Articles | Volume 18, issue 1
https://doi.org/10.5194/essd-18-585-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-18-585-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A unified 3D geological model for Germany and adjacent areas
Steffen Ahlers
CORRESPONDING AUTHOR
Technical University of Darmstadt, FB 11, Institute of Applied Geosciences, Engineering Geology, 64287 Darmstadt, Germany
Andreas Henk
Technical University of Darmstadt, FB 11, Institute of Applied Geosciences, Engineering Geology, 64287 Darmstadt, Germany
Related authors
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Tobias Hergert, Karsten Reiter, Andreas Henk, Moritz Ziegler, Oliver Heidbach, and Frank Schilling
Saf. Nucl. Waste Disposal, 2, 73–73, https://doi.org/10.5194/sand-2-73-2023, https://doi.org/10.5194/sand-2-73-2023, 2023
Short summary
Short summary
Stress data predicted by a geomechanical–numerical model are mapped onto 3D fault geometries. Then the slip tendency of these faults is calculated as a measure of their reactivation potential. Characteristics of the faults and the state of stress are identified that lead to a high fault reactivation potential. An overall high reactivation potential is observed in the Upper Rhine Graben area, whereas the reactivation potential is quite low in the Molasse Basin.
Tobias Hergert, Steffen Ahlers, Luisa Röckel, Sophia Morawietz, Karsten Reiter, Moritz Ziegler, Birgit Müller, Oliver Heidbach, Frank Schilling, and Andreas Henk
Saf. Nucl. Waste Disposal, 2, 65–65, https://doi.org/10.5194/sand-2-65-2023, https://doi.org/10.5194/sand-2-65-2023, 2023
Short summary
Short summary
In numerical geomechanical models, an initial stress state is established before displacement boundary conditions are applied in order to match calibration data. We present generic models to show that the choice of initial stress and boundary conditions affects the final state of stress in areas of the model domain where no stress data for calibration are available. These deviations are largest in the vicinity of lithological interfaces, and they can be reduced if more stress data exist.
Steffen Ahlers, Karsten Reiter, Tobias Hergert, Andreas Henk, Luisa Röckel, Sophia Morawietz, Oliver Heidbach, Moritz Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 59–59, https://doi.org/10.5194/sand-2-59-2023, https://doi.org/10.5194/sand-2-59-2023, 2023
Short summary
Short summary
The recent crustal stress state is a crucial parameter in the search for a high-level nuclear waste repository. We present results of a 3D geomechanical numerical model that improves the state of knowledge by providing a continuum-mechanics-based prediction of the recent crustal stress field in Germany. The model results can be used, for example, for the calculation of fracture potential, for slip tendency analyses or as boundary conditions for smaller local models.
Luisa Röckel, Steffen Ahlers, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, https://doi.org/10.5194/se-13-1087-2022, 2022
Short summary
Short summary
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations. The reactivation potential is linked to fault properties and the tectonic stress field. We create 3D geometries for major faults in Germany and use stress data from a 3D geomechanical–numerical model to calculate their reactivation potential and compare it to seismic events. The reactivation potential in general is highest for NNE–SSW- and NW–SE-striking faults and strongly depends on the fault dip.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Saf. Nucl. Waste Disposal, 1, 77–78, https://doi.org/10.5194/sand-1-77-2021, https://doi.org/10.5194/sand-1-77-2021, 2021
Karsten Reiter, Steffen Ahlers, Sophia Morawietz, Luisa Röckel, Tobias Hergert, Andreas Henk, Birgit Müller, and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 75–76, https://doi.org/10.5194/sand-1-75-2021, https://doi.org/10.5194/sand-1-75-2021, 2021
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Saf. Nucl. Waste Disposal, 1, 163–164, https://doi.org/10.5194/sand-1-163-2021, https://doi.org/10.5194/sand-1-163-2021, 2021
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021, https://doi.org/10.5194/se-12-1777-2021, 2021
Short summary
Short summary
Knowledge about the stress state in the upper crust is of great importance for many economic and scientific questions. However, our knowledge in Germany is limited since available datasets only provide pointwise, incomplete and heterogeneous information. We present the first 3D geomechanical model that provides a continuous description of the contemporary crustal stress state for Germany. The model is calibrated by the orientation of the maximum horizontal stress and stress magnitudes.
Lalit Sai Aditya Reddy Velagala, Oliver Heidbach, Moritz Ziegler, Karsten Reiter, Mojtaba Rajabi, Andreas Henk, Silvio B. Giger, and Tobias Hergert
EGUsphere, https://doi.org/10.5194/egusphere-2025-4559, https://doi.org/10.5194/egusphere-2025-4559, 2025
Short summary
Short summary
We assess the fault impact on the stress field in northern Switzerland using 3D geomechanical models, calibrated with stress data. We see that faults affect the stresses only locally, with negligible impact beyond 1 km, suggesting that faults may not be necessary in reservoir-scale models predicting stresses of undisturbed rock volumes, such as for a deep geological repository. Omitting them can substantially reduce modelling time and computational cost without compromising prediction accuracy.
Denise Degen, Moritz Ziegler, Oliver Heidbach, Andreas Henk, Karsten Reiter, and Florian Wellmann
Solid Earth, 16, 477–502, https://doi.org/10.5194/se-16-477-2025, https://doi.org/10.5194/se-16-477-2025, 2025
Short summary
Short summary
Obtaining reliable estimates of the subsurface state distributions is essential to determine the location of, e.g., potential nuclear waste disposal sites. However, providing these is challenging since it requires solving the problem numerous times, yielding high computational cost. To overcome this, we use a physics-based machine learning method to construct surrogate models. We demonstrate how it produces physics-preserving predictions, which differentiates it from purely data-driven approaches.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Tobias Hergert, Karsten Reiter, Andreas Henk, Moritz Ziegler, Oliver Heidbach, and Frank Schilling
Saf. Nucl. Waste Disposal, 2, 73–73, https://doi.org/10.5194/sand-2-73-2023, https://doi.org/10.5194/sand-2-73-2023, 2023
Short summary
Short summary
Stress data predicted by a geomechanical–numerical model are mapped onto 3D fault geometries. Then the slip tendency of these faults is calculated as a measure of their reactivation potential. Characteristics of the faults and the state of stress are identified that lead to a high fault reactivation potential. An overall high reactivation potential is observed in the Upper Rhine Graben area, whereas the reactivation potential is quite low in the Molasse Basin.
Tobias Hergert, Steffen Ahlers, Luisa Röckel, Sophia Morawietz, Karsten Reiter, Moritz Ziegler, Birgit Müller, Oliver Heidbach, Frank Schilling, and Andreas Henk
Saf. Nucl. Waste Disposal, 2, 65–65, https://doi.org/10.5194/sand-2-65-2023, https://doi.org/10.5194/sand-2-65-2023, 2023
Short summary
Short summary
In numerical geomechanical models, an initial stress state is established before displacement boundary conditions are applied in order to match calibration data. We present generic models to show that the choice of initial stress and boundary conditions affects the final state of stress in areas of the model domain where no stress data for calibration are available. These deviations are largest in the vicinity of lithological interfaces, and they can be reduced if more stress data exist.
Steffen Ahlers, Karsten Reiter, Tobias Hergert, Andreas Henk, Luisa Röckel, Sophia Morawietz, Oliver Heidbach, Moritz Ziegler, and Birgit Müller
Saf. Nucl. Waste Disposal, 2, 59–59, https://doi.org/10.5194/sand-2-59-2023, https://doi.org/10.5194/sand-2-59-2023, 2023
Short summary
Short summary
The recent crustal stress state is a crucial parameter in the search for a high-level nuclear waste repository. We present results of a 3D geomechanical numerical model that improves the state of knowledge by providing a continuum-mechanics-based prediction of the recent crustal stress field in Germany. The model results can be used, for example, for the calculation of fracture potential, for slip tendency analyses or as boundary conditions for smaller local models.
Luisa Röckel, Steffen Ahlers, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Solid Earth, 13, 1087–1105, https://doi.org/10.5194/se-13-1087-2022, https://doi.org/10.5194/se-13-1087-2022, 2022
Short summary
Short summary
Reactivation of tectonic faults can lead to earthquakes and jeopardize underground operations. The reactivation potential is linked to fault properties and the tectonic stress field. We create 3D geometries for major faults in Germany and use stress data from a 3D geomechanical–numerical model to calculate their reactivation potential and compare it to seismic events. The reactivation potential in general is highest for NNE–SSW- and NW–SE-striking faults and strongly depends on the fault dip.
Luisa Röckel, Steffen Ahlers, Sophia Morawietz, Birgit Müller, Karsten Reiter, Oliver Heidbach, Andreas Henk, Tobias Hergert, and Frank Schilling
Saf. Nucl. Waste Disposal, 1, 77–78, https://doi.org/10.5194/sand-1-77-2021, https://doi.org/10.5194/sand-1-77-2021, 2021
Karsten Reiter, Steffen Ahlers, Sophia Morawietz, Luisa Röckel, Tobias Hergert, Andreas Henk, Birgit Müller, and Oliver Heidbach
Saf. Nucl. Waste Disposal, 1, 75–76, https://doi.org/10.5194/sand-1-75-2021, https://doi.org/10.5194/sand-1-75-2021, 2021
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Saf. Nucl. Waste Disposal, 1, 163–164, https://doi.org/10.5194/sand-1-163-2021, https://doi.org/10.5194/sand-1-163-2021, 2021
Steffen Ahlers, Andreas Henk, Tobias Hergert, Karsten Reiter, Birgit Müller, Luisa Röckel, Oliver Heidbach, Sophia Morawietz, Magdalena Scheck-Wenderoth, and Denis Anikiev
Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021, https://doi.org/10.5194/se-12-1777-2021, 2021
Short summary
Short summary
Knowledge about the stress state in the upper crust is of great importance for many economic and scientific questions. However, our knowledge in Germany is limited since available datasets only provide pointwise, incomplete and heterogeneous information. We present the first 3D geomechanical model that provides a continuous description of the contemporary crustal stress state for Germany. The model is calibrated by the orientation of the maximum horizontal stress and stress magnitudes.
Cited articles
Ahlers, S.: 3D Geological Model for Germany and Adjacent Areas, TUdatalib [data set], https://doi.org/10.48328/tudatalib-1791, 2026.
Ahlers, S., Henk, A., Hergert, T., Reiter, K., Müller, B., Röckel, L., Heidbach, O., Morawietz, S., Scheck-Wenderoth, M., and Anikiev, D.: 3D crustal stress state of Germany according to a data-calibrated geomechanical model, Solid Earth, 12, 1777–1799, https://doi.org/10.5194/se-12-1777-2021, 2021.
Ahlers, S., Röckel, L., Hergert, T., Reiter, K., Heidbach, O., Henk, A., Müller, B., Morawietz, S., Scheck-Wenderoth, M., and Anikiev, D.: The crustal stress field of Germany: a refined prediction, Geoth. Energy, 10, https://doi.org/10.1186/s40517-022-00222-6, 2022a.
Ahlers, S., Henk, A., Hergert, T., Reiter, K., Müller, B., Röckel, L., Heidbach, O., Morawietz, S., Scheck-Wenderoth, M., and Anikiev, D.: The crustal stress state of Germany – Results of a 3D geomechnical model [data set], TUdatalib [data set], https://doi.org/10.48328/tudatalib-437.5, 2022b.
Anikiev, D., Lechel, A., Gomez Dacal, M. L., Bott, J., Cacace, M., and Scheck-Wenderoth, M.: A three-dimensional lithospheric-scale thermal model of Germany, Adv. Geosci., 49, 225–234, https://doi.org/10.5194/adgeo-49-225-2019, 2019.
Arfai, J. and Lutz, R.: 3D basin and petroleum system modelling of the NW German North Sea (Entenschnabel), Petrol. Geol. Confer. Ser., 8, 67–86, https://doi.org/10.1144/PGC8.35, 2018.
Bachmann, G. H., Bayer, U., Duerbaum, H. J., Hoffmann, N., Krawczyk, C. M., Lueck, E., McCann, T., Meissner, R., Meyer, H., Oncken, O., Polom, U., Prochnow, U., Rabbel, W., Scheck, M., and Stiller, M.: Deep crustal structure of the Northeast German Basin; new DEKORP-BASIN'96 deep-profiling results, Geology, 27, 55–58, https://doi.org/10.1130/0091-7613(1999)027<0055:DCSOTN>2.3.CO;2, 1999.
Bachmann, G. H., Ehling, B.-C., Eichner, R., and Schwab, M. (Eds.): Geologie von Sachsen-Anhalt, Schweizerbart Science Publishers, Stuttgart, Germany, 689 pp., ISBN 978-3-510-65240-2, 2008.
Baldschuhn, R., Binot, F., Fleig, S., and Kockel, F.: Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor, Geologisches Jahrbuch – Reihe A, 153, 88 pp., ISBN 978-3-510-95881-8, 2001.
Balling, P., Maystrenko, Y., and Scheck-Wenderoth, M.: The deep thermal field of the Glueckstadt Graben, Environ. Earth. Sci., 70, 3505–3522, https://doi.org/10.1007/s12665-013-2750-z, 2013.
Bär, K., Schäffer, R., Weinert, S., and Sass, I.: Verbundprojekt “Hessen 3D 2.0” 3D-Modell der geothermischen Tiefenpotenziale von Hessen – Petrothermale Potenziale und Mitteltiefe Potenziale zur Wärmenutzung und Wärmespeicherung (Teilvorhaben A): Schlussbericht zum BMWi-geförderten Verbundprojekt “Hessen 3D 2.0” (FKZ 0325944A), 194 pp., https://doi.org/10.2314/KXP:1795616571, 2021.
Becker, R., Reischmann, T., and HLNUG (Eds.): Geologie von Hessen, Schweizerbart Science Publishers, Stuttgart, Germany, 705 pp., ISBN 978-3-510-65442-0, 2021.
BGR, LAGB, LBEG, LBGR, LLUR, and LUNG: 3D-Modell des geologischen Untergrundes des Norddeutschen Beckens (Projekt TUNB): Erstveröffentlichung 2021, Version 2022, https://gst.bgr.de (last access: 13 January 2026), 2022.
Danielson, J. J. and Gesch, D. B.: Global multi-resolution terrain elevation data 2010 (GMTED2010): Mean statistic, 30 arc-seconds, Open-File Report 2011-1073, USGS [data set], https://doi.org/10.3133/ofr20111073, 2011.
Deckers, J., de Koninck, R., Bos, S., Broothaers, M., Dirix, K., Hambsch L., Lagrou, D., Lanckacker, T., Matthijs, J., Rombaut, B., van Baelen, K., and van Haren, T.: Geologisch (G3Dv3) en hydrogeologisch (H3D) 3D-lagenmodel van Vlaanderen, https://www.dov.vlaanderen.be/page/geologisch-3d-model-g3dv3 (last access: 13 January 2026), 2019.
Donner, E.: Geologisches 3D Modell Niederbayern: Status: Schematisches Volumenmodell, 26 pp., https://www.bestellen.bayern.de/med/6fd503c9-b4a5-11f0-81ee-c3fc7d0a3316/4b0e6a70-1059-11d9-4c85-9d915831e9eb/0/lfu_bod_00179.pdf (last access: 13 January 2026), 2020a.
Donner, E.: Geologisches 3D Modell Niederbayern. Status: Schematisches Volumenmodell, LfU [data set], https://www.3dportal.lfu.bayern.de/ (last access: 13 January 2026), 2020b.
Doornenbal, H. and Stevenson, A.: Petroleum Geological Atlas of the Southern Permian Basin Area, EAGE Publications b.v., Houten, 342 pp., ISBN 978-90-73781-61-0, 2010.
DSK: Stratigraphische Tabelle von Deutschland 2016, Deutsche Stratigraphische Kommission, Potsdam, 1 pp., ISBN 978-3-9816597-7-1, 2016.
DSK, Paul, J., and Heggemann, H. (Eds.): Stratigraphie von Deutschland XII – Zechstein, Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, Schweizerbart Science Publishers, Hannover, 647 pp., ISBN 978-3-510-49241-1, 2020.
Fazlikhani, H., Bauer, W., and Stollhofen, H.: Variscan structures and their control on latest to post-Variscan basin architecture: insights from the westernmost Bohemian Massif and southeastern Germany, Solid Earth, 13, 393–416, https://doi.org/10.5194/se-13-393-2022, 2022.
Freymark, J., Sippel, J., Scheck-Wenderoth, M., Bär, K., Stiller, M., Fritsche, J.-G., and Kracht, M.: The deep thermal field of the Upper Rhine Graben, Tectonophysics, 694, 114–129, https://doi.org/10.1016/j.tecto.2016.11.013, 2017.
Geißler, V., Gauer, A., and Görne, S.: Innovative digitale Geomodelle 2020 – Teil 1, Schriftenreihe des LfULG, 22, Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, Dresden, 108 pp., https://doi.org/10.4126/98-005769493, 2014.
Geologischer Dienst NRW: Geowissenschaftliche Daten: Landesmodell NRW (2022), © Geologischer Dienst NRW, , https://www.gd.nrw.de/ge_eb_3d_modelle.htm (last access: 13 January 2026), 2022.
GeoMol LCA-Projectteam: GeoMol pilot area Lake Constance – Allgäu (Baden-Wuerttemberg), LGRB-Kartenviewer, http://maps.geomol.eu/ (last access: 13 January 2026), 2015a.
GeoMol LCA-Projectteam: GeoMol pilot area Lake Constance – Allgäu (Bavaria), LfU, https://www.3dportal.lfu.bayern.de/ (last access: 13 January 2026), 2015b.
GeoMol LCA-Projektteam: GeoMol – Geopotenziale für die nachhaltige Nutzung des tieferen Untergrundes in den alpinen Vorlandbecken: Abschlussbericht des Pilotgebiets Bodensee – Allgäu, Freiburg i. Br., LGRB-Informationen, 30, Landesamt für Geologie, Rohstoffe und Bergbau, 142 pp., 2015c.
GeoMol Team: GeoMol – Assessing subsurface potentials of the Alpine Foreland Basins for sustainable planning and use of natural resources – Project Report, Augsburg, 192 pp., https://www.geomol.eu/report/GeoMol_Report_web_reduced.pdf (last access: 13 January 2026), 2015a.
GeoMol Team: GeoMol framework model (Bavaria), LfU, https://www.3dportal.lfu.bayern.de/ (last access: 13 January 2026), 2015b.
GeoMol UA-UB-Projectteam: GeoMol pilot area Upper Austria – Upper Bavaria (Bavaria), LfU, https://www.3dportal.lfu.bayern.de/ (last access: 13 January 2026), 2015.
GeORG-Projektteam: Geopotentiale des tieferen Untergrundes im Oberrheingraben: Fachlich-Technischer Abschlussbericht des INTERREG-Projekts GeORG, Teil 4, Freiburg i. Br., 104 pp., http://www.geopotenziale.eu/products/atlas/pdf/atlas_web.pdf (last access: 13 January 2026), 2013.
Görne, S.: Geologisches 3D Modell NW-Sachsen, LfULG, http://lsnq.de/3dnwsachsen (last access: 13 January 2026), 2011.
Görne, S.: Geologisches 3D Modell der Elbtalzone, LfULG, http://lsnq.de/3delbezone (last access: 13 anuary 2026), 2012a.
Görne, S.: Geologisches 3D Modell des “Zwischengebietes”, LfULG, http://lsnq.de/3dzwischen (last access: 13 January 2026), 2012b.
Görne, S. and Geißler, V.: Geologisches 3D Modell der Niederlausitz, LfULG, http://lsnq.de/3dniedlau (last access: 13 January 2026), 2015.
Grabert, H.: Abriß der Geologie von Nordrhein-Westfalen, Schweizerbart Science Publishers, Stuttgart, Germany, 351 pp., ISBN 978-3-510-65187-0, 1998.
Kirsch, M., Kroner, U., Hallas, P., and Stephan, T.: 3D Model of the Erzgebirge – Crustal-Scale 3D Modelling of the Allochthonous Domain of the Saxo-Thuringian Zone, LfULG, https://www.umwelt.sachsen.de/umwelt/infosysteme/gst3/?view=3bff4370-fd46-11ee-a8a8-3971a78cbd7e (last access: 13 January 2026), 2017.
Koltzer, N., Kommana, G., Cacace, M., Frick, M., Bott, J., and Scheck-Wenderoth, M.: Influences of hydraulic boundary conditions on the deep fluid flow in a 3D regional model (central Upper Rhine Graben), Environ. Earth. Sci., 81, 32, https://doi.org/10.1007/s12665-021-10111-z, 2022.
Landmeyer, N.: Geologisches 3D-Modell Gersthofen, Augsburg, 23 pp., https://www.3dportal.lfu.bayern.de (last access: 24 October 2022), 2019.
LfU: Bayerischer Geothermieatlas, STMWI, 135 pp., https://www.stmwi.bayern.de/energie/erneuerbare-energien/tiefengeothermie/ (last access: 13 January 2026), 2022.
LGB-RLP (Ed.): Geologie von Rheinland-Pfalz, Schweizerbart Science Publishers, Stuttgart, Germany, 400 pp., ISBN 978-3-510-65215-0, 2005.
Maystrenko, Y. P. and Scheck-Wenderoth, M.: 3D lithosphere-scale density model of the Central European Basin System and adjacent areas, Tectonophysics, 601, 53–77, https://doi.org/10.1016/j.tecto.2013.04.023, 2013.
McCann, T. (Ed.): The Geology of Central Europe - Volume 1: Precambrian and Palaeozoic, Volume 2: Mesozoic and Cenozoic, The Geological Society of London, 1449 pp., https://doi.org/10.1144/CEV2P, 2008.
Meschede, M. and Warr, L. N.: The Geology of Germany, Springer, 304 pp., https://doi.org/10.1007/978-3-319-76102-2, 2019.
Pfleiderer, S., Götzl, G., Bottig, M., Brüstle, A. K., Porpaczy, C., Schreilechner, M., Eichkitz, C., Jud, M., Sachsenhofer, R., Zosseder, K., Casper, S., Goldbrunner, J., Kriegl, C., Kolmer, C., and Diepolder, G. W.: GeoMol – geologische 3D-Modellierung des österreichischen Molassebeckens und Anwendungen in der Hydrogeologie und Geothermie im Grenzgebiet von Oberösterreich und Bayern, Abhandlungen der Geologischen Bundesanstalt 70, Geologische Bundesanstalt, Wien, 85 pp., ISBN 978-3-85316-090-9, 2016.
Plant, J. A., Whittaker, A., Demetriades, A., De Vivo, B., and Lexa, J.: The geological and tectonic framework of Europe, in: Geochemical Atlas of Europe, Geological Survey of Finland, 23–42, ISBN 951-690-913-2, 2005.
Przybycin, A. M., Scheck-Wenderoth, M., and Schneider, M.: Assessment of the isostatic state and the load distribution of the European Molasse Basin by means of lithospheric scale 3D structural and 3D gravity modelling, Int. J. Earth Sci., 104, 1405–1424, https://doi.org/10.1007/s00531-014-1132-4, 2015.
Reinhold, K.: Tiefenlage der “Kristallin-Oberfläche” in Deutschland – Abschlussbericht, Hannover, 91 pp., https://www.bgr.bund.de/DE/Themen/Endlagerung/Downloads/Endlagerforschung/4_Kristallingestein/2005-05-31_Tiefenlage_Kristallinoberflaeche_2005.pdf?__blob=publicationFile&v=2 (last access: 13 January 2026), 2005.
Reinhold, K., Hammer, J., and Pusch, M.: Verbreitung und Eigenschaften flach lagernder Salzschichten in Deutschland (BASAL): Verbreitung, Zusammensetzung und geologische Lagerungsverhältnisse flach lagernder Steinsalzfolgen in Deutschland, Zwischenbericht, Hannover, 98 pp., https://www.bgr.bund.de/DE/Themen/Endlagerung/Downloads/Endlagerforschung/2_Steinsalz/2014-12-10_BGR_Basal_ZB_Verbreitung_Eigenschaften.pdf?__blob=publicationFile&v=2 (last access: 13 January 2026), 2014.
Reiter, K., Röckel, L., Morawietz, S., Ahlers, S., Kuznetsova, V., Ziegler, M., Hergert, T., Henk, A., Heidbach, O., Müller, B., and Schilling, F.: SpannEnD 2.0 – Interimreport 09/2023. Stress model Germany. Further development of geomechanical-numerical modelling to characterize the tectonic stress state for the final disposal of radioactive waste in Germany, Interim Report 09/2023, Darmstadt, 83 pp., http://www.spannend-projekt.de/wp-content/uploads/2024/01/2023-11-20-SpannEnD2-Statusbericht_nonA1.pdf (last access: 13 January 2026), 2023.
Ringseis, H., Doppler, G., and Meyer, R. K.: Geologischer und hydrogeologischer Infopool Projekt: Planungsregion 10 Ingolstadt: Erstellung eines GIS-integrierten geologischen 3D-Untergrund-Modells, 29 pp., https://www.lfu.bayern.de/gdi/dokumente/geologie/3d_modelle/regionsmodelle/Bericht_Modell_Region_10.pdf (last access: 13 January 2026), 2020a.
Ringseis, H., Doppler, G., and Meyer, R. K.: Geologisches 3D-Modell Region Ingolstadt, LfU, https://www.3dportal.lfu.bayern.de/ (last access: 13 January 2026), 2020b.
Rupf, I. and Nitsch, E.: Das Geologische Landesmodell von Baden-Württtemberg: Datengrundlagen, technische Umsetzung und erste geologische Ergebnisse, Freiburg i. Br., LGRB-Informationen 21, Ladesamt für Geologie, Rohstoffe und Bergbau, 81 pp., https://produkte.lgrb-bw.de/docPool/c623_data.pdf (last access: 13 January 2026), 2008.
Schumann, A.: Geologisches 3D-Modell Maindreieck – Projektgebiet Schweinfurt, Augsburg, 21 pp., https://www.3dportal.lfu.bayern.de (last access: 24 October 2022), 2015.
Seidel, G.: Geologie von Thüringen, in: 2. Auflage, Schweizerbart Science Publishers, Stuttgart, Germany, 601 pp., ISBN 978-3-510-65205-1, 2003.
Sieblitz, S.: Geologisches 3D-Modell GeoMol-TGOst, 31 pp., https://www.3dportal.lfu.bayern.de/ (last access: 7 November 2022), 2019.
Swisstopo: GeoMol – Geological Model, swisstopo, https://viewer.swissgeol.ch (last access: 8 September 2023), 2019.
Tašárová, Z. A., Fullea, J., Bielik, M., and Środa, P.: Lithospheric structure of Central Europe: Puzzle pieces from Pannonian Basin to Trans-European Suture Zone resolved by geophysical-petrological modeling, Tectonics, 35, 722–753, https://doi.org/10.1002/2015TC003935, 2016.
TLUBN: Geologisches 3D-Modell “Thüringer Becken”, NIBIS [data set], http://nibis.lbeg.de/cardoMap3/?th=1411 (last access: 13 January 2026), 2014.
TNO: Digital Geological Model (DGM) deep V5 on- and offshore, NLOG [data set], https://www.nlog.nl/en/dgm-deep-v5-and-offshore (last access: 13 January 2026), 2019a.
TNO: SCAN – 2D Seismic Interpretation and Depth Conversion for Dinantian, NLOG [data set], https://www.nlog.nl/en/scan-2d-seismic-interpretation-and-depth-conversion-dinantian (last access: 13 January 2026), 2019b.
Weinert, S., Bär, K., and Sass, I.: A geological 3D structural model of the Hessian Rhenohercynian basement, TUdatalib [data set], https://doi.org/10.48328/tudatalib-871, 2022.
Wessel, P. and Smith, W. H. F.: A global, self-consistent, hierarchical, high-resolution shoreline database, J. Geophys. Res.-Solid, 101, 8741–8743, https://doi.org/10.1029/96JB00104, 1996.
Wong, T. E., Batjes, D. A. J., and de Jager, J. (Eds.): Geology of the Netherlands, Royal Netherlands Acad. of Arts and Sciences, Amsterdam, 354 pp., ISBN 978-9069844817, 2007.
Ziegler, M., Ziebarth, M., and Reiter, K.: Manual of the Python Script Apple PY v1.3, GFZ German Research Centre For Geosciences, WSM Technical Report 20-02, WSM, 28 pp., https://doi.org/10.48440/WSM.2020.002, 2020a.
Ziegler, M. O., Ziebarth, M., and Reiter, K.: Python Script Apple PY v1.3, GFZ German Research Center for Geosciences [code], https://doi.org/10.5880/WSM.2020.002, 2020b.
Short summary
The paper presents a 3D geological underground model of Germany and some neighboring countries, combining 27 individual models. The model contains 146 units and is provided as a point dataset with a resolution of 1x1 km². This enables the creation of, e.g., 3D finite element models in a very short amount of time. A comprehensive supplement and 157 figures documents the results and assumptions.
The paper presents a 3D geological underground model of Germany and some neighboring countries,...
Altmetrics
Final-revised paper
Preprint