Articles | Volume 18, issue 1
https://doi.org/10.5194/essd-18-287-2026
https://doi.org/10.5194/essd-18-287-2026
Data description paper
 | 
12 Jan 2026
Data description paper |  | 12 Jan 2026

A novel global gridded ocean oxygen product derived from a neural network emulator and in-situ observations

Said Ouala, Oussama Hidaoui, and Zouhair Lachkar

Related authors

A Novel Global Gridded Ocean Oxygen Product Derived from a Neural Network Emulator and in-situ observations
Said Ouala, Oussama Hidaoui, and Zouhair Lachkar
EGUsphere, https://doi.org/10.5194/egusphere-2025-1771,https://doi.org/10.5194/egusphere-2025-1771, 2025
Preprint withdrawn
Short summary

Cited articles

Aouni, A. E., Gaudel, Q., Regnier, C., Van Gennip, S., Drevillon, M., Drillet, Y., and Lellouche, J.-M.: GLONET: Mercator's End-to-End Neural Forecasting System, Journal of Geophysical Research: Machine Learning and Computation, 2, e2025JH000686, https://doi.org/10.1029/2025JH000686, 2024. a
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Accurate medium-range global weather forecasting with 3D neural networks, Nature, 619, 533–538, 2023. a
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013. a
Chelton, D. B., Schlax, M. G., Samelson, R. M., and de Szoeke, R. A.: Global observations of large oceanic eddies, Geophysical Research Letters, 34, https://doi.org/10.1029/2007GL030812, 2007. a
Cheng, L., Trenberth, K. E., Fasullo, J., Boyer, T., Abraham, J., and Zhu, J.: Improved estimates of ocean heat content from 1960 to 2015, Science Advances, 3, e1601545, https://doi.org/10.1126/sciadv.1601545, 2017. a
Download
Short summary
Ocean deoxygenation poses major challenges to marine life and can alter carbon cycling. Direct measurements of dissolved oxygen are sparse, and interpolation methods are needed to study the variability and changes in oxygen content. In this work, we used machine learning to improve estimates of oxygen levels across the global ocean. Our approach produces a new gridded product that captures detailed changes in oxygen over time and space.
Share
Altmetrics
Final-revised paper
Preprint