Articles | Volume 18, issue 2
https://doi.org/10.5194/essd-18-1037-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-18-1037-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
GVCCS: a dataset for contrail identification and tracking on visible whole sky camera sequences
Gabriel Jarry
CORRESPONDING AUTHOR
EUROCONTROL, Aviation Sustainability Unit (ASU), Aerodrome Centre Bois des Bordes, Brétigny-Sur-Orge, 91220, Essone, France
Ramon Dalmau
EUROCONTROL, Aviation Sustainability Unit (ASU), Aerodrome Centre Bois des Bordes, Brétigny-Sur-Orge, 91220, Essone, France
Philippe Very
EUROCONTROL, Aviation Sustainability Unit (ASU), Aerodrome Centre Bois des Bordes, Brétigny-Sur-Orge, 91220, Essone, France
Franck Ballerini
EUROCONTROL, Aviation Sustainability Unit (ASU), Aerodrome Centre Bois des Bordes, Brétigny-Sur-Orge, 91220, Essone, France
Stefania-Denisa Bocu
EUROCONTROL, Aviation Sustainability Unit (ASU), Aerodrome Centre Bois des Bordes, Brétigny-Sur-Orge, 91220, Essone, France
Cited articles
Appleman, H.: The Formation of Exhaust Condensation Trails by Jet Aircraft, Bulletin of the American Meteorological Society, 34, 14–20, https://doi.org/10.1175/1520-0477-34.1.14, 1953. a
Borella, A., Boucher, O., Shine, K. P., Stettler, M., Tanaka, K., Teoh, R., and Bellouin, N.: The importance of an informed choice of CO2-equivalence metrics for contrail avoidance, Atmospheric Chemistry and Physics, 24, 9401–9417, https://doi.org/10.5194/acp-24-9401-2024, 2024. a, b
Bugliaro, L., Mannstein, H., and Kox, S.: Ice clouds properties from space, in: Atmospheric Physics – Background, Methods, Trends, edited by: Schumann, U., Springer, Heidelberg, https://doi.org/10.1007/978-3-642-30183-4_25, 2012. a
Campello, R. J. G. B., Moulavi, D., and Sander, J.: Density-based clustering based on hierarchical density estimates, in: Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Springer, 160–172, https://doi.org/10.1007/978-3-642-37456-2_14, 2013. a
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S.: End-to-End Object Detection with Transformers, in: European Conference on Computer Vision (ECCV), 213–229, https://doi.org/10.1007/978-3-030-58452-8_13, 2020. a
Chen, L.-C., Papandreou, G., Schroff, F., and Adam, H.: Rethinking atrous convolution for semantic image segmentation, arXiv [preprint], https://doi.org/10.48550/arXiv.1706.05587, 2017. a
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation, in: Proceedings of the European Conference on Computer Vision (ECCV), 801–818, https://doi.org/10.1007/978-3-030-01234-2_49, 2018. a
Cheng, B., Choudhuri, A., Misra, I., Kirillov, A., Girdhar, R., and Schwing, A. G.: Mask2Former for Video Instance Segmentation, arXiv [preprint], https://doi.org/10.48550/arXiv.2112.10764, 2021a. a, b
Cheng, B., Schwing, A. G., and Kirillov, A.: Per-Pixel Classification is Not All You Need for Semantic Segmentation, in: Advances in Neural Information Processing Systems (NeurIPS), https://doi.org/10.48550/arXiv.2107.06278, 2021b. a, b
Cheng, B., Misra, I., Schwing, A. G., Kirillov, A., and Girdhar, R.: Mask2Former Software Library, GitHub [code], https://github.com/facebookresearch/Mask2Former (last access: 14 October 2025), 2021c. a
Cheng, B., Misra, I., Schwing, A. G., Kirillov, A., and Girdhar, R.: Masked-Attention Mask Transformer for Universal Image Segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), https://doi.org/10.1109/CVPR52688.2022.00135, 2022. a
Dai, Z., Liu, H., Le, Q. V., and Tan, M.: CoAtNet: Marrying convolution and attention for all data sizes, Advances in Neural Information Processing Systems, 34, 3965–3977, 2021. a
De Brabandere, B., Neven, D., and Van Gool, L.: Semantic Instance Segmentation with a Discriminative Loss Function, arXiv [preprint], https://doi.org/10.48550/arXiv.1708.02551, 2017. a
Duda, D. P., Minnis, P., Khlopenkov, K., Chee, T. L., and Boeke, R.: Estimation of 2006 Northern Hemisphere contrail coverage using MODIS data, Geophysical Research Letters, 40, 612–617, 2013. a
Ewald, F., Bugliaro, L., Mannstein, H., and Mayer, B.: An improved cirrus detection algorithm MeCiDA2 for SEVIRI and its evaluation with MODIS, Atmospheric Measurement Techniques, 6, 309–322, https://doi.org/10.5194/amt-6-309-2013, 2013. a, b
Forkert, T., Strauss, B., and Wendling, P.: A new algorithm for the automated detection of jet contrails from NOAA-AVHRR satellite images, in: Proc. of the 6th AVHRR Data Users' Meeting, EUMETSAT-Joint Research Centre of the Commission of the EC, 513–519, https://elib.dlr.de/31899/ (last access: 28 January 2026), 1993. a
Fritz, T. M., Eastham, S. D., Speth, R. L., and Barrett, S. R. H.: The role of plume-scale processes in long-term impacts of aircraft emissions, Atmospheric Chemistry and Physics, 20, 5697–5727, https://doi.org/10.5194/acp-20-5697-2020, 2020. a
Geraedts, S., Brand, E., Dean, T. R., Eastham, S., Elkin, C., Engberg, Z., Hager, U., Langmore, I., McCloskey, K., Ng, J. Y.-H., Platt, J. C., Sankar, T., Sarna, A., Shapiro, M. and Goyalm N.: A scalable system to measure contrail formation on a per-flight basis, Environmental Research Communications, 6, 015008, https://doi.org/10.1088/2515-7620/ad11ab, 2024. a, b
Gierens, K., Matthes, S., and Rohs, S.: How Well Can Persistent Contrails Be Predicted?, Aerospace, 7, 169, https://doi.org/10.3390/aerospace7120169, 2020. a
Gourgue, N., Boucher, O., and Barthès, L.: A dataset of annotated ground-based images for the development of contrail detection algorithms, Data in Brief, 59, 111364, https://doi.org/10.1016/j.dib.2025.111364, 2025. a
Hamann, U., Walther, A., Baum, B., Bennartz, R., Bugliaro, L., Derrien, M., Francis, P. N., Heidinger, A., Joro, S., Kniffka, A., Le Gléau, H., Lockhoff, M., Lutz, H.-J., Meirink, J. F., Minnis, P., Palikonda, R., Roebeling, R., Thoss, A., Platnick, S., Watts, P., and Wind, G.: Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms, Atmospheric Measurement Techniques, 7, 2839–2867, https://doi.org/10.5194/amt-7-2839-2014, 2014. a
He, K., Gkioxari, G., Dollár, P., and Girshick, R.: Mask R-CNN, in: Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2961–2969, https://doi.org/10.1109/ICCV.2017.322, 2017. a, b
Iwabuchi, H., Yang, P., Liou, K. N., and Minnis, P.: Physical and optical properties of persistent contrails: Climatology and interpretation, Journal of Geophysical Research: Atmospheres, 117, D06215, https://doi.org/10.1029/2011JD017020, 2012. a, b
Jarry, G., Very, P., Heffar, A., and Torjman-Levavasseur, V.: Deep Semantic Contrails Segmentation of GOES-16 Satellite Images: A Hyperparameter Exploration, https://www.sesarju.eu/sites/default/files/documents/sid/2024/papers/SIDs_2024_paper_028%20final.pdf (last access: 28 January 2026), 2024. a, b
Kox, S., Bugliaro, L., and Ostler, A.: Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing, Atmospheric Measurement Techniques, 7, 3233–3246, https://doi.org/10.5194/amt-7-3233-2014, 2014. a
Lee, D. S., Fahey, D. W., Skowron, A., Allen, M. R., Burkhardt, U., Chen, Q., Doherty, S. J., Freeman, S., Forster, P. M., Fuglestvedt, J., A. Gettelman De León, R. R., Lim, L. L., Lund, M. T., Millar, R. J., Owen, B., Penner, J. E., Pitari, G., Prather, M. J., Sausen, R., and Wilcox, L. J.: The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018, Atmospheric Environment, 244, 117834, https://doi.org/10.1016/j.atmosenv.2020.117834, 2021. a, b
Lin, T.-Y., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick, R. B., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L.: Microsoft COCO: Common Objects in Context, arXiv [preprint], https://doi.org/10.48550/arXiv.1405.0312, 2014. a, b, c
Low, J., Teoh, R., Ponsonby, J., Gryspeerdt, E., Shapiro, M., and Stettler, M. E. J.: Ground-based contrail observations: comparisons with reanalysis weather data and contrail model simulations, Atmospheric Measurement Techniques, 18, 37–56, https://doi.org/10.5194/amt-18-37-2025, 2025. a, b
Mannstein, H. and Schumann, U.: Aircraft induced contrail cirrus over Europe, Meteorologische Zeitschrift, 14, 549–554, https://doi.org/10.1127/0941-2948/2005/0058, 2005. a, b
Mannstein, H., Vázquez-Navarro, M., Graf, K., Duda, D. P., and Schumann, U.: Contrail detection in satellite images, in: Atmospheric Physics – Background, Methods, Trends, edited by Schumann, U., Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-30183-4_26, 2012. a, b
McCloskey, K. J. F., Geraedts, S. D., Jackman, B. H., Meijer, V. R., Brand, E. W., Fork, D. K., Platt, J. C., Elkin, C., and Van Arsdale, C. H.: A Human-Labeled Landsat-8 Contrails Dataset, in: Proceedings of the ICML Workshop on Tackling Climate Change with Machine Learning, https://www.climatechange.ai/papers/icml2021/2 (last access: 28 January 2026), 2021. a, b
Meijer, V. R., Kulik, L., Eastham, S. D., Allroggen, F., Speth, R. L., Karaman, S., and Barrett, S. R.: Contrail coverage over the United States before and during the COVID-19 pandemic, Environmental Research Letters, 17, 034039, https://doi.org/10.1127/0941-2948/2005/0056, 2022. a, b, c
Meijer, V. R., Eastham, S. D., Waitz, I. A., and Barrett, S. R. H.: Contrail altitude estimation using GOES-16 ABI data and deep learning, Atmospheric Measurement Techniques, 17, 6145–6162, https://doi.org/10.5194/amt-17-6145-2024, 2024. a
Meyer, R., Mannstein, H., Meerkötter, R., Schumann, U., and Wendling, P.: Regional radiative forcing by line-shaped contrails derived from satellite data, Journal of Geophysical Research: Atmospheres, 107, ACL 17–1–ACL 17–15, https://doi.org/10.1029/2001JD000426, 2002. a, b, c
Meyer, R., Buell, R., Leiter, C., Mannstein, H., Pechtl, S., Oki, T., and Wendling, P.: Contrail observations over Southern and Eastern Asia in NOAA/AVHRR data and comparisons to contrail simulations in a GCM, International Journal of Remote Sensing, 28, 2049–2069, https://doi.org/10.1080/01431160600641707, 2007. a, b
Minnis, P., Palikonda, R., Walter, B. J., Ayers, J. K., and Mannstein, H.: Contrail properties over the eastern North Pacific from AVHRR data, Meteorologische Zeitschrift, 14, 515–523, https://doi.org/10.1127/0941-2948/2005/0056, 2005. a
Ng, J. Y.-H., McCloskey, K., Cui, J., Meijer, V. R., Brand, E., Sarna, A., Goyal, N., Van Arsdale, C., and Geraedts, S.: OpenContrails: Benchmarking contrail detection on GOES-16 ABI, arXiv [preprint], https://doi.org/10.48550/arXiv.2304.02122, 2023. a, b, c, d
Northcutt, C., Jiang, L., and Chuang, I.: Confident Learning: Estimating Uncertainty in Dataset Labels, Journal of Artificial Intelligence Research, 70, 1373–1411, https://doi.org/10.1613/jair.1.12125, 2021. a
Ortiz, I., García-Heras, J., Jafarimoghaddam, A., and Soler, M.: Enhancing GOES-16 Contrail Segmentation through Ensemble Neural Network Modeling and Optical Flow Corrections, Authorea [preprint], https://doi.org/10.36227/techrxiv.173749955.56653418/v1, 2025. a, b, c
Palikonda, R., Minnis, P., Duda, D. P., and Mannstein, H.: Contrail coverage derived from 2001 AVHRR data over the continental United States and surrounding areas, Meteorologische Zeitschrift, 14, 525–536, https://doi.org/10.1127/0941-2948/2005/0051, 2005. a
Pertino, P., Pavarino, L., Lomolino, S., Miotto, E., Cambrin, D. R., Garza, P., and Ogliari, E. G. C.: Ground-Based Contrail Detection by Means of Computer Vision Models: A Comparison Between Visible and Infrared Images, 2024 IEEE 8th Forum on Research and Technologies for Society and Industry Innovation (RTSI), 254–259, https://doi.org/10.1109/RTSI61910.2024.10761667, 2024. a
Pratt, W. K.: Digital image processing: PIKS Scientific inside, vol. 4, Wiley Online Library, https://doi.org/10.1002/0470097434, 2007. a
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.: You only look once: Unified, real-time object detection, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779–788, https://doi.org/10.1109/CVPR.2016.91, 2016. a
Ren, S., He, K., Girshick, R., and Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137–1149, https://doi.org/10.1109/TPAMI.2016.2577031, 2017. a
Ridnik, T., Ben Baruch, E., Noy, A., and Zelnik-Manor, L.: ImageNet-21K Pretraining for the Masses, arXiv [preprint], https://doi.org/10.48550/arXiv.2104.10972, 2021. a
Riggi-Carrolo, E., Dubot, T., Sarrat, C., and Bedouet, J.: AI-Driven Identification of Contrail Sources: Integrating Satellite Observation and Air Traffic Data, Journal of Open Aviation Science, 1, https://doi.org/10.59490/joas.2023.7209, 2023. a, b
Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional networks for biomedical image segmentation, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 234–241, https://doi.org/10.1007/978-3-319-24574-4_28, 2015. a, b
Sarna, A., Meijer, V., Chevallier, R., Duncan, A., McConnaughay, K., Geraedts, S., and McCloskey, K.: Benchmarking and improving algorithms for attributing satellite-observed contrails to flights, Atmospheric Measurement Techniques, 18, 3495–3532, https://doi.org/10.5194/amt-18-3495-2025, 2025. a, b, c, d, e, f
Schmidt, E.: Die Entstehung von Eisnebel aus den Auspuffgasen von Flugmotoren, in: Schriften der Deutschen Akademie der Luftfahrtforschung, vol. 44, Verlag R. Oldenbourg, München, 1–15, http://elib.dlr.de/107948/ (last access: 28 January 2026), 1941. a
Schumann, U.: On conditions for contrail formation from aircraft exhausts, Meteorologische Zeitschrift, 5, 4–23, https://doi.org/10.1127/metz/5/1996/4, 1996. a
Schumann, U.: A contrail cirrus prediction model, Geoscientific Model Development, 5, 543–580, https://doi.org/10.5194/gmd-5-543-2012, 2012. a, b
Schumann, U., Mayer, B., Graf, K., Mannstein, H., and Meerkötter, R.: A parametric radiative forcing model for cirrus and contrail cirrus, in: ESA Atmospheric Science Conference, ESA SP-676, Barcelona, Spain, 1–6, ISBN 978-92-9221-240-7 https://elib.dlr.de/63058/ (last access 28 January 2026), 2009. a
Schumann, U., Hempel, R., Flentje, H., Garhammer, M., Graf, K., Kox, S., Lösslein, H., and Mayer, B.: Contrail study with ground-based cameras, Atmospheric Measurement Techniques, 6, 3597–3612, https://doi.org/10.5194/amt-6-3597-2013, 2013. a, b, c, d
Strandgren, J., Bugliaro, L., Sehnke, F., and Schröder, L.: Cirrus cloud retrieval with MSG/SEVIRI using artificial neural networks, Atmospheric Measurement Techniques, 10, 3547–3573, https://doi.org/10.5194/amt-10-3547-2017, 2017a. a
Strandgren, J., Fricker, J., and Bugliaro, L.: Characterisation of the artificial neural network CiPS for cirrus cloud remote sensing with MSG/SEVIRI, Atmospheric Measurement Techniques, 10, 4317–4339, https://doi.org/10.5194/amt-10-4317-2017, 2017b. a
Sun, J. and Roosenbrand, E.: Few-Shot Contrail Segmentation in Remote Sensing Imagery With Loss Function in Hough Space, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, https://doi.org/10.1109/JSTARS.2025.3525576, 2025. a
Teoh, R., Schumann, U., and Stettler, M. E.: Beyond contrail avoidance: Efficacy of flight altitude changes to minimise contrail climate forcing, Aerospace, 7, 121, https://doi.org/10.3390/aerospace7090121, 2020. a
Teoh, R., Engberg, Z., Schumann, U., Voigt, C., Shapiro, M., Rohs, S., and Stettler, M. E. J.: Global aviation contrail climate effects from 2019 to 2021, Atmospheric Chemistry and Physics, 24, 6071–6093, https://doi.org/10.5194/acp-24-6071-2024, 2024. a, b, c
Tu, Z., Talebi, H., Zhang, H., Yang, F., Milanfar, P., Bovik, A., and Li, Y.: MaxViT: Multi-axis vision transformer, in: European Conference on Computer Vision, Springer, 459–479, https://doi.org/10.1007/978-3-031-20053-3_27, 2022. a
Van Huffel, J., Ehrmanntraut, R., and Croes, D.: Contrail Detection and Classification using Computer Vision with Ground-Based Cameras, in: 2025 Integrated Communications, Navigation and Surveillance Conference (ICNS), IEEE, 1–6, https://doi.org/10.1109/ICNS65417.2025.10976944, 2025. a, b
Vazquez-Navarro, M., Mannstein, H., and Mayer, B.: An automatic contrail tracking algorithm, Atmospheric Measurement Techniques, 3, 1089–1101, https://doi.org/10.5194/amt-3-1089-2010, 2010. a, b, c
Vázquez-Navarro, M., Mannstein, H., and Kox, S.: Contrail life cycle and properties from 1 year of MSG/SEVIRI rapid-scan images, Atmospheric Chemistry and Physics, 15, 8739–8749, https://doi.org/10.5194/acp-15-8739-2015, 2015. a
Yang, L., Fan, Y., and Xu, N.: Video instance segmentation, in: ICCV, https://doi.org/10.1109/ICCV.2019.00529, 2019. a
Short summary
The Ground Visible Camera Contrail Sequences (GVCCS) dataset provides annotated video sequences of aircraft contrails recorded by a ground-based camera in the visible spectrum. Each contrail is segmented, tracked, and, where possible, attributed to individual flights. A baseline model based on panoptic segmentation is also provided to demonstrate instance-level detection. This dataset enables empirical analysis of contrail lifecycle and supports the validation and calibration of physical models.
The Ground Visible Camera Contrail Sequences (GVCCS) dataset provides annotated video sequences...
Altmetrics
Final-revised paper
Preprint