Articles | Volume 18, issue 1
https://doi.org/10.5194/essd-18-675-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-18-675-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The global Deep-time Sediment Nitrogen Isotopes in Marine Systems (DSMS-NI) database
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Huyue Song
CORRESPONDING AUTHOR
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Thomas J. Algeo
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Department of Geosciences, University of Cincinnati, Cincinnati, OH 45221-0013, USA
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
Hui Zhang
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Jianwei Peng
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Yuyang Wu
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China
Jiankang Lai
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Xiang Shu
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Hanchen Song
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Lai Wei
School of Future Technology, China University of Geosciences, Wuhan 430074, China
Jincheng Zhang
School of Computer Science, China University of Geosciences, Wuhan 430074, China
Eva E. Stüeken
School of Earth & Environmental Sciences, University of St Andrews, St Andrews KY16 9AL, UK
Stephen E. Grasby
Geological Survey of Canada, Natural Resources Canada, Calgary, Alberta T2L 2A7, Canada
Jacopo Dal Corso
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Xiaokang Liu
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Daoliang Chu
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Li Tian
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Qingzhong Liang
School of Computer Science, China University of Geosciences, Wuhan 430074, China
Xinchuan Li
School of Computer Science, China University of Geosciences, Wuhan 430074, China
School of Computer Science, China University of Geosciences, Wuhan 430074, China
Haijun Song
State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
Related authors
Xiang Shu, Haijun Song, Yong Lei, Daoliang Chu, Jacopo Dal Corso, Xiaokang Liu, Qin Ye, Hanchen Song, Lai Wei, Enhao Jia, Yan Feng, Yong Du, Huyue Song, Wenchao Yu, Qingzhong Liang, Xinchuan Li, Hong Yao, and Yuyang Wu
Earth Syst. Sci. Data, 17, 3567–3582, https://doi.org/10.5194/essd-17-3567-2025, https://doi.org/10.5194/essd-17-3567-2025, 2025
Short summary
Short summary
Building on the foundation of Palynodata, the Global Acritarch Database (GAD) added 29 new fields, 4531 new entries, 2 238 366 new metadata points, and 415 new references, resulting in a database comprising 115 860 entries, 43 fields, 3 050 852 metadata points, and 7791 references. GAD represents records from 1146 different sampling sites spanning geological history from the Precambrian to the Phanerozoic, and the fossil records include 1456 genera and 9865 species (excluding sp.).
Jiankang Lai, Haijun Song, Daoliang Chu, Jacopo Dal Corso, Erik A. Sperling, Yuyang Wu, Xiaokang Liu, Lai Wei, Mingtao Li, Hanchen Song, Yong Du, Enhao Jia, Yan Feng, Huyue Song, Wenchao Yu, Qingzhong Liang, Xinchuan Li, and Hong Yao
Earth Syst. Sci. Data, 17, 1613–1626, https://doi.org/10.5194/essd-17-1613-2025, https://doi.org/10.5194/essd-17-1613-2025, 2025
Short summary
Short summary
The Deep-Time Marine Sedimentary Element Database (DM-SED) expands upon the Sedimentary Geochemistry and Paleoenvironments Project (SGP) database, totalling 63 627 entries and covering major and trace elements and some stable isotopes in ancient marine sediments. This database is not only a significant reference for reconstructing Earth's system evolution but is also a valuable resource for studying palaeo-environments, palaeo-climates, and geochemical cycles.
Xiang Shu, Haijun Song, Yong Lei, Daoliang Chu, Jacopo Dal Corso, Xiaokang Liu, Qin Ye, Hanchen Song, Lai Wei, Enhao Jia, Yan Feng, Yong Du, Huyue Song, Wenchao Yu, Qingzhong Liang, Xinchuan Li, Hong Yao, and Yuyang Wu
Earth Syst. Sci. Data, 17, 3567–3582, https://doi.org/10.5194/essd-17-3567-2025, https://doi.org/10.5194/essd-17-3567-2025, 2025
Short summary
Short summary
Building on the foundation of Palynodata, the Global Acritarch Database (GAD) added 29 new fields, 4531 new entries, 2 238 366 new metadata points, and 415 new references, resulting in a database comprising 115 860 entries, 43 fields, 3 050 852 metadata points, and 7791 references. GAD represents records from 1146 different sampling sites spanning geological history from the Precambrian to the Phanerozoic, and the fossil records include 1456 genera and 9865 species (excluding sp.).
Jiankang Lai, Haijun Song, Daoliang Chu, Jacopo Dal Corso, Erik A. Sperling, Yuyang Wu, Xiaokang Liu, Lai Wei, Mingtao Li, Hanchen Song, Yong Du, Enhao Jia, Yan Feng, Huyue Song, Wenchao Yu, Qingzhong Liang, Xinchuan Li, and Hong Yao
Earth Syst. Sci. Data, 17, 1613–1626, https://doi.org/10.5194/essd-17-1613-2025, https://doi.org/10.5194/essd-17-1613-2025, 2025
Short summary
Short summary
The Deep-Time Marine Sedimentary Element Database (DM-SED) expands upon the Sedimentary Geochemistry and Paleoenvironments Project (SGP) database, totalling 63 627 entries and covering major and trace elements and some stable isotopes in ancient marine sediments. This database is not only a significant reference for reconstructing Earth's system evolution but is also a valuable resource for studying palaeo-environments, palaeo-climates, and geochemical cycles.
Cited articles
Ader, M., Thomazo, C., Sansjofre, P., Busigny, V., Papineau, D., Laffont, R., Cartigny, P., and Halverson, G. P.: Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks: Assumptions and perspectives, Chem. Geol., 429, 93–110, https://doi.org/10.1016/j.chemgeo.2016.02.010, 2016.
Algeo, T. J., Rowe, H., Hower, J. C., Schwark, L., Herrmann, A., and Heckel, P.: Changes in ocean denitrification during Late Carboniferous glacial–interglacial cycles, Nat. Geosci., 1, 709–714, https://doi.org/10.1038/ngeo307, 2008.
Algeo, T. J., Meyers, P. A., Robinson, R. S., Rowe, H., and Jiang, G. Q.: Icehouse–greenhouse variations in marine denitrification, Biogeosciences, 11, 1273–1295, https://doi.org/10.5194/bg-11-1273-2014, 2014.
Altabet, M. A., Murray, D. W., and Prell, W. L.: Climatically linked oscillations in Arabian Sea denitrification over the past 1 m.y.: Implications for the marine N cycle, Paleoceanography, 14, 732–743, https://doi.org/10.1029/1999PA900035, 1999.
Bebout, G. E., Cooper, D. C., Bradley, A. D., and Sadofsky, S. J.: Nitrogen-isotope record of fluid-rock interactions in the Skiddaw aureole and granite, English Lake District, Am. Mineral., 84, 1495–1505, https://doi.org/10.2138/am-1999-1002, 1999.
Bush, A. M. and Payne, J. L.: Biotic and Abiotic Controls on the Phanerozoic History of Marine Animal Biodiversity, Annu. Rev. Ecol. Evol. Syst., 52, 269–289, https://doi.org/10.1146/annurev-ecolsys-012021-035131, 2021.
Busigny, V., Cartigny, P., Philippot, P., Ader, M., and Javoy, M.: Massive recycling of nitrogen and other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: evidence from HP to UHP oceanic metasediments of the Schistes Lustrés nappe (western Alps, Europe), Earth Planet. Sc. Lett., 215, 27–42, https://doi.org/10.1016/S0012-821X(03)00453-9, 2003.
Chase, B. M., Niedermeyer, E. M., Boom, A., Carr, A. S., Chevalier, M., He, F., Meadows, M. E., Ogle, N., and Reimer, P. J.: Orbital controls on Namib Desert hydroclimate over the past 50,000 years, Geology, 47, 867–871, https://doi.org/10.1130/G46334.1, 2019.
Diepenbroek, M., Grobe, H., Reinke, M., Schindler, U., Schlitzer, R., Sieger, R., and Wefer, G.: PANGAEA – an information system for environmental sciences, Comput. Geosci., 28, 1201–1210, https://doi.org/10.1016/S0098-3004(02)00039-0, 2002.
Du, Y.: Python Code for Figures of the Global Deep-Time Marine Nitrogen Isotope Database, Zenodo [code], https://doi.org/10.5281/zenodo.15758073, 2025.
Du, Y., Song, H. Y., Tong, J., Algeo, T. J., Li, Z., Song, H.J., and Huang, J.: Changes in productivity associated with algal-microbial shifts during the Early Triassic recovery of marine ecosystems, Geol. Soc. Am. Bull., 133, 362–378, https://doi.org/10.1130/B35510.1, 2021.
Du, Y., Song, H.Y., Grasby, S. E., Xing, T., Song, H.J., Tian, L., Chu, D., Wu, Y., Dal Corso, J., Algeo, T. J., and Tong, J.: Recovery from persistent nutrient-N limitation following the Permian–Triassic mass extinction, Earth Planet. Sci. Lett., 602, 117944, https://doi.org/10.1016/j.epsl.2022.117944, 2023.
Du, Y., Song, H. Y., Stüeken, E. E., Grasby, S. E., Song, H.J., Tian, L., Chu, D., Dal Corso, J., Li, Z., and Tong, J.: Large nitrogen cycle perturbations during the Early Triassic hyperthermal, Geochim. Cosmochim. Acta, 382, 13–25, https://doi.org/10.1016/j.gca.2024.08.009, 2024.
Du, Y., Song, H. Y., Algeo, T. J., Zhang, H., Peng, J., Wu, Y., Lai, J., Shu, X., Song, H. J., Wei, L., Zhang, J., Stüeken, E. E., Grasby, S. E., Dal Corso, J., Dai, X., Chu, D., Tian, L., Liang, Q., Li, X., Yao, H., and Song, H.: The global database of deep-time marine nitrogen isotope data, Zenodo [data set], https://doi.org/10.5281/zenodo.15117375, 2025a.
Du, Y., Song, H. Y., Algeo, T. J., Zhong, L., Li, J., and Song, H. J.: Tectonic controls on nitrogen cycling and ocean ventilation dynamics in the Late Cretaceous equatorial Atlantic, Earth Planet. Sc. Lett., 667, 119517, https://doi.org/10.1016/j.epsl.2025.119517, 2025b.
Gard, M., Hasterok, D., and Halpin, J. A.: Global whole-rock geochemical database compilation, Earth Syst. Sci. Data, 11, 1553–1566, https://doi.org/10.5194/essd-11-1553-2019, 2019.
Godfrey, L. V., Omta, A. W., Tziperman, E., Li, X., Hu, Y., and Falkowski, P. G.: Stability of the marine nitrogen cycle over the past 165 million years, Nat. Commun., 16, 8982, https://doi.org/10.1038/s41467-025-63604-x, 2025.
Gruber, N. and Galloway, J. N.: An Earth-system perspective of the global nitrogen cycle, Nature, 451, 293–296, https://doi.org/10.1038/nature06592, 2008.
Hammarlund, E. U., Smith, M. P., Rasmussen, J. A., Nielsen, A. T., Canfield, D. E., and Harper, D. A. T.: The Sirius Passet Lagerstätte of North Greenland-A geochemical window on early Cambrian low-oxygen environments and ecosystems, Geobiology, 17, 12–26, https://doi.org/10.1111/gbi.12315, 2019.
Hendricks, G., Tkaczyk, D., Lin, J., and Feeney, P.: Crossref: The sustainable source of community-owned scholarly metadata, Quant. Sci. Stud., 1, 414–427, https://doi.org/10.1162/qss_a_00022, 2020.
Hoefs, J.: Stable Isotope Geochemistry, Springer International Publishing, Berlin, https://doi.org/10.1007/978-3-030-77692-3, 2021.
Ishida, A., Hashizume, K., and Kakegawa, T.: Microbial nitrogen cycle enhanced by continental input recorded in the Gunflint Formation, Geochem. Persp. Let., 13–18, https://doi.org/10.7185/geochemlet.1729, 2017.
Jia, Y. and Kerrich, R.: Giant quartz vein systems in accretionary orogenic belts: the evidence for a metamorphic fluid origin from δ15N and δ13C studies, Earth Planet. Sc. Lett., 184, 211–224, https://doi.org/10.1016/S0012-821X(00)00320-4, 2000.
Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochem. Geophys. Geosyst., 11, Q03004, https://doi.org/10.1029/2009GC002788, 2010.
Judd, E. J., Bhattacharya, T., and Ivany, L. C.: A Dynamical Framework for Interpreting Ancient Sea Surface Temperatures, Geophys. Res. Lett., 47, e2020GL089044, https://doi.org/10.1029/2020GL089044, 2020.
Judd, E. J., Tierney, J. E., Lunt, D. J., Montañez, I. P., Huber, B. T., Wing, S. L., and Valdes, P. J.: A 485-million-year history of Earth's surface temperature, Science, 385, eadk3705, https://doi.org/10.1126/science.adk3705, 2024.
Junium, C. K., Meyers, S. R., and Arthur, M. A.: Nitrogen cycle dynamics in the Late Cretaceous Greenhouse, Earth Planet. Sc. Lett., 481, 404–411, https://doi.org/10.1016/j.epsl.2017.10.006, 2018.
Kipp, M. A., Stüeken, E. E., Yun, M., Bekker, A., and Buick, R.: Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic Era, Earth Planet. Sc. Lett., 500, 117–126, https://doi.org/10.1016/j.epsl.2018.08.007, 2018.
Knies, J., Grasby, S. E., Beauchamp, B., and Schubert, C. J.: Water mass denitrification during the latest Permian extinction in the Sverdrup Basin, Arctic Canada, Geology, 41, 167–170, https://doi.org/10.1130/G33816.1, 2013.
Kocsis, Á. T. and Scotese, C. R.: Mapping paleocoastlines and continental flooding during the Phanerozoic, Earth Sci. Rev., 213, 103463, https://doi.org/10.1016/j.earscirev.2020.103463, 2021.
Koehler, M. C., Stüeken, E. E., Hillier, S., and Prave, A. R.: Limitation of fixed nitrogen and deepening of the carbonate-compensation depth through the Hirnantian at Dob's Linn, Scotland, Palaeogeogr. Palaeoclimatol. Palaeoecol., 534, 109321, https://doi.org/10.1016/j.palaeo.2019.109321, 2019.
Lai, J., Song, H., Chu, D., Dal Corso, J., Sperling, E. A., Wu, Y., Liu, X., Wei, L., Li, M., Song, H., Du, Y., Jia, E., Feng, Y., Song, H., Yu, W., Liang, Q., Li, X., and Yao, H.: Deep-Time Marine Sedimentary Element Database, Earth Syst. Sci. Data, 17, 1613–1626, https://doi.org/10.5194/essd-17-1613-2025, 2025.
Li, J., Song, H. Y., Du, Y., Wignall, P. B., Bond, D. P. G., Grasby, S. E., Song, H. J., Dal Corso, J., Tian, L., and Chu, D.: Spatial and temporal heterogeneity of the marine nitrogen cycle during the end-Triassic mass extinction, Chem. Geol., 682, 122752, https://doi.org/10.1016/j.chemgeo.2025.122752, 2025.
Liu, Y., Magnall, J. M., Gleeson, S. A., Bowyer, F., Poulton, S. W., and Zhang, J.: Spatio-temporal evolution of ocean redox and nitrogen cycling in the early Cambrian Yangtze ocean, Chem. Geol., 554, 119803, https://doi.org/10.1016/j.chemgeo.2020.119803, 2020.
Liu, Z., Altabet, M. A., and Herbert, T. D.: Plio-Pleistocene denitrification in the eastern tropical North Pacific: Intensification at 2.1 Ma, Chem. Geol., 9, 2008GC002044, https://doi.org/10.1029/2008GC002044, 2008.
Macdonald, F. A., Swanson-Hysell, N. L., Park, Y., Lisiecki, L., and Jagoutz, O.: Arc-continent collisions in the tropics set earth's climate state, Science, 364, 181–184, https://doi.org/10.1126/science.aav5300, 2019.
Martin, A. N. and Stüeken, E. E.: Mechanisms of nitrogen isotope fractionation at an ancient black smoker in the 2.7 Ga Abitibi greenstone belt, Canada, Geology, 52, https://doi.org/10.1130/G51689.1, 2024.
Meyers, P. A., Yum, J.-G., and Wise, S. W.: Origins and maturity of organic matter in mid-Cretaceous black shales from ODP Site 1138 on the Kerguelen Plateau, Mar. Pet. Geol., 26, 909–915, https://doi.org/10.1016/j.marpetgeo.2008.09.003, 2009.
Montañez, I., Norris, R., Ma, C., Johnson, K., Mj, K., Kiehl, J., Kump, L., Ravelo, A., and Kk, T.: Understanding Earth’s Deep Past: Lessons for Our Climate Future, National Academies Press, Washington, DC, 208 pp., ISBN 13 978-0-309-20915-1, 2011.
Moretti, S., Auderset, A., Deutsch, C., Schmitz, R., Gerber, L., Thomas, E., Luciani, V., Petrizzo, M. R., Schiebel, R., Tripati, A., Sexton, P., Norris, R., D'Onofrio, R., Zachos, J., Sigman, D. M., Haug, G. H., and Martínez-García, A.: Oxygen rise in the tropical upper ocean during the Paleocene-Eocene Thermal Maximum, Science, 383, 727–731, https://doi.org/10.1126/science.adh4893, 2024.
Murphy, E. M. A. and Salvador, A.: International Subcommission on Stratigraphic Classification of IUGS International Commission on Stratigraphy, Episodes, 22, 255–271, https://doi.org/10.18814/epiiugs/1999/v22i4/002, 1999.
National Research Council: Scientific Ocean Drilling: Accomplishments and Challenges, National Academies Press, Washington, D.C., https://doi.org/10.17226/13232, 2011.
Pellerin, A., Thomazo, C., Ader, M., Rossignol, C., Rego, E. S., Busigny, V., and Philippot, P.: Neoarchaean oxygen-based nitrogen cycle en route to the Great Oxidation Event, Nature, https://doi.org/10.1038/s41586-024-07842-x, 2024.
Percival, L. M. E., Marynowski, L., Baudin, F., Goderis, S., De Vleeschouwer, D., Rakociński, M., Narkiewicz, K., Corradini, C., Da Silva, A.-C., and Claeys, P.: Combined Nitrogen-Isotope and Cyclostratigraphy Evidence for Temporal and Spatial Variability in Frasnian–Famennian Environmental Change, Geochem. Geophys. Geosyst., 23, e2021GC010308, https://doi.org/10.1029/2021GC010308, 2022.
Peters, K. E.: Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis, AAPG Bull., 70, 318–329, https://doi.org/10.1306/94885688-1704-11D7-8645000102C1865D, 1986.
Poulton, S. W. and Canfield, D. E.: Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates, Chem. Geol., 214, 209–221, https://doi.org/10.1016/j.chemgeo.2004.09.003, 2005.
Ren, H., Sigman, D. M., Thunell, R. C., and Prokopenko, M. G.: Nitrogen isotopic composition of planktonic foraminifera from the modern ocean and recent sediments, Limnol. Oceanogr., 57, 1011–1024, https://doi.org/10.4319/lo.2012.57.4.1011, 2012.
Ren, H., Sigman, D. M., Martínez-García, A., Anderson, R. F., Chen, M.-T., Ravelo, A. C., Straub, M., Wong, G. T. F., and Haug, G. H.: Impact of glacial/interglacial sea level change on the ocean nitrogen cycle, P. Natl. Acad. Sci. USA, 114, https://doi.org/10.1073/pnas.1701315114, 2017.
Robinson, R. S., Kienast, M., Luiza Albuquerque, A., Altabet, M., Contreras, S., De Pol Holz, R., Dubois, N., Francois, R., Galbraith, E., Hsu, T.-C., Ivanochko, T., Jaccard, S., Kao, S.-J., Kiefer, T., Kienast, S., Lehmann, M., Martinez, P., McCarthy, M., Möbius, J., Pedersen, T., Quan, T. M., Ryabenko, E., Schmittner, A., Schneider, R., Schneider-Mor, A., Shigemitsu, M., Sinclair, D., Somes, C., Studer, A., Thunell, R., and Yang, J.-Y.: A review of nitrogen isotopic alteration in marine sediments, Paleoceanography, 27, https://doi.org/10.1029/2012PA002321, 2012.
Sahoo, S. K., Gilleaudeau, G. J., Wilson, K., Hart, B., Barnes, B. D., Faison, T., Bowman, A. R., Larson, T. E., and Kaufman, A. J.: Basin-scale reconstruction of euxinia and Late Devonian mass extinctions, Nature, 615, 640–645, https://doi.org/10.1038/s41586-023-05716-2, 2023.
Scotese, C. R. and Wright, N.: PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic PALEOMAP Project, https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/ (last access: 1 April 2025), 2018.
Smart, S. M., Ren, H., Fawcett, S. E., Schiebel, R., Conte, M., Rafter, P. A., Ellis, K. K., Weigand, M. A., Oleynik, S., Haug, G. H., and Sigman, D. M.: Ground-truthing the planktic foraminifer-bound nitrogen isotope paleo-proxy in the Sargasso Sea, Geochim. Cosmochim. Acta, 235, 463–482, https://doi.org/10.1016/j.gca.2018.05.023, 2018.
Song, H. Y., Xing, T., Stüeken, E. E., Du, Y., Zhu, Y., Tao, X., Ni, Q., and Song, H. J.: Isotopic differences and paleoenvironmental significance of nitrogen contained in bulk sedimentary rocks, decarbonated aliquots and kerogen extracts, Chem. Geol., 631, 121522, https://doi.org/10.1016/j.chemgeo.2023.121522, 2023.
Stüeken, E. E., Kipp, M. A., Koehler, M. C., and Buick, R.: The evolution of Earth's biogeochemical nitrogen cycle, Earth Sci. Rev., 160, 220–239, https://doi.org/10.1016/j.earscirev.2016.07.007, 2016.
Stüeken, E. E., Pellerin, A., Thomazo, C., Johnson, B. W., Duncanson, S., and Schoepfer, S. D.: Marine biogeochemical nitrogen cycling through Earth's history, Nat. Rev. Earth Environ., https://doi.org/10.1038/s43017-024-00591-5, 2024.
Sun, Y.: Dynamics of nutrient cycles in the Permian–Triassic oceans, Earth Sci. Rev., 258, 104914, https://doi.org/10.1016/j.earscirev.2024.104914, 2024.
Tesdal, J.-E., Galbraith, E. D., and Kienast, M.: Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records, Biogeosciences, 10, 101–118, https://doi.org/10.5194/bg-10-101-2013, 2013.
Thomazo, C., Ader, M., and Philippot, P.: Extreme 15 N-enrichments in 2.72-Gyr-old sediments: evidence for a turning point in the nitrogen cycle, Geobiology, 9, 107–120, https://doi.org/10.1111/j.1472-4669.2011.00271.x, 2011.
Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A.: Trace metals as paleoredox and paleoproductivity proxies: An update, Chem. Geol., 232, 12–32, https://doi.org/10.1016/j.chemgeo.2006.02.012, 2006.
Tucker, M. E. and Wright, V. P.: Carbonate Sedimentology, John Wiley & Sons, Hoboken, New Jersey, U.S., 482 pp., ISBN 1-4443-1416-5, 2009.
Uveges, B. T., Izon, G., Junium, C. K., Ono, S., and Summons, R. E.: Aerobic nitrogen cycle 100 My before permanent atmospheric oxygenation, P. Natl. Acad. Sci. USA, 122, e2423481122, https://doi.org/10.1073/pnas.2423481122, 2025.
Wang, D., Ling, H.-F., Struck, U., Zhu, X.-K., Zhu, M., He, T., Yang, B., Gamper, A., and Shields, G. A.: Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition, Nat. Commun., 9, 2575, https://doi.org/10.1038/s41467-018-04980-5, 2018.
Wang, X., Shi, X., Tang, D., and Zhang, W.: Nitrogen isotope evidence for redox variations at the Ediacaran-Cambrian Transition in South China, J. Geol., 121, 489–502, https://doi.org/10.1086/671396, 2013.
Wang, X. T., Wang, Y., Auderset, A., Sigman, D. M., Ren, H., Martínez-García, A., Haug, G. H., Su, Z., Zhang, Y. G., Rasmussen, B., Sessions, A. L., and Fischer, W. W.: Oceanic nutrient rise and the late Miocene inception of Pacific oxygen-deficient zones, P. Natl. Acad. Sci. USA, 119, e2204986119, https://doi.org/10.1073/pnas.2204986119, 2022.
Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., Da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., ’T Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., Van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., Van Der Lei, J., Van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management and stewardship, Sci. Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Winter, J. D.: Principles of igneous and metamorphic petrology, Pearson education Harlow, UK, Pearson Education, Harlow, U.K., 740 pp., ISBN 978-1-292-02153-9, 2014.
Xia, L., Cao, J., Stüeken, E. E., Hu, W., and Zhi, D.: Linkages between nitrogen cycling, nitrogen isotopes, and environmental properties in paleo-lake basins, GSA Bull., 134, 2359–2372, https://doi.org/10.1130/B36290.1, 2022.
Zhong, L., Peng, J., He, J., Du, Y., Xing, T., Li, J., Guo, W., Ni, Q., Hu, J., and Song, H. Y.: Optimizations of the EA-IRMS system for δ15N analysis of trace nitrogen, Appl. Geochem., 159, 105832, https://doi.org/10.1016/j.apgeochem.2023.105832, 2023.
Short summary
This study presents a global database of nitrogen isotope data from ancient ocean sediments, covering Earth's history from the present back to billions of years ago. The database includes over 70 000 nitrogen isotope records from 417 studies, along with essential geological context and related chemical data. This database will help reveal the mechanisms behind critical events like mass extinctions and major ocean changes, enhancing our understanding of Earth's long-term environmental processes.
This study presents a global database of nitrogen isotope data from ancient ocean sediments,...
Altmetrics
Final-revised paper
Preprint