Articles | Volume 18, issue 1
https://doi.org/10.5194/essd-18-117-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-18-117-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The German Small Lake and Pond Inventory
Alexander Wachholz
Department for Inland Waters, German Environment Agency (UBA), Wörlitzer Platz 1, 06844, Dessau-Roßlau, Germany
Susanne I. Schmidt
Department for Lake Research, Helmholtz Center for Environmental Research (UFZ), Brückstraße 3a, 39114, Magdeburg, Germany
Jens Arle
CORRESPONDING AUTHOR
Department for Inland Waters, German Environment Agency (UBA), Wörlitzer Platz 1, 06844, Dessau-Roßlau, Germany
Jeanette Völker
Department for Inland Waters, German Environment Agency (UBA), Wörlitzer Platz 1, 06844, Dessau-Roßlau, Germany
Related authors
Pia Ebeling, Alexander Hubig, Alexander Wachholz, Ulrike Scharfenberger, Sarah Haug, Tam Nguyen, Fanny Sarrazin, Masooma Batool, Andreas Musolff, and Rohini Kumar
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-450, https://doi.org/10.5194/essd-2025-450, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
This update of the water quality dataset QUADICA for 1386 German catchments adds new data on water quality, flow, and drivers. Additions include water temperature and concentrations of oxygen and others, as well as catchment-wise time series on pollution sources and improved integration with other relevant datasets. This expanded dataset will help researchers and practitioners better understand how human activities affect water quality and ecosystems, and make more informed decisions.
Alexander Wachholz, James W. Jawitz, and Dietrich Borchardt
Biogeosciences, 21, 3537–3550, https://doi.org/10.5194/bg-21-3537-2024, https://doi.org/10.5194/bg-21-3537-2024, 2024
Short summary
Short summary
Human activities are rivers' main source of nitrogen, causing eutrophication and other hazards. However, rivers can serve as a natural defense mechanism against this by retaining nitrogen. We show that the Elbe River retains more nitrogen during times of high pollution. With improvements in water quality, less nitrogen is retained. We explain this with changed algal and bacterial activities, which correspond to pollution and have many implications for the river and adjacent ecosystems.
Pia Ebeling, Alexander Hubig, Alexander Wachholz, Ulrike Scharfenberger, Sarah Haug, Tam Nguyen, Fanny Sarrazin, Masooma Batool, Andreas Musolff, and Rohini Kumar
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-450, https://doi.org/10.5194/essd-2025-450, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
This update of the water quality dataset QUADICA for 1386 German catchments adds new data on water quality, flow, and drivers. Additions include water temperature and concentrations of oxygen and others, as well as catchment-wise time series on pollution sources and improved integration with other relevant datasets. This expanded dataset will help researchers and practitioners better understand how human activities affect water quality and ecosystems, and make more informed decisions.
Alexander Wachholz, James W. Jawitz, and Dietrich Borchardt
Biogeosciences, 21, 3537–3550, https://doi.org/10.5194/bg-21-3537-2024, https://doi.org/10.5194/bg-21-3537-2024, 2024
Short summary
Short summary
Human activities are rivers' main source of nitrogen, causing eutrophication and other hazards. However, rivers can serve as a natural defense mechanism against this by retaining nitrogen. We show that the Elbe River retains more nitrogen during times of high pollution. With improvements in water quality, less nitrogen is retained. We explain this with changed algal and bacterial activities, which correspond to pollution and have many implications for the river and adjacent ecosystems.
Cited articles
Banas, D., Masson, G., Leglize, L., Usseglio-Polatera, P., and Boyd, C. E.: Assessment of sediment concentration and nutrient loads in effluents drained from extensively managed fishponds in France, Environmental Pollution, 152, 679–685, https://doi.org/10.1016/j.envpol.2007.06.058, 2008.
Bartos, M., Smith, T. J., Grout, R., itati01, Debbout, R., Kraft, P., Plough, M., Huard, D., and King, J.: mdbartos/pysheds: 0.4 [Python library for watershed delineation and hydrological analysis], https://doi.org/10.5281/zenodo.3822494, 2024.
Biggs, J., Von Fumetti, S., and Kelly-Quinn, M.: The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers, Hydrobiologia, 793, 3–39, https://doi.org/10.1007/s10750-016-3007-0, 2017.
Bizhanimanzar, M., Larocque, M., and Roux, M.: Improvement of SOIL WATER ASSESSMENT TOOL (SWAT) wetland module for modelling of ephemeral pond hydrology, Hydrological Processes, 38, e15114, https://doi.org/10.1002/hyp.15114, 2024.
BKG: Digital terrain model grid width 10 m (DGM10), https://gdz.bkg.bund.de/index.php/default/digitale-geodaten/digitale-gelandemodelle/digitales-gelandemodell-gitterweite-10-m-dGm10.html (last access: 4 November 2024), 2016.
BKG: Dokumentation Digitales Basis-Landschaftsmodell, https://gdz.bkg.bund.de/index.php/default/digitales-basis-landschaftsmodell-ebenen-basis-dlm-ebenen.html, last access: 13 November 2025.
BMUV (Federal Ministry of the environment) and UBA (German Environment Agency): Die Wasserrahmenrichtlinie – Gewässer in Deutschland 2021. Fortschritte und Herausforderungen [The Water Framework Directive – Water Bodies in Germany 2021. Progress and Challenges], Bonn, Dessau, https://www.umweltbundesamt.de/publikationen/die-wasserrahmenrichtlinie-gewaesser-in-deutschland-2021 (last access: 3 April 2024), 2022.
Chen, L., Sofia, G., Qiu, J., Wang, J., and Tarolli, P.: Grassland ecosystems resilience to drought: The role of surface water ponds, Land Degrad. Dev., 34, 1960–1972, https://doi.org/10.1002/ldr.4581, 2023.
Cheruvelil, K. S., Soranno, P. A., McCullough, I. M., Webster, K. E., Rodriguez, L. K., and Smith, N. J.: LAGOS-US LOCUS v1.0: Data module of location, identifiers, and physical characteristics of lakes and their watersheds in the conterminous U. S., Limnology and Oceanography Letters, 6, 270–292, https://doi.org/10.1002/lol2.10203, 2021.
Chumchal, M., Drenner, R., and Adams, K.: Abundance and size distribution of permanent and temporary farm ponds in the southeastern Great Plains, IW, 6, 258–264, https://doi.org/10.5268/IW-6.2.954, 2016.
Davies, B. R., Biggs, J., Williams, P. J., Lee, J. T., and Thompson, S.: A comparison of the catchment sizes of rivers, streams, ponds, ditches and lakes: implications for protecting aquatic biodiversity in an agricultural landscape, Hydrobiologia, 597, 7–17, https://doi.org/10.1007/s10750-007-9227-6, 2008.
Dottori, F., Alfieri, L., Bianchi, A., Skoien, J., and Salamon, P.: River flood hazard maps for Europe and the Mediterranean Basin region, https://doi.org/10.2905/1D128B6C-A4EE-4858-9E34-6210707F3C81, 2021.
EEA: Corine land cover (CLC) 2018, https://doi.org/10.2909/71c95a07-e296-44fc-b22b-415f42acfdf0, 2018.
EU: Water framework directive, https://ec.europa.eu/environment/water/water-framework/ (last access: 4 August 2021), 2000.
Federal Ministry of the Environment, Nature Conservation and Nuclear Safety: Hydrological Atlas of Germany, https://doi.org/10.2909/71c95a07-e296-44fc-b22b-415f42acfdf0, 2003.
Ganz, K. J., Glines, M. R., and Rose, K. C.: The distribution of depth, volume, and basin shape for lakes in the conterminous United States, Limnology and Oceanography, 69, 22–36, https://doi.org/10.1002/lno.12475, 2024.
Hanly, P. J., Webster, K. E., and Soranno, P. A.: LAGOS-US LANDSAT: Remotely sensed water quality estimates for U. S. lakes over 4 ha from 1984 to 2020, https://doi.org/10.1101/2024.05.10.593626, 2024.
Heathcote, A. J., del Giorgio, P. A., and Prairie, Y. T.: Predicting bathymetric features of lakes from the topography of their surrounding landscape, Can. J. Fish. Aquat. Sci., 72, 643–650, https://doi.org/10.1139/cjfas-2014-0392, 2015.
Heino, J., Alahuhta, J., Bini, L. M., Cai, Y., Heiskanen, A., Hellsten, S., Kortelainen, P., Kotamäki, N., Tolonen, K. T., Vihervaara, P., Vilmi, A., and Angeler, D. G.: Lakes in the era of global change: moving beyond single-lake thinking in maintaining biodiversity and ecosystem services, Biological Reviews, 96, 89–106, https://doi.org/10.1111/brv.12647, 2021.
Jordahl, K., Bossche, J. V. D., Fleischmann, M., Wasserman, J., McBride, J., Gerard, J., Tratner, J., Perry, M., Badaracco, A. G., Farmer, C., Hjelle, G. A., Snow, A. D., Cochran, M., Gillies, S., Culbertson, L., Bartos, M., Eubank, N., Maxalbert, Bilogur, A., Rey, S., Ren, C., Arribas-Bel, D., Wasser, L., Wolf, L. J., Journois, M., Wilson, J., Greenhall, A., Holdgraf, C., Filipe, and Leblanc, F.: geopandas/geopandas: v0.8.1, https://doi.org/10.5281/ZENODO.3946761, 2020.
King, K. B. S., Wang, Q., Rodriguez, L. K., and Cheruvelil, K. S.: Lake networks and connectivity metrics for the conterminous U. S. (LAGOS-US NETWORKS v1), Limnology and Oceanography Letters, 6, 293–307, https://doi.org/10.1002/lol2.10204, 2021.
Lasner, T., Mytlewski, A., Nourry, M., Rakowski, M., and Oberle, M.: Carp land: Economics of fish farms and the impact of region-marketing in the Aischgrund (DEU) and Barycz Valley (POL), Aquaculture, 519, 734731, https://doi.org/10.1016/j.aquaculture.2019.734731, 2020.
Leech, D. M., Pollard, A. I., Labou, S. G., and Hampton, S. E.: Fewer blue lakes and more murky lakes across the continental U. S.: Implications for planktonic food webs, Limnology and Oceanography, 63, 2661–2680, https://doi.org/10.1002/lno.10967, 2018.
Messager, M. L., Lehner, B., Grill, G., Nedeva, I., and Schmitt, O.: Estimating the volume and age of water stored in global lakes using a geo-statistical approach, Nat. Commun., 7, 13603, https://doi.org/10.1038/ncomms13603, 2016.
Meyer, M. F., Topp, S. N., King, T. V., Ladwig, R., Pilla, R. M., Dugan, H. A., Eggleston, J. R., Hampton, S. E., Leech, D. M., Oleksy, I. A., Ross, J. C., Ross, M. R. V., Woolway, R. I., Yang, X., Brousil, M. R., Fickas, K. C., Padowski, J. C., Pollard, A. I., Ren, J., and Zwart, J. A.: National-scale remotely sensed lake trophic state from 1984 through 2020, Sci. Data, 11, 77, https://doi.org/10.1038/s41597-024-02921-0, 2024.
Novikmec, M., Hamerlík, L., Kočický, D., Hrivnák, R., Kochjarová, J., Ot'ahel'ová, H., Pal'ove-Balang, P., and Svitok, M.: Ponds and their catchments: size relationships and influence of land use across multiple spatial scales, Hydrobiologia, 774, 155–166, https://doi.org/10.1007/s10750-015-2514-8, 2016.
Ogilvie, A., Belaud, G., Massuel, S., Mulligan, M., Le Goulven, P., and Calvez, R.: Surface water monitoring in small water bodies: potential and limits of multi-sensor Landsat time series, Hydrol. Earth Syst. Sci., 22, 4349–4380, https://doi.org/10.5194/hess-22-4349-2018, 2018.
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution mapping of global surface water and its long-term changes, Nature, 540, 418–422, https://doi.org/10.1038/nature20584, 2016.
Pi, X., Luo, Q., Feng, L., Xu, Y., Tang, J., Liang, X., Ma, E., Cheng, R., Fensholt, R., Brandt, M., Cai, X., Gibson, L., Liu, J., Zheng, C., Li, W., and Bryan, B. A.: Mapping global lake dynamics reveals the emerging roles of small lakes, Nat. Commun., 13, 5777, https://doi.org/10.1038/s41467-022-33239-3, 2022.
Pilla, R. M., Williamson, C. E., Adamovich, B. V., Adrian, R., Anneville, O., Chandra, S., Colom-Montero, W., Devlin, S. P., Dix, M. A., Dokulil, M. T., Gaiser, E. E., Girdner, S. F., Hambright, K. D., Hamilton, D. P., Havens, K., Hessen, D. O., Higgins, S. N., Huttula, T. H., Huuskonen, H., Isles, P. D. F., Joehnk, K. D., Jones, I. D., Keller, W. B., Knoll, L. B., Korhonen, J., Kraemer, B. M., Leavitt, P. R., Lepori, F., Luger, M. S., Maberly, S. C., Melack, J. M., Melles, S. J., Müller-Navarra, D. C., Pierson, D. C., Pislegina, H. V., Plisnier, P.-D., Richardson, D. C., Rimmer, A., Rogora, M., Rusak, J. A., Sadro, S., Salmaso, N., Saros, J. E., Saulnier-Talbot, É., Schindler, D. E., Schmid, M., Shimaraeva, S. V., Silow, E. A., Sitoki, L. M., Sommaruga, R., Straile, D., Strock, K. E., Thiery, W., Timofeyev, M. A., Verburg, P., Vinebrooke, R. D., Weyhenmeyer, G. A., and Zadereev, E.: Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes, Sci. Rep., 10, 20514, https://doi.org/10.1038/s41598-020-76873-x, 2020.
Richardson, D. C., Holgerson, M. A., Farragher, M. J., Hoffman, K. K., King, K. B. S., Alfonso, M. B., Andersen, M. R., Cheruveil, K. S., Coleman, K. A., Farruggia, M. J., Fernandez, R. L., Hondula, K. L., López Moreira Mazacotte, G. A., Paul, K., Peierls, B. L., Rabaey, J. S., Sadro, S., Sánchez, M. L., Smyth, R. L., and Sweetman, J. N.: A functional definition to distinguish ponds from lakes and wetlands, Sci. Rep., 12, 10472, https://doi.org/10.1038/s41598-022-14569-0, 2022.
Rodriguez, L. K., Polus, S. M., Matuszak, D. I., Domka, M. R., Hanly, P. J., Wang, Q., Soranno, P. A., and Cheruvelil, K. S.: LAGOS-US RESERVOIR: A database classifying conterminous U. S. lakes 4 ha and larger as natural lakes or reservoir lakes, Limnology and Oceanography Letters, 8, 267–285, https://doi.org/10.1002/lol2.10299, 2023.
Rosentreter, J. A., Borges, A. V., Deemer, B. R., Holgerson, M. A., Liu, S., Song, C., Melack, J., Raymond, P. A., Duarte, C. M., Allen, G. H., Olefeldt, D., Poulter, B., Battin, T. I., and Eyre, B. D.: Half of global methane emissions come from highly variable aquatic ecosystem sources, Nat. Geosci., 14, 225–230, https://doi.org/10.1038/s41561-021-00715-2, 2021.
Rücker, J., Nixdorf, B., Quiel, K., and Grüneberg, B.: North German Lowland Lakes Miss Ecological Water Quality Standards – A Lake Type Specific Analysis, Water, 11, 2547, https://doi.org/10.3390/w11122547, 2019.
Schmadel, N. M., Harvey, J. W., Schwarz, G. E., Alexander, R. B., Gomez-Velez, J. D., Scott, D., and Ator, S. W.: Small Ponds in Headwater Catchments Are a Dominant Influence on Regional Nutrient and Sediment Budgets, Geophys. Res. Lett., 46, 9669–9677, https://doi.org/10.1029/2019GL083937, 2019.
Schwerdtner Máñez, K., Ring, I., Hildebrandt, R., and Brämick, U.: Of ponds and people: Governance to balance biodiversity conservation and carp pond farming in Central Europe, Ambio, https://doi.org/10.1007/s13280-025-02192-y, 2025.
Seekell, D., Cael, B. B., and Byström, P.: Problems With the Shoreline Development Index – A Widely Used Metric of Lake Shape, Geophysical Research Letters, 49, e2022GL098499, https://doi.org/10.1029/2022GL098499, 2022.
Seekell, D. A., Pace, M. L., Tranvik, L. J., and Verpoorter, C.: A fractal-based approach to lake size-distributions, Geophysical Research Letters, 40, 517–521, https://doi.org/10.1002/grl.50139, 2013.
Stachelek, J., Hanly, P. J., and Soranno, P. A.: Imperfect slope measurements drive overestimation in a geometric cone model of lake and reservoir depth, Inland Waters, 12, 283–293, https://doi.org/10.1080/20442041.2021.2006553, 2022.
Swartz, T. M. and Miller, J. R.: The American Pond Belt: an untold story of conservation challenges and opportunities, Frontiers in Ecology and the Environment, 19, 501–509, https://doi.org/10.1002/fee.2381, 2021.
Targino, A. C., Coraiola, G. C., and Krecl, P.: Green or blue spaces? Assessment of the effectiveness and costs to mitigate the urban heat island in a Latin American city, Theor. Appl. Climatol., 136, 971–984, https://doi.org/10.1007/s00704-018-2534-1, 2019.
Völker, S. and Kistemann, T.: The impact of blue space on human health and well-being – Salutogenetic health effects of inland surface waters: A review, International Journal of Hygiene and Environmental Health, 214, 449–460, https://doi.org/10.1016/j.ijheh.2011.05.001, 2011.
Vyse, S. A., Taie Semiromi, M., Lischeid, G., and Merz, C.: Characterizing hydrological processes within kettle holes using stable water isotopes in the Uckermark of northern Brandenburg, Germany, Hydrological Processes, 34, 1868–1887, https://doi.org/10.1002/hyp.13699, 2020.
Wachholz, A.: German small lake and pond inventory (GSLPI), Zenodo [code and data set], https://doi.org/10.5281/zenodo.14228168, 2024.
Waldemer, C. and Koschorreck, M.: Spatial and temporal variability of greenhouse gas ebullition from temperate freshwater fish ponds, Aquaculture, 574, 739656, https://doi.org/10.1016/j.aquaculture.2023.739656, 2023.
Walter, J. A., Fleck, R., Pace, M. L., and Wilkinson, G. M.: Scaling relationships between lake surface area and catchment area, Aquat. Sci., 82, 47, https://doi.org/10.1007/s00027-020-00726-y, 2020.
Short summary
Small lakes and ponds provide many functions for the environment. Because of their size they are often not considered in scientific studies. We collected all the information on those lakes and ponds for Germany and combined it to a database. We described the ponds in detail, for example how deep they might by, how much water they can store or if they are connected to rivers. We found more than 260.000 lakes and ponds in Germany.
Small lakes and ponds provide many functions for the environment. Because of their size they are...
Altmetrics
Final-revised paper
Preprint