign in Łódź, Poland, Atmos. Chem. Phys., 16, 8281–8294, https://doi.org/10.5194/acp-16-8281-2016, 2016.
Pérez-Ruiz, E. R., Vivoni, E. R., and Templeton, N. P.: Urban land cover type determines the sensitivity of carbon dioxide fluxes to precipitation in Phoenix, Arizona, PLoS One, 15, https://doi.org/10.1371/journal.pone.0228537, 2020.
Peters, E. B. and McFadden, J. P.: Continuous measurements of net CO2 exchange by vegetation and soils in a suburban landscape, J. Geophys. Res. Biogeosci., 117, https://doi.org/10.1029/2011JG001933, 2012.
Peters, E. B., Hiller, R. V., and McFadden, J. P.: Seasonal contributions of vegetation types to suburban evapotranspiration, J. Geophys. Res. Biogeosci., 116, https://doi.org/10.1029/2010JG001463, 2011.
Prairie, Y. T. and Duarte, C. M.: Direct and indirect metabolic CO2 release by humanity, Biogeosciences, 4, 215–217, https://doi.org/10.5194/bg-4-215-2007, 2007.
Raut, B. A., Muradyan, P., Pal, S., Ivans, S., Tuftedal, M., Sherman, Z., Grover, M., O'Brien, J., Jackson, R., Wawrzyniak, E., Cho, A., Anderson, G., Gala, T., and Collis, S.: The Chicago Urban Flux Network with Perspectives from an Eddy Covariance Workshop, B. Am. Meteorol. Soc., 106, E1724–E1730, https://doi.org/10.1175/BAMS-D-25-0180.1, 2025.
Richardson, S. J., Miles, N. L., Davis, K. J., Lauvaux, T., Martins, D. K., Turnbull, J. C., McKain, K., Sweeney, C., and Cambaliza, M. O. L.: Tower measurement network of in-situ CO2, CH4, and CO in support of the Indianapolis FLUX (INFLUX) Experiment, Elementa: Science of the Anthropocene, 5, https://doi.org/10.1525/elementa.140, 2017.
Richardson, S. J., Miles, N. L., Haupt, B. J., Ahlswede, B., Horne, J. P., and Davis, K. J.: Eddy Covariance High-Frequency Data for Turfgrass and Pasture in Indianapolis, Indiana and Montgomery County, Maryland (US-INa, US-INb, US-BWa, US-BWb, US-BWc), Penn State DataCommons [data set], https://doi.org/10.26208/CJTC-KS26, 2023a.
Richardson, S. J., Miles, N. L., Haupt, B. J., Ahlswede, B., Horne, J. P., and Davis, K. J.: Eddy Covariance High-Frequency Data for Agricultural Sites near Indianapolis, Indiana (US-INd, US-INe, US-INi, US-INj, US-INn, US-INp), Penn State DataCommons [data set], https://doi.org/10.26208/fsy8-h855, 2023b.
Richardson, S. J., Miles, N. L., Haupt, B. J., Ahlswede, B., Horne, J. P., and Davis, K. J.: Eddy Covariance High-Frequency Data for Urban and Suburban Sites in Indianapolis, Indiana (US-INc, US-INg), Penn State DataCommons [data set], https://doi.org/10.26208/2NT2-RS82, 2023c.
Sarmiento, D. P. and Davis, K. J.: Eddy covariance flux tower data for Indianapolis, IN (INFLUX project), Penn State DataCommons [data set], https://doi.org/10.17190/AMF/2001304, 2017.
Sarmiento, D. P., Deng, K. J., Lauvaux, A., Brewer, T. A., and Hardesty, M.: A comprehensive assessment of land surface-atmosphere interactions in a WRF/Urban modeling system for Indianapolis, IN, Elementa: Science of the Anthropocene, 5, https://doi.org/10.1525/elementa.132, 2017.
Schmid, H. P., Grimmond, S., Cropley, F., Offerle, B., and Su, H.-B.: Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States, Agric. For. Meteorol., 103, 357–374, https://doi.org/10.1016/S0168-1923(00)00140-4, 2000.
Schuepp, P. H., Leclerc, M. Y., MacPherson, J. I., and Desjardins, R. L.: Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation, Boundary Layer Meteorol., 50, 355–373, https://doi.org/10.1007/BF00120530, 1990.
Semerjian, H. G. and Whetstone, J. R.: Urban greenhouse gas measurements, National Institute of Standards and Technology, https://doi.org/10.6028/NIST.TN.2145, 2021.
Shi, Y., Davis, K. J., Duffy, C. J., and Yu, X.: Development of a Coupled Land Surface Hydrologic Model and Evaluation at a Critical Zone Observatory, J. Hydrometeorol., 14, 1401–1420, 2013.
Stagakis, S., Chrysoulakis, N., Spyridakis, N., Feigenwinter, C., and Vogt, R.: Eddy covariance measurements and source partitioning of CO2 emissions in an urban environment: application for Heraklion, Greece, Atmos. Environ., 201, 278–292, https://doi.org/10.1016/j.atmosenv.2019.01.009, 2019.
Stewart, I. D. and Oke, T. R.: Local climate zones for urban temperature studies, B. Am. Meteorol. Soc., 93, 1879–1900, https://doi.org/10.1175/BAMS-D-11-00019.1, 2012.
Sun, L., Chen, J., Li, Q., and Huang, D.: Dramatic uneven urbanization of large cities throughout the world in recent decades, Nat. Commun., 11, 5366, https://doi.org/10.1038/s41467-020-19158-1, 2020.
Turnbull, J. C., Sweeney, C., Karion, A., Newberger, T., Lehman, S. J., Tans, P. P., Davis, K. J., Lauvaux, T., Miles, N. L., Richardson, S. J., Cambaliza, M. O., Shepson, P. B., Gurney, K., Patarasuk, R., and Razlivanov, I.: Toward quantification and source sector identification of fossil fuel CO2 emissions from an urban area: Results from the INFLUX experiment, J. Geophys. Res., 120, 292–312, https://doi.org/10.1002/2014JD022555, 2015.
Turnbull, J. C., Karion, A., Davis, K. J., Lauvaux, T., Miles, N. L., Richardson, S. J., Sweeney, C., McKain, K., Lehman, S. J., Gurney, K. R., Patarasuk, R., Liang, J., Shepson, P. B., Heimburger, A., Harvey, R., and Whetstone, J.: Synthesis of Urban CO2 Emission Estimates from Multiple Methods from the Indianapolis Flux Project (INFLUX), Environ. Sci. Technol., 53, 287–295, https://doi.org/10.1021/acs.est.8b05552, 2019.
Turnbull, J. C., Curras, T., Gurney, K. R., Hilton, T. W., Mueller, K. L., Vogel, F., Yao, B., Albarus, I., Ars, S., Baidar, S., Chatterjee, A., Chen, H., Chen, J., Christen, A., Davis, K. J., Hajny, K., Han, P., Karion, A., Kim, J., Lopez Coto, I., Papale, D., Ramonet, M., Sperlich, P., Vardag, S. N., Vermeulen, A., Vimont, I. J., Wu, D., Zhang, W., Augusti-Panareda, A., Ahlgren, K., Ahn, D., Boyle, T., Brewer, A., Brunner, D., Cai, Q., Chambers, S., Chen, Z., Dadheech, N., D'Onofrio, C., Dunse, B. L., Engelen, R., Fathi, S., Gioli, B., Hammer, S., Hase, F., Hong, J., Hutyra, L. R., Järvi, L., Jeong, S., Karstens, U., Kenion, H. C., Kljun, N., Laurent, O., Lauvaux, T., Lin, J. C., Liu, Z., Loh, Z., Maier, F., Matthews, B., Mauder, M., Miles, N., Mitchell, L., Monteiro, V. C., Mostafavi Pak, N., Röckmann, T., Roiger, A., Roten, D., Scheutz, C., Shahrokhi, N., Shepson, P. B., Stagakis, S., Tong, X., Trudinger, C. M., Velasco, E., Whetstone, J. R., Winbourne, J. B., Wu, J., Xueref-Remy, I., Yadav, V., Yu, L., Zazzeri, G., Zeng, N., and Zhou, M.: IG3IS Urban Greenhouse Gas Emission Observation and Monitoring Good Research Practice Guidelines, WMO GAW Report 275, World Meteorological Organisation, Geneva, Switzerland, https://urban-climate.org/wp-content/uploads/2024/06/GAW_275_en.pdf (last access: 2 April 2025), 2025.
USGS: IN Central MarionCo 2016, The National Map [data set], https://www.usgs.gov/the-national-map-data-delivery (last access: 4 February 2025), 2018.
Vickers, D. and Mahrt, L.: Quality Control and Flux Sampling Problems for Tower and Aircraft Data, J. Atmos. Ocean Technol., 14, 512–526, https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2, 1997.
Vogel, E., Davis, K. J., Wu, K., Miles, N. L., Richardson, S. J., Gurney, K. R., Monteiro, V., Roest, G. S., Kenion, H. C. R., and Horne, J. P.: Using eddy-covariance to measure the effects of COVID-19 restrictions on CO2 emissions in a neighborhood of Indianapolis, IN, Carbon Manag., 15, https://doi.org/10.1080/17583004.2024.2365900, 2024.
Vogt, R., Christen, A., Rotach, M. W., Roth, M., and Satyanarayana, A. N. V.: Temporal dynamics of CO2 fluxes and profiles over a Central European city, Theor. Appl. Climatol., 84, 117–126, https://doi.org/10.1007/s00704-005-0149-9, 2006.
Wang, W., Davis, K. J., Cook, B. D., Butler, M. P., and Ricciuto, D. M.: Decomposing CO2 fluxes measured over a mixed ecosystem at a tall tower and extending to a region: A case study, Journal of Geophysical Research Biogeosci., 111, G02005, https://doi.org/10.1029/2005JG000093, 2006.
Ward, H. C., Rotach, M. W., Gohm, A., Graus, M., Karl, T., Haid, M., Umek, L., and Muschinski, T.: Energy and mass exchange at an urban site in mountainous terrain – the Alpine city of Innsbruck, Atmos. Chem. Phys., 22, 6559–6593, https://doi.org/10.5194/acp-22-6559-2022, 2022.
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements for density effects due to heat and water vapour transfer, Quarterly Journal of the Royal Meteorological Society, 106, 85–100, https://doi.org/10.1002/qj.49710644707, 1980.
Wilczak, J. M., Oncley, S. P., and Stage, S. A.: Sonic Anemometer Tilt Correction Algorithms, Boundary Layer Meteorol., 99, 127–150, https://doi.org/10.1023/A:1018966204465, 2001.
Wu, K., Davis, K. J., Miles, N. L., Richardson, S. J., Lauvaux, T., Sarmiento, D. P., Balashov, N. V., Keller, K., Turnbull, J., Gurney, K. R., Liang, J., and Roest, G.: Source decomposition of eddy-covariance CO2 flux measurements for evaluating a high-resolution urban CO2 emissions inventory, Environmental Research Letters, 17, https://doi.org/10.1088/1748-9326/ac7c29, 2022.
Xiao, J. F., Davis, K. J., Urban, N. M., and Keller, K.: Uncertainty in model parameters and regional carbon fluxes: A model-data fusion approach, Agricultural and Forest Meteorology, 189–190, 175–186, 2014
Xu, K., Metzger, S., and Desai, A. R.: Upscaling tower-observed turbulent exchange at fine spatio-temporal resolution using environmental response functions, Agricultural and Forest Meteorology, 232, 10–22, https://doi.org/10.1016/j.agrformet.2016.07.019, 2017.
Yadav, V., Verhulst, K., Duren, R., Thorpe, A., Kim, J., Keeling, R., Weiss, R., Cusworth, D., Mountain, M., Miller, C., and Whetstone, J.: A declining trend of methane emissions in the Los Angeles basin from 2015 to 2020, Environmental Research Letters, 18, 034004, https://doi.org/10.1088/1748-9326/acb6a9, 2023.
Yi, C., Davis, K. J., Bakwin, P. S., Berger, B. W., and Marr, L. C.: Influence of advection on measurements of the net ecosystem-atmosphere exchange of CO2 from a very tall tower, Journal of Geophysical Research: Atmospheres, 105, 9991–9999, https://doi.org/10.1029/2000JD900080, 2000.
Zweig, S.: Southwest Integrated Field Laboratory (SW-IFL) 2025 Project Year Three Annual Report, Annual project report to the U.S. Department of Energy Office of Science (Award DE-SC0023520), School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, 64 pp., https://sw-ifl.asu.edu/news (last access: 28 January 2026), 2025.
Short summary
We present data from a network of towers used to study the exchange of heat, water vapor, and carbon dioxide between the surface and atmosphere in and around the city of Indianapolis, IN, USA. We explain what was measured, how we checked data quality, and why these observations improve our overall understanding of the urban environment.
We present data from a network of towers used to study the exchange of heat, water vapor, and...
Altmetrics
Final-revised paper
Preprint