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Abstract. Aviation’s climate impact includes not only CO, emissions but also significant non-CO; effects,
especially from contrails. These ice clouds can alter Earth’s radiative balance, potentially rivaling the warm-
ing effect of aviation CO,. Physics-based models provide useful estimates of contrail formation and climate
impact, but their accuracy depends heavily on the quality of atmospheric input data and on assumptions used
to represent complex processes like ice particle formation and humidity-driven persistence. Observational data
from remote sensors, such as satellites and ground cameras, could be used to validate and calibrate these mod-
els. However, existing datasets do not explore all aspects of contrail dynamics and formation: they typically
lack temporal tracking, and do not attribute contrails to their source flights. To address these limitations, we
present the Ground Visible Camera Contrail Sequences (GVCCS), a new open data set (Jarry et al., 2025,
https://doi.org/10.5281/zenodo.16419651) of contrails recorded with a ground-based all-sky camera in the visi-
ble range. Each contrail is individually labeled and tracked over time, allowing a detailed analysis of its lifecycle.
The dataset contains 122 video sequences (24 228 frames) and includes flight identifiers for contrails that form
above the camera. As reference, we also propose a unified deep learning framework for contrail analysis us-
ing a panoptic segmentation model that performs semantic segmentation (contrail pixel identification), instance
segmentation (individual contrail separation), and temporal tracking in a single architecture. By providing high-
quality, temporally resolved annotations and a benchmark for model evaluation, our work supports improved
contrail monitoring and will facilitate better calibration of physical models. This sets the groundwork for more
accurate climate impact understanding and assessments.

emissions (Lee et al., 2021; Teoh et al., 2024), although this

Aviation contributes to global climate change not only
through carbon dioxide (CO;) emissions but also through a
variety of non-CO; effects, including nitrogen oxides (NO,),
water vapour, and aerosols. Among these, condensation trails
(contrails), ice-crystal clouds formed by aircraft at typical
cruising altitudes, stand out for their potentially large yet
uncertain radiative impact. Though they often appear as
ephemeral white streaks in the sky, persistent contrails can
spread into extensive cirrus-like cloud formations that reduce
outgoing long-wave radiation, warming the planet. Recent
studies suggest that the climate forcing from contrail cirrus
is of the same order of magnitude as that from aviation CO,
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comparison depends on the metric used (Borella et al., 2024).

Accurately assessing the climate impact of contrails re-
mains a significant challenge for both aviation and climate
scientists. Contrail lifecycles depend on complex interrelated
processes, including ice nucleation, crystal growth, wind-
driven dispersion, and interaction with natural clouds, that
are sensitive to ambient atmospheric conditions. Small vari-
ations in temperature and humidity, particularly relative hu-
midity with respect to ice, can determine whether a contrail
dissipates quickly or persists and spreads. This sensitivity,
combined with diurnal variability in radiative forcing (day-
time cooling from reflected sunlight versus nighttime warm-
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ing from trapped infrared radiation), makes the net climate
effect of contrails highly variable and challenging to model.

While contrail impacts have traditionally been studied
using physical models, recent advances in remote sensing
and computer vision now offer a valuable observational per-
spective. Physics-based models, such as the Contrail Cirrus
Prediction model (CoCiP) (Schumann, 2012) and the Air-
craft Plume Chemistry, Emissions, and Microphysics Model
(APCEMM) (Fritz et al., 2020), simulate contrail lifecycles
by solving complex equations that describe interactions be-
tween aircraft emissions and atmospheric conditions. These
models provide valuable theoretical insights, but their accu-
racy depends heavily on the quality of input data (Gierens
et al., 2020). Key parameters, such as atmospheric tempera-
ture, humidity, and aircraft engine characteristics, are often
uncertain, and these uncertainties propagate through calcu-
lations, affecting result reliability. Moreover, detailed sim-
ulations of contrail microphysics and radiative effects can
be computationally demanding, particularly when applied to
global-scale analyses.

Observational methods using satellite and ground-based
imagery offer a direct, data-driven approach to studying con-
trails that complements theoretical models. Satellite-based
contrail detection has a long history, beginning with early
automated methods that leveraged brightness temperature
differences and Hough transforms in NOAA-AVHRR im-
agery (Mannstein et al., 1999). Subsequent work extended
these techniques to study regional radiative forcing (Meyer
et al., 2002), contrail coverage and properties (Minnis et al.,
2005; Palikonda et al., 2005; Mannstein and Schumann,
2005), and global contrail distributions (Meyer et al., 2007).
Advances in sensor technology, particularly with MSG/SE-
VIRI, enabled rapid-scan observations that facilitated auto-
mated contrail tracking (Vazquez-Navarro et al., 2010), life-
cycle analysis (Vazquez-Navarro et al., 2015), and improved
detection algorithms (Ewald et al., 2013; Mannstein et al.,
2012). Ground-based validation campaigns (Mannstein et al.,
2010; Schumann et al., 2013) provided essential verification
of satellite-derived contrail properties. More recently, high-
resolution remote sensing combined with modern computer
vision and deep learning has further enhanced detection ca-
pabilities (Meijer et al., 2022; McCloskey et al., 2021; Ng
et al., 2023; Chevallier et al., 2023).

Despite growing interest in observational contrail analy-
sis, publicly available datasets remain limited in scope. Ex-
isting datasets of contrails annotated in observational data,
such as Google’s OpenContrails, do not track individual con-
trails over time or provide information on the flights that
formed them. Specifically, OpenContrails offers instance-
level masks only on the central GOES-16 frame, with sur-
rounding images left unannotated. In contrast, Sarna et al.
(2025) introduced SynthOpenContrails, which overlays syn-
thetic contrails and annotations onto real scenes, providing
full per-frame localization, tracking, and flight attribution.
This demonstrates that richly annotated data can exist, even if
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confined to synthetic contrail overlays rather than human an-
notation. An ideal scenario would be a fully annotated video
dataset where every frame is labeled and each contrail is as-
signed a persistent identifier across time.

To advance research in this area, we present the Ground
Visible Camera Contrail Sequences (GVCCS), an open
dataset (Jarry et al., 2025) with instance-level annotations,
derived from ground-based video recordings in Brétigny-sur-
Orge, France (Réuniwatt CamVision visible ground-based
camera). Our dataset includes 122 videos (of duration be-
tween 20 min and 5h) with a total of approximately 24 200
frames, each annotated with instance-level labels. By making
this dataset openly available, we provide a valuable bench-
mark for both the atmospheric and aviation research commu-
nities.

To support future performance comparisons, we introduce
a deep learning-based model for contrail segmentation and
tracking. Instead of relying on separate models for these
tasks, an approach that often requires complex, ad-hoc com-
binations of techniques, we adopt a unified framework based
on Mask2Former (Cheng et al., 2021b), a state-of-the-art
computer vision model. Mask2Former is designed for panop-
tic segmentation, which combines semantic segmentation
(labeling each pixel with a class, e.g., “contrail” or “sky”)
and instance segmentation (distinguishing between individ-
ual objects, e.g., different contrails). In addition to separating
contrails from clear sky, it can handle complex backgrounds,
such as low-altitude cloud layers that partially or fully ob-
scure contrails, by assigning appropriate “cloud” labels while
still maintaining unique instance identities. For example, in a
single image, panoptic segmentation can identify all visible
contrail pixels, correctly label intervening clouds, and assign
consistent instance masks to each contrail, even when they
overlap, intersect, appear fragmented, or are seen through
thin cloud cover. In fact, contrails often break into multi-
ple disconnected components due to atmospheric conditions
and natural dissipation processes. A robust monitoring sys-
tem must not only identify these fragments but also associate
them with the correct contrail instance.

It is worth noting that fragmentation poses a significant
challenge for contrail analysis based solely on images or
videos: visually disjointed segments from the same flight
must be grouped without external data. Moreover, low-
altitude cloud obscuration and sun glare can further interrupt
or mask contrail continuity, producing multi-polygon anno-
tations even for a single physical contrail. In operational set-
tings, however, it is possible to first perform single-polygon
instance segmentation and then associate multiple instances
with the same flight using auxiliary data such as aircraft tra-
jectories and wind fields. This post-processing step enables
grouping across time and space based on flight identity rather
than visual continuity. In this work, we restrict ourselves to
purely image-based analysis and defer the integration of ex-
ternal data sources to future work.
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Mask2Former, originally designed for individual images,
can be easily extended to video data to improve the consis-
tency of panoptic segmentation across frames (Cheng et al.,
2021a). By leveraging temporal information, Mask2Former
for videos performs semantic segmentation, instance seg-
mentation, and tracking in an integrated manner. In this pa-
per, we study both the frame-based and video-based ver-
sions of Mask2Former, comparing their performance on our
dataset.

The remainder of this paper is structured as follows. Sec-
tion 2 provides the necessary background on contrail forma-
tion and computer vision techniques, establishing the foun-
dation for the challenges addressed in this work. Section 3
reviews related work on contrail datasets and segmenta-
tion models, highlighting current limitations and motivat-
ing our approach. Section 4 introduces our newly devel-
oped video-based dataset, detailing its annotation method-
ology and unique instance-level structure. Section 5 de-
scribes our panoptic segmentation framework based on the
Mask2Former architecture. Section 6 presents and analy-
ses the experimental results. Finally, Sect. 8 summarises our
main contributions and outlines future research directions.

2 Background

This section introduces the key concepts necessary to under-
stand the challenges addressed in this work. We begin by out-
lining the physical processes behind contrail formation and
their implications for climate, focusing on why contrails are
particularly difficult to detect and track. We then review rel-
evant computer vision techniques, specifically object detec-
tion and image segmentation, and assess their suitability for
analysing contrails.

2.1 The Science of Contrails

Contrails are artificial clouds that form behind aircraft when
hot, humid engine exhaust mixes with the cold, low-pressure
air at cruising altitudes, typically between 8 and 12 km. If at-
mospheric conditions are suitable — specifically, if the tem-
perature falls below a critical threshold (typically around
—40 °C, depending on pressure and humidity) and the air is
sufficiently humid — the water vapour in the exhaust con-
denses and freezes into ice crystals. The physical mecha-
nism underlying this process was first explained by Schmidt
(1941), who recognized that contrails form when ambient
temperature is low enough to cause the humidity inside the
aircraft plume to reach saturation with respect to liquid wa-
ter, triggering condensation. Appleman (1953) provided fur-
ther quantitative analysis, though without fully accounting
for engine characteristics. Schumann (1996) later developed
a comprehensive treatment incorporating engine efficiency
and practical application methods, formalizing what is now
known as the Schmidt—Appleman criterion. This process pro-
duces the familiar thin, white trails visible in the sky.
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Like natural clouds, contrails influence Earth’s radiation
budget: they reduce outgoing long-wave radiation, leading
to warming, while also reflecting incoming solar radiation,
which has a cooling effect. The net result depends on the
contrail’s altitude, optical properties, lifespan, and time of
day. The magnitude of contrail climate forcing relative to
aviation’s CO, emissions depends on the climate metric cho-
sen (Borella et al., 2024); however, contrails are thought to
warm the climate at a level of the same order of magnitude as
aviation’s CO, emissions (Lee et al., 2021; Teoh et al., 2024).
This makes the monitoring and characterization of contrails
an essential part of understanding aviation’s full environmen-
tal footprint (Teoh et al., 2024) and developing mitigation
strategies (Teoh et al., 2020).

Quantifying this radiative forcing requires understand-
ing both contrail optical properties and their spatial and
temporal distribution. Early satellite-based studies provided
first estimates of regional contrail radiative effects (Meyer
et al., 2002) and developed parametric models linking con-
trail properties to radiative forcing (Schumann et al., 2009).
Climatological analyses of persistent contrails revealed de-
pendencies on atmospheric conditions and aircraft traffic
patterns (Iwabuchi et al., 2012; Mannstein and Schumann,
2005), while ground-based observations offered validation of
satellite-derived contrail properties (Mannstein et al., 2010).

As mentioned above, the observational viewpoint offers
an alternative perspective that focuses on detecting and
analysing contrails directly using satellite and ground-based
remote sensing instruments. However, detecting and tracking
contrails presents several technical challenges, which helps
explain the growing research interest in the topic. Satel-
lite imagery often lacks the spatial and temporal resolution
needed to detect contrails in their early stages (Ng et al.,
2023; Mannstein et al., 2010). Geostationary satellites have
a nominal spatial resolution of about 0.5 to 2km and a tem-
poral resolution of 5 to 15 min, which is often insufficient
to capture the narrow, faint, and short-lived nature of freshly
formed contrails unless they persist and grow. Even when
contrails spread into detectable cloud structures, they are dif-
ficult to distinguish from natural cirrus, particularly in scenes
with complex cloud layers. Moreover, by the time a con-
trail is visible in satellite images, it has often drifted and de-
formed, complicating attribution to the flight that produced
it (Chevallier et al., 2023; Sarna et al., 2025). This linkage
is crucial, as identifying the originating flight enables re-
searchers to retrieve essential details such as aircraft type
and engine model, key inputs for assessing contrails’ envi-
ronmental impact and improving physical models through
comparison with empirical observations.

Ground-based cameras (Schumann et al., 2013; Low et al.,
2025) offer a complementary perspective with critical advan-
tages. Positioned beneath flight paths, these systems can cap-
ture high-resolution images and video with far greater spatial
and temporal fidelity than satellites. Crucially, they can de-
tect contrails immediately after formation, while they are still
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thin, linear, and visually distinct. This early visibility simpli-
fies the task of associating observed contrails with the spe-
cific flight responsible, especially when combined with pre-
cise trajectory data. The main drawback is, naturally, their
restricted spatial coverage, which hinders the ability to mon-
itor contrails from formation to dissipation.

This attribution advantage is particularly significant com-
pared to satellite-based approaches. Geostationary satellites
face several challenges: their coarse spatial resolution (~
0.5-2 km per pixel) means contrails must persist and spread
before becoming detectable, by which time wind advection
has displaced them substantially from their formation loca-
tion; their temporal resolution (5—15 min) means the originat-
ing aircraft may be far away when the contrail first appears;
and multiple aircraft may have traversed similar airspace
during this window, creating ambiguity. Attribution from
satellite data therefore requires sophisticated algorithms ac-
counting for wind fields, parallax, and probabilistic match-
ing (Chevallier et al., 2023; Riggi-Carrolo et al., 2023; Ger-
aedts et al., 2024; Sarna et al., 2025). In contrast, ground-
based cameras observe contrails at formation with high spa-
tial resolution (~ 73 m per pixel at 10 km altitude in our sys-
tem) and 30 s sampling, enabling straightforward contrail-to-
flight attribution without the ambiguities inherent in satellite-
based approaches.

While not the focus of this paper, one promising direction
involves combining ground-based and satellite observations
into a unified monitoring framework. In such a system, con-
trails would first be detected in high-resolution ground-based
imagery and attributed to specific flights using trajectory and
weather data, providing access to key aircraft and engine pa-
rameters. Crucially, to enable continuous tracking beyond the
limited field of view of the ground-based camera, these con-
trails would then need to be reliably linked to their evolv-
ing counterparts in satellite imagery as they drift, expand,
and age. Successfully associating contrails across these two
modalities — ground and satellite — would allow monitoring
of their full lifecycle from formation to dissipation while pre-
serving information about the specific aircraft and flight re-
sponsible for creating them.

2.2 Computer Vision Techniques for Contrail Monitoring

Contrails are visually challenging targets for computer vision
due to their thin, elongated shapes, variable curvature, and
tendency to fragment or fade over time. These characteristics
make them fundamentally different from the objects typically
addressed in standard object detection benchmarks, such as
vehicles and animals in datasets like the Common Objects
in Context (COCOQO) dataset (Lin et al., 2014), which features
well-defined, discrete objects.

Traditionally, object detection methods localise targets us-
ing bounding boxes, usually axis-aligned rectangles. Stan-
dard approaches such as Faster R-CNN (Ren et al., 2017) and
YOLO (Redmon et al., 2016) exemplify this paradigm. This
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Figure 1. Illustration of bounding box detection on contrails.
(a) Axis-aligned bounding boxes. (b) Oriented bounding boxes.
Each detected contrail is highlighted with a distinct color. Note how
elongated or fragmented trails challenge bounding box alignment
and separation.

approach works well for objects like cars or animals, which
are compact and roughly rectangular, but performs poorly for
contrails. A single axis-aligned bounding box may inadver-
tently include multiple contrail segments or large amounts
of background sky, while missing parts of curved or frag-
mented trails. Oriented bounding boxes offer some improve-
ment by allowing rotation, which better fits the geometry of
elongated contrails. However, they still fall short in captur-
ing fine-grained shapes, gaps, or fading segments. Figure 1
shows the limitations of axis-aligned and oriented bounding
boxes for object detection on contrails.

Instance segmentation provides a more precise solution by
predicting pixel-level masks for each individual object. This
approach is particularly beneficial for contrails, as it can de-
lineate each trail accurately even when they intersect, over-
lap, or dissipate unevenly. For instance, two overlapping con-
trails that fade at different rates can still be assigned to dis-
tinct instances.

It is important to note that instance segmentation has been
addressed in atmospheric science for decades using classi-
cal computer vision techniques. Early work by Mannstein
et al. (1999) detected contrail pixels and grouped spatially
connected regions into distinct objects. Similarly, Schumann
et al. (2013) used ground-based cameras with automated al-
gorithms to identify, track, and characterize individual con-
trails. These methods achieved instance-level contrail sepa-
ration through feature-based detection, connectivity analy-
sis, and trajectory matching. Our work builds on this foun-
dation by applying modern deep learning architectures that
perform instance segmentation through learned feature rep-
resentations rather than hand-crafted rules.

Semantic segmentation, in contrast, labels each pixel by
class (e.g., “contrail” or “sky”) but does not distinguish be-
tween individual contrails. This is insufficient when studying
temporal evolution or interactions between specific contrails,
since it treats all contrails as a single undifferentiated class.
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Panoptic segmentation combines the strengths of both ap-
proaches: it assigns a class label to every pixel (semantic seg-
mentation) and an instance identifier where appropriate (in-
stance segmentation). In this framework, “things” such as in-
dividual contrails are assigned unique instance labels, while
“stuff” like the background sky or natural clouds is labelled
only by class. This unified view is well-suited to contrail
monitoring, enabling fine-grained analysis of individual con-
trails within the broader atmospheric context. Moreover, the
framework can be readily extended to additional classes (e.g.,
cirrus, cumulus) for more comprehensive scene understand-
ing, provided these classes have been effectively and consis-
tently labelled during dataset creation, which introduces an
additional layer of complexity to the annotation campaign.
Figure 2 illustrates the instance, semantic, and panoptic seg-
mentation methods.

3 State of the Art

This section presents an overview of prior work in con-
trail segmentation and analysis, focusing first on the datasets
that have been developed to support this research, and then
on the computational models used for contrail segmentation
and flight attribution. The scope and key features of exist-
ing datasets are outlined, with particular attention given to
the limited availability of temporal annotations and flight at-
tribution ground truth. Subsequently, we examine state-of-
the-art segmentation and tracking methods, particularly deep
learning-based approaches, assessing their applicability and
performance in contrail analysis. This review highlights gaps
in current research and motivates the contributions presented
in this paper.

3.1 Datasets

Recent advances in contrail detection have been supported
by the development of annotated datasets, primarily based on
satellite imagery. These datasets have facilitated the applica-
tion of computer vision techniques for contrail identification,
although aspects such as temporal continuity and integration
with flight metadata remain limited in most cases. In this sec-
tion, we review the most relevant publicly available datasets
and place our contributions within this context.

Kulik (2019) and Meijer et al. (2022) are, to our knowl-
edge, the first studies to leverage a modern, data-driven,
deep learning framework for large-scale contrail segmenta-
tion. The authors developed and applied convolutional neu-
ral networks, which were trained using a manually curated
dataset comprising over 100 annotated geostationary GOES
satellite images with instance segmentation.

One of the first large-scale labelling efforts in contrail
detection was led by Google Research, beginning with the
development of a contrail dataset based on high-resolution
Sentinel satellite imagery (McCloskey et al., 2021). Hu-
man experts manually annotated the images using struc-
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tured guidelines, producing masks that identify contrail pix-
els at the semantic segmentation level, distinguishing contrail
from non-contrail regions without tracking individual con-
trail instances. Multiple annotators independently labelled
each image, and the dataset includes all individual annota-
tions, with the option to filter results by majority consensus.
This methodology improved both the spatial precision and
overall quality of the labels.

Building on this work, Google released the OpenContrails
dataset (Ng et al., 2023), which is based on images from the
GOES-16 Advanced Baseline Imager (ABI). OpenContrails
offers temporal context by including short sequences of un-
labelled images surrounding each annotated frame, provid-
ing valuable information to annotators for more accurate la-
belling. Only the central frame in each sequence is annotated,
therefore not allowing direct comparison of contrail dynam-
ics with physical models.

In the domain of ground-based data for contrail research,
significant resources have been developed to support com-
puter vision tasks. Gourgue et al. (2025) introduce an open-
access corpus of around 1600 polygon-annotated hemi-
spheric sky images acquired at the SIRTA atmospheric lab-
oratory, near Paris, offering class labels that distinguish
“young”, “old”, and “very old” contrails as well as several
confounding artefacts. By capturing high-resolution ground
views minutes after formation, this dataset fills a temporal—
spatial gap left by satellite benchmarks. Complementary to
this data provision, Pertino et al. (2024) focus on the devel-
opment of detection methodology, providing a comprehen-
sive comparison of computer vision models applied to both
visible and infrared images.

Rather than creating a dataset for training modern convo-
Iutional networks on segmentation tasks, Low et al. (2025)
manually annotated the correspondence between contrail
waypoints derived from the application of the CoCiP model
and observations from their wide-angle ground camera sys-
tem. This approach is particularly well-suited for directly as-
sessing and parametrizing physical models.

Earlier studies have successfully collocated contrails us-
ing various combinations of sensors, including ground-based
observations, satellite imagery, and lidar data (Iwabuchi
et al., 2012; Mannstein et al., 2010). For example, Vazquez-
Navarro et al. (2010) demonstrated tracking contrails first
identified in high-resolution MODIS imagery through time
sequences of Meteosat data, leveraging complementary spa-
tial and temporal resolution. Building on this founda-
tion, Meijer et al. (2024) is, to our knowledge, the first ex-
ample of a dataset specifically designed for contrail alti-
tude estimation by collocating images from two distinct re-
mote sensors: they assembled a dataset comprising over 3000
cases over the contiguous United States (2018-2022). Con-
trails were first located via automated detection in GOES-16
ABI infrared imagery, then precisely collocated, correcting
for parallax and wind advection, with CALIOP lidar cross-
sections. The team then conducted manual inspections of
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Figure 2. Comparison of segmentation methods applied to illustrative contrails. (a) Instance segmentation assigns unique identifiers (colors)
to each contrail, enabling individual tracking but without classifying non-contrail regions. (b) Semantic segmentation identifies all contrail
pixels as a single class (white) versus background (blue), without distinguishing between individual contrails. (¢) Panoptic segmentation
combines both approaches: each contrail receives a unique identifier while all pixels are classified (contrails in color, background in blue).
This unified representation enables both instance-level tracking and scene-level understanding.

the matched imagery to verify and validate alignment. This
benchmark dataset linking geostationary contrail signatures
to high-resolution vertical profiles enables supervised deep-
learning approaches to predict contrail top heights from ABI
data.

A significant advance in contrail detection has been the de-
velopment of synthetically labelled datasets. Chevallier et al.
(2023) generated a synthetic dataset using CoCiP (Schu-
mann, 2012) to overlay contrail polygons onto GOES-16
imagery, enabling the first instance segmentation pipeline
for contrail detection. The performance of flight assign-
ment algorithms was validated using actual GOES data
through manual inspection rather than synthetic reference
ground truth. Building on this synthetic foundation, Sarna
et al. (2025) introduced a benchmark dataset, SynthOpen-
Contrails, with sequences of synthetic contrail detections tied
to known flight metadata, providing the first opportunity to
quantitatively evaluate and improve contrail-flight attribu-
tion algorithms. To our knowledge, this is the only dataset
providing localized and tracked contrails with attributable
ground truth, albeit synthetic. While the use of synthetic
datasets represents a modern and cutting-edge technique for
training algorithms, the use of manually labelled data as test
sets is theoretically preferable to objectively assess algorith-
mic performance. However, obtaining such datasets on geo-
stationary satellite images, with their coarse resolution, re-
mains very difficult at this stage, which motivates the ap-
proach adopted by the authors. As mentioned in Sarna et al.
(2025), obtaining such a reference dataset with ground truth
for flight attribution based on human annotations is feasi-
ble in principle with higher resolution low-orbit satellites
or ground-based cameras, which is the focus of the present
work.

Overall, while existing datasets have contributed valu-
able resources, there is a lack of comprehensive, human-
labelled data containing temporally resolved, instance-level,
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and flight-attributed annotations. Our work addresses this is-
sue by introducing a dataset designed to provide these anno-
tations, collected using our ground camera system.

3.2 Models

Contrail monitoring with computer vision was first pio-
neered in the early nineties (Forkert et al., 1993; Mannstein
et al., 1999), using traditional image-analysis techniques.
Their work applied linear-kernel methods, direct threshold-
ing of brightness temperature difference channels, and early
Hough-transform operators (Pratt, 2007) optimized for lin-
ear shape detection to identify contrails in AVHRR satellite
imagery. This foundational work was extended through im-
proved detection algorithms (Meyer et al., 2002, 2007), auto-
mated tracking methods (Vdzquez-Navarro et al., 2010), and
enhanced cirrus detection capabilities (Ewald et al., 2013;
Mannstein et al., 2012). Parallel advances in cloud prop-
erty retrieval from geostationary satellites (Bugliaro et al.,
2012; Hamann et al., 2014; Kox et al., 2014) and neural
network-based classification (Strandgren et al., 2017b, a)
further refined contrail and cirrus characterization. Ground-
based validation studies (Mannstein et al., 2010; Schumann
et al., 2013) provided essential verification of these satellite-
based methods. These classical computer vision approaches
were later complemented by improvements from Duda et al.
(2013) and eventually by modern deep learning techniques.
To the best of our knowledge, Kulik (2019) and Meijer
et al. (2022) represent the earliest applications of modern
convolutional networks to pixel-level classification and
semantic segmentation. Building on the OpenContrails
dataset, Ng et al. (2023) employed semantic segmenta-
tion algorithms, specifically DeepLabV3 (Chen et al.,
2017, 2018), to identify contrails in ash-RGB composites
(https://resources.eumetrain.org/data/4/410/print_5.htm,
last access: 14 October 2025) using brightness tem-
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perature differences. Their work demonstrated that
adding temporal context via a 3D encoder, incorpo-
rating the time dimension, led to improved perfor-
mance. Moreover, results from the subsequent Kag-
gle competition (https://www.kaggle.com/competitions/
google-research-identify-contrails-reduce- global-warming,
last access: 14 October 2025) showed that U-Net mod-
els (Ronneberger et al., 2015) equipped with modern
transformer backbones, such as MaxViT (Tu et al., 2022)
and CoatNet (Dai et al., 2021), achieved even stronger
results (Jarry et al., 2024).

Using an ensemble approach, Ortiz et al. (2025) combined
six neural networks, including U-Net, DeepLab, and trans-
former architectures, and applied optical-flow-based correc-
tions to maintain temporal consistency across consecutive
satellite frames. Meanwhile, Sun and Roosenbrand (2025)
introduced a Hough-space line-aware loss for few-shot sce-
narios, supplementing Dice loss with a global alignment term
to encourage predictions to align with linear structures.

Shifting from pixel-level masks to instance-level contrail
segmentation and making use of synthetic data, Chevallier
et al. (2023) introduced the first algorithmic pipeline fo-
cused on instance segmentation for contrail detection, uti-
lizing the Mask R-CNN algorithm (He et al., 2017). Simi-
larly, Van Huffel et al. (2025) adopted Mask R-CNN to pro-
cess images captured by their wide-angle ground camera sys-
tem.

The challenging task of attributing detected contrails to in-
dividual flights in geostationary satellite imagery, typically
using automatic dependent surveillance-broadcast (ADS-B)
data, has been the focus of several recent studies. Chevallier
et al. (2023) introduced a pipeline that combines contrail de-
tection, tracking, and matching with aircraft using geometric
criteria and wind-corrected trajectories. Riggi-Carrolo et al.
(2023) proposed a probabilistic matching method that ac-
counts for uncertainties in flight data and atmospheric con-
ditions, incorporating features derived from Hough-based
line detection to improve alignment. Geraedts et al. (2024)
presented a scalable system designed to assign contrails to
flights on a large scale, enabling routine monitoring of con-
trail formation and supporting climate assessments. Sarna
et al. (2025) systematically benchmarked and refined these
attribution algorithms, highlighting common challenges and
proposing improved association metrics, building on the
release of the synthetically generated SynthOpenContrails
dataset.

By contrast, our work targets ground-based imagery, cap-
turing contrails immediately after formation and enabling
near-instantaneous flight attribution via ADS-B data. We har-
ness panoptic segmentation using Mask2Former, trained on
high-resolution video, to extract pixel-accurate masks of in-
dividual contrails and track them over time. This fills the gap
in early-stage contrail detection and provides richer spatial
and temporal detail than existing satellite-based models.
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4 Dataset

The primary contribution of this paper is the introduction of a
new dataset designed to support contrail detection, tracking,
and attribution. This section provides a detailed overview of
the dataset. Section 4.1 describes the data collection and la-
belling campaign. Section 4.2 summarizes the structure and
content of the dataset.

4.1 Data collection and labelling campaign

To support the development of machine learning models for
contrail detection, we conducted an extensive labelling cam-
paign as part of the ContrailNet project. Visible-spectrum
image sequences were acquired using an all-sky ground-
based camera installed on the roof of the EUROCONTROL
Innovation Hub (Location: 48°36'1.87" N, 2°20'48.46" E).
The camera captured the sky every 30s at a resolution of
1976 x 2032 pixels.

Our camera provider, Reuniwatt, delivered a dual all-sky
camera system: the first unit, CamVision, operates in the vis-
ible spectrum, capturing high-resolution fisheye images ev-
ery 30s with on-board processing and self-calibration, en-
suring reliable daytime operation even in dusty or wet condi-
tions. The second unit, SkylInsight, uses long-wave infrared
(8-13 um) imaging via a chrome-coated hemispherical mir-
ror and will be used in future research.

The raw all-sky images were first geometrically projected
onto a square grid. This projection process uses camera-
specific calibration files to associate each pixel with its cor-
responding azimuth and zenith angles, effectively removing
lens distortions and re-mapping the sky onto a uniform Carte-
sian representation. A 75km x 75km grid of georeferenced
points was computed at a fixed cloud altitude (10 km), and a
linear interpolation scheme was used to assign raw pixel val-
ues to the projected frame. The output is a square image of
size 1024 x 1024 pixels that preserves the spatial geometry
of the sky above the camera.

To improve the visual clarity and consistency of the se-
quences, each projected image undergoes a three-step en-
hancement process. First, brightness is increased using a lin-
ear scaling operation to compensate for underexposure in
certain atmospheric conditions. Second, local contrast is en-
hanced via CLAHE (Contrast Limited Adaptive Histogram
Equalization), which boosts fine features like faint or frag-
mented contrails without overexposing bright regions. Fi-
nally, colour warmth is reduced by rebalancing the blue and
red channels, mitigating the effects of high solar glare and
improving contrail visibility in challenging lighting condi-
tions. This preprocessing pipeline proved essential for two
reasons: it enables annotators to identify and delineate con-
trails consistently across diverse atmospheric scenes, and it
simplifies the learning task for computer vision models by
removing camera-specific distortions and enhancing the nat-
ural linear structure of contrails. Figure 3 illustrates the im-
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Figure 3. Impact of preprocessing pipeline on contrail visibility. (a) Raw all-sky image showing severe fisheye distortion. (b) Geometric

projection onto a square grid. (¢) Final three-step enhancement process.

pact of geometric projection and enhancement, demonstrat-
ing how the pipeline reveals contrails that would otherwise
be difficult or impossible to annotate reliably. All models pre-
sented in this work are trained and evaluated exclusively on
preprocessed images.

The video sequences included in the dataset were not ran-
domly sampled from the full archive. To ensure sufficient
contrail instances for effective model training while main-
taining seasonal and atmospheric diversity, we applied a two-
stage selection strategy. First, the complete year-long archive
was processed using a lightweight binary classifier to dis-
tinguish contrail-present from contrail-absent images. This
automated filtering efficiently identified candidate periods
by excluding extended intervals of clear sky or heavy low-
altitude cloud cover. Second, video sequences were manually
selected from these filtered periods, prioritizing scenes with
visible, persistent contrails suitable for detailed temporal an-
notation. This approach deliberately oversamples contrail-
positive cases, enhancing the dataset’s utility for segmenta-
tion and tracking but introducing a selection bias that should
be considered when evaluating model performance on unfil-
tered operational data. The final dataset spans the full cal-
endar year, ensuring coverage of diverse seasonal and atmo-
spheric conditions.

The labelling process was applied to video sequences;
each sequence comprised between 60 and 480 images, corre-
sponding to durations of 30 min to 4 h, enabling the temporal
tracking of contrails throughout their formation and dissipa-
tion phases.

The labelling process was carried out using a dedicated an-
notation tool developed by Encord, who also provided a pro-
fessional team of annotators. We maintained close collabo-
ration with this team through regular coordination meetings,
during which the annotation guide was developed and itera-
tively refined. The labelling platform was specifically config-
ured to overlay flight trajectory data above the camera’s field
of view, assisting annotators in identifying “new” contrails —
those forming above the camera and visibly associated with
a known aircraft trajectory. In contrast, “old” contrails were
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defined as those already present at the start of a sequence
or likely formed outside the camera’s field of view, making
flight association impossible.

Each contrail was annotated using high-precision poly-
gons that tracked its spatial extent throughout its visible evo-
lution, from early linear stages to advanced spreading phases.
When contrails became fragmented or partially obstructed by
clouds, multiple polygons were used and linked using rela-
tional attributes (“fragmented contrail” and “cloud obstruc-
tion”) to preserve temporal continuity.

To ensure the highest annotation quality, the campaign
incorporated a multi-stage review protocol. An initial cali-
bration phase was conducted using a sample dataset to har-
monise interpretation and identify edge cases. Each labelled
sequence then underwent a two-step quality control process:
a technical review by the labelling team, followed by an ex-
pert review by EUROCONTROL to ensure final quality. In
total, 4536 h of labelling and 431 h of reviewing were per-
formed.

4.2 Dataset Description

The GVCCS dataset (Jarry et al., 2025) is the first open-
access, instance-level annotated video dataset designed for
contrail detection, segmentation, and tracking from visible
ground-based sky camera imagery. It consists of 122 high-
resolution video sequences (totaling 24 228 images) captured
at the EUROCONTROL Innovation Hub in Brétigny-sur-
Orge, France, using Réuniwatt’s CamVision sensor. Each se-
quence has been carefully annotated with temporally con-
sistent polygon masks for visible contrails, including multi-
instance tracking and, where possible, attribution to specific
flights using aircraft trajectory data.

In total, the annotation team labelled 4651 individual con-
trails with a total of 176 194 polygons. The sequences cover
a wide range of durations (from 0.5 to 142.5 min per con-
trail), with each contrail comprising between 1 and 589 poly-
gons (mean: 37.8). On average, each video sequence spans
96.6 min and contains approximately 193 annotated images.
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Table 1. Descriptive statistics of the annotated contrail dataset.

Metric Value
Total sequences (labelled) 122
Total images 24228
Average sequence duration (minutes) 96.6
Images per sequence (min/max/mean) 41/600/198.6
Total annotated contrail instances 4651
Total unique flight IDs assigned 3346
Total polygons annotated 176234
Contrail duration in minutes (min/max/mean) 0.5/142.5/14.6
Polygons per contrail (min/max/mean) 1/589/37.8
Polygons per frame per contrail (min/max/mean) 1/4.5/1.2

About 3346 contrails are associated with unique flight identi-
fiers derived from synchronized flight trajectory data filtered
above 15000 ft (4500 m).

The GVCCS dataset is structured into train/
and test/ folders, each containing images,
annotations. json (COCO format), and associ-
ated flight data in parquet format. The dataset supports
a range of research tasks including semantic and panoptic
segmentation, temporal tracking, lifecycle analysis, and
contrail-flight attribution, and is released under the CC BY
4.0 license.

5 Segmentation Models

This section reviews the segmentation models evaluated for
identifying, and for some also tracking, contrails. As estab-
lished in Sect. 2.2, our primary objective is instance seg-
mentation (detecting individual contrails and assigning them
unique identifiers) which is essential for temporal tracking
and flight attribution. The models presented here are capable
of panoptic segmentation (jointly handling instance identi-
fication and scene classification), though our evaluation fo-
cuses primarily on contrail instance quality rather than ex-
haustive scene parsing.

We focus on two model families: Mask2Former, a state-of-
the-art transformer-based segmentation model, and a U-Net
using a discriminative embedding loss. Both are evaluated on
individual images, while only Mask2Former is additionally
evaluated on videos.

We also explore two problem formulations: in the single-
polygon case, each visible contrail fragment is treated as an
independent instance; in the multi-polygon case, all frag-
ments of a given contrail are labelled as a single instance,
even if they are spatially disconnected. The single-polygon
setting assumes that a subsequent linking algorithm, not im-
plemented in this work, could later group fragments into
full contrails. The multi-polygon formulation, in contrast, ex-
pects the model to infer such groupings implicitly.
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5.1 Mask2Former

Mask2Former is a universal segmentation architecture that
unifies semantic, instance, and panoptic segmentation within
a single model. It is built around a hierarchical encoder-
decoder structure comprising three main components: a con-
volutional backbone for multi-scale feature extraction, a
pixel decoder that generates dense spatial embeddings, and
a transformer decoder with learnable mask queries that iter-
atively refines segmentation predictions.

A central innovation in Mask2Former is its use of masked
attention in the transformer decoder. Unlike standard cross-
attention, which considers the entire image, masked attention
limits attention to regions surrounding the current predicted
masks. This localized focus enables more precise refinement
of object boundaries, which is particularly beneficial for thin,
high-aspect-ratio structures like contrails. The model’s learn-
able queries act as object proposals and are refined through
multiple decoding layers to generate final instance masks and
class labels in an end-to-end manner.

An important aspect of Mask2Former’s effectiveness lies
in its loss function — the mathematical objective that the
model seeks to minimize during training. A loss function
quantifies the difference between predicted outputs (e.g., seg-
mentation masks) and ground truth annotations, providing
the learning signal that guides iterative parameter updates.
The loss function used by Mask2Former combines several
components. First, it uses a classification loss that helps the
model assign the correct class to each predicted mask (e.g.,
contrail vs. sky). Second, it includes a mask loss, which mea-
sures how closely the predicted mask matches the ground-
truth mask for that object, commonly using pixel-wise bi-
nary cross-entropy or Dice loss. Finally, Mask2Former in-
corporates a matching step based on the Hungarian algo-
rithm (Kuhn, 1955) — a combinatorial optimization method
that solves the assignment problem by finding the optimal
one-to-one correspondence between two sets given a cost
matrix. In this context, the algorithm matches each predicted
mask with its most appropriate ground-truth object by min-
imizing a combined cost based on classification and mask
similarity. This optimal matching ensures that each predic-
tion is evaluated against the correct reference, avoiding du-
plicate or ambiguous assignments, which is particularly im-
portant when multiple contrails with similar appearance are
present in the same image.

A detailed technical description of the model is beyond the
scope of this paper, as our focus is on applying Mask2Former
to contrail segmentation; we refer the reader to the original
work by Cheng et al. (2022) for a comprehensive overview
of the architecture and performance on popular datasets.

To capture temporal dynamics inherent in contrail evo-
lution, we extend Mask2Former to process short video se-
quences. Although designed for single images, the model
can handle multiple consecutive frames as a 3D spatio-
temporal volume by treating time as an additional axis along-
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side spatial dimensions, following the extension introduced
by Cheng et al. (2021a).

Compared to traditional segmentation models,
Mask2Former offers substantial architectural advantages.
Mask R-CNN (He et al., 2017), while effective, performs
detection and segmentation as separate stages, which can
introduce spatial misalignment and inefficiencies, especially
when segmenting long, disconnected objects. DETR (DEtec-
tion TRansformer) (Carion et al., 2020), though end-to-end
and transformer-based, primarily focuses on object detection
and lacks the fine-grained spatial modelling needed for
precise mask prediction. MaskFormer (Cheng et al., 2021b)
introduces transformer-based decoding for segmentation but
relies on global attention, which can dilute spatial precision.
Mask2Former refines this approach with masked attention
and iterative refinement, leading to improved accuracy,
especially in challenging tasks where objects are often thin,
faint, and visually ambiguous.

5.2 U-Net with Discriminative Loss

As a baseline, we implement a two-step instance segmenta-
tion model. First, we use a U-Net architecture (Ronneberger
et al., 2015) for segmentation. U-Net is a convolutional neu-
ral network originally developed for biomedical image seg-
mentation, characterized by its distinctive U-shaped architec-
ture. The network features a symmetrical encoder-decoder
structure: the encoder progressively downsamples the input
to capture high-level semantic features, while the decoder
upsamples to recover spatial resolution. Crucially, U-Net em-
ploys skip connections — direct pathways that link corre-
sponding encoder and decoder layers, bypassing intermedi-
ate processing. These connections allow fine-grained spatial
details (such as exact contrail boundaries) that are lost dur-
ing downsampling to be directly recovered in the decoder,
improving the quality and precision of segmentation outputs.

Second, we use a similar architecture that learns a unique
feature representation, or embedding, for each pixel in an im-
age by using a discriminative loss function — a training objec-
tive specifically designed to encourage pixels from the same
instance to have similar embeddings while pushing apart em-
beddings from different instances. In this model, the final
head of the U-Net does not produce a typical segmentation
map with class labels. Instead, it produces an embedding for
each pixel (a vector in a high-dimensional feature space).
The goal is for pixels that belong to the same object in-
stance to have similar embeddings (meaning they are close
together in this feature space), while pixels belonging to dif-
ferent instances have embeddings that are far apart. This way,
the model effectively learns to group pixels based on their
learned features.

The process of identifying individual instances is per-
formed in two separate steps. The first step is to gener-
ate these pixel embeddings with the U-Net, and the second
step is to group or cluster these embeddings into individ-
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ual instances. For clustering, we use HDBSCAN (Hierarchi-
cal Density-Based Spatial Clustering of Applications with
Noise) (Campello et al., 2013) — a density-based clustering
algorithm that automatically identifies clusters of arbitrary
shape without requiring a predetermined number of clusters.
HDBSCAN groups pixels with similar embeddings (high lo-
cal density in the embedding space) into the same instance
while identifying outliers that do not belong to any clear clus-
ter. These outliers are subsequently assigned to the nearest
cluster using k-means, ensuring complete instance coverage.
This approach is particularly suitable for contrails, which of-
ten exhibit irregular, fragmented, or elongated shapes that
are difficult to cluster using traditional methods like k-means
alone.

The discriminative loss function used to train the model
is composed of three parts. The first part, known as the
pull term, encourages embeddings of pixels that belong to
the same instance to be close together, making the cluster
compact. The second part, called the push term, forces em-
beddings of different instances to be sufficiently separated
from each other, preventing clusters from overlapping. The
third part is a regularization term that prevents the embed-
dings from growing too large in magnitude, which stabilizes
the training process and embedding space. This combina-
tion allows the model to learn meaningful and well-separated
pixel embeddings without relying on explicit object bound-
ing boxes or pre-defined region proposals. For readers inter-
ested in the mathematical formulation and detailed rationale
behind the discriminative loss, we refer to the original paper
by De Brabandere et al. (2017).

It is important to note that this model operates only on sin-
gle images. Unlike models such as Mask2Former for videos
mentioned in the previous section, it does not incorporate any
temporal or sequential information, nor does it include recur-
rent layers or mechanisms to handle videos. Extending this
approach to process video sequences and incorporate tem-
poral consistency would require significant changes to both
the architecture and the algorithms used, which is outside the
scope of this work.

The embedding-based approach is well suited to segment-
ing objects that may not be spatially continuous, such as con-
trails with fragmented shapes. Since the model does not re-
quire spatial continuity, it can learn to embed separate, dis-
connected parts of the same contrail into a similar region of
the feature space if they share common visual characteris-
tics and belong to the same label. However, this approach
has its challenges. If parts of the same contrail differ signif-
icantly in appearance due to factors like changes in lighting,
atmospheric conditions, or variations in the background tex-
ture, they may be embedded differently and incorrectly as-
signed to separate clusters. Conversely, visually similar but
unrelated contrail fragments could be mistakenly grouped to-
gether, as the model relies solely on the learned embeddings
for clustering.
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Figure 4 illustrates how the discriminative embedding ap-
proach learns to separate contrail instances. On the left, the
ground truth labels are displayed, highlighting the pixel-wise
assignment to contrail instances. On the right, we show the
corresponding discriminative embedding space. Since each
pixel is represented by a high-dimensional embedding vec-
tor (typically 32 dimensions), we apply Principal Compo-
nent Analysis (PCA) to reduce this to two dimensions for
visualization: PCA identifies the two orthogonal directions
that capture the most variance in the embedding space, ef-
fectively projecting the high-dimensional clusters onto a 2D
plane. Each point in this plot represents a single pixel, col-
ored according to its ground-truth instance label. This visu-
alization provides insight into how the model, trained with
a discriminative loss, learns to embed pixels from the same
instance close together in the feature space, while separat-
ing those from different instances. The separation observed
in the embedding space confirms the model’s ability to clus-
ter fragmented contrail structures, although visually similar
but unrelated segments may still partially overlap in the em-
bedding due to shared appearance features.

6 Results

This section presents the performance of the models intro-
duced in Sect. 5 on contrail segmentation tasks. Our primary
goal is not to achieve state-of-the-art results but to establish
clear application examples and meaningful baseline perfor-
mances. By doing so, we highlight the unique opportunities
offered by this dataset and provide a foundation for the re-
search community to build upon, encouraging rapid progress
in the critical field of aviation’s climate impact.

6.1 Training

All models were initialized from existing pretrained check-
points. We trained two versions of the Mask2Former archi-
tecture for the single-image segmentation task. Both mod-
els share the same core architecture but differ in the size of
their transformer backbone: one uses the Swin-Base (Swin-
B) configuration and the other uses the larger Swin-Large
(Swin-L). The main difference between these two lies in
model capacity: Swin-L has significantly more parameters,
enabling it to learn richer representations at the cost of higher
computational requirements.

Both image models were initialized from publicly avail-
able pretrained checkpoints in the Mask2Former Model Zoo
(Cheng et al., 2021c). Each model was first pretrained on
the ImageNet-21k (IN21k) (Ridnik et al., 2021) classifica-
tion dataset and then fine-tuned on the COCO panoptic seg-
mentation dataset. While COCO (Lin et al., 2014) does not
include contrails, it spans a wide range of natural (includ-
ing clouds and sky) and man-made objects, offering useful
general-purpose segmentation features. This two-stage pre-
training (IN21k followed by COCO) has been widely vali-
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dated in the literature and provides a strong initialization for
fine-tuning on contrail imagery.

Both the Swin-B and Swin-L variants were trained on in-
dividual image frames using 200 learnable object queries.
Given our hardware setup — two NVIDIA RTX 6000 GPUs,
each with 48 GB of memory — we were able to train both vari-
ants on the image dataset without significant memory limita-
tions.

For video segmentation, we used the video-specific vari-
ant of Mask2Former, which extends the original architec-
ture to handle temporal sequences. Like the image-based
model, it uses 200 object queries and Swin Transformer
backbones, and is initialized from a checkpoint pretrained
on the YouTubeVIS 2019 dataset (Yang et al., 2019). Al-
though YouTubeVIS does not contain contrails, its emphasis
on learning temporally consistent object masks across frames
makes it well suited to capture the dynamics of contrails in
video data.

Due to GPU memory constraints, we limited both training
and inference to short video clips composed of a small num-
ber of consecutive frames. While this restriction was neces-
sary to fit within available hardware resources, particularly
for memory-intensive architectures, it also shaped our train-
ing strategy. During training, these clips are randomly sam-
pled from longer video sequences to introduce temporal di-
versity. By varying the starting points of the sampled clips,
the model is exposed to contrails at different stages of their
lifecycle (formation, elongation, dissipation) and in diverse
atmospheric contexts. This stochastic sampling encourages
the model to learn more generalizable temporal representa-
tions.

To support this setup, we trained the video Mask2Former
model using both Swin-Base (Swin-B) and Swin-Large
(Swin-L) backbones. However, the number of frames per
clip had to be adjusted based on model capacity and mem-
ory availability. With the more lightweight Swin-B variant,
we were able to train on 5-frame clips, while the higher-
capacity Swin-L model could only be trained on 3-frame
clips due to its significantly larger memory footprint. This
reflects a trade-off between temporal context and model ex-
pressiveness: longer clips may better capture the dynamic
evolution of contrails, whereas larger models like Swin-L
provide richer per-frame representations. Training both con-
figurations allows us to explore how these two dimensions
(temporal depth and model capacity) interact in the context
of contrail segmentation.

For the U-Net model, we used a backbone based on
MaxViT-B, a hybrid vision transformer architecture that
combines convolutional layers with self-attention mecha-
nisms for efficient and scalable visual representation learn-
ing. This backbone was pretrained on ImageNet-21k and
subsequently fine-tuned on ImageNet-1k, providing robust
feature representations to support the discriminative loss
function employed during contrail segmentation training.
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Figure 4. Illustration of the discriminative embedding method for instance segmentation. Left panel: Ground-truth (human-annotated) in-
stance labels, where each color represents a distinct contrail. Right panel: Visualization of the learned pixel embeddings. The U-Net model
learns to map each pixel to a point in a high-dimensional feature space such that pixels belonging to the same contrail are positioned close
together, while pixels from different contrails are far apart. For visualization, PCA reduces this high-dimensional space to two dimensions by
identifying the directions of maximum variance. Each point represents one pixel, positioned according to its learned embedding and colored
by its ground-truth contrail instance. Well-separated, compact clusters indicate that the model has successfully learned to group pixels from

the same contrail while distinguishing different contrails.

The training procedure for each model involved several
epochs of supervised learning, with early stopping applied
based on performance on a validation set. The dataset was
partitioned into training, validation, and test sets using a 70-
10-20 random split at the video level. This means that all
frames from a given video were assigned exclusively to one
of the three sets to avoid any potential data leakage. To ensure
fair and unbiased evaluation, we also balanced the number of
empty sequences — videos containing no contrails — across
the three subsets.

It is important to note that the reported metrics reflect
model performance on contrail-rich scenarios, as the dataset
construction deliberately oversampled contrail-positive se-
quences to maximize training signal. While this choice en-
hances the dataset’s utility for contrail detection and tracking
tasks, generalization to unfiltered operational data with arbi-
trary sky conditions may differ and warrants further investi-
gation.

We did not perform exhaustive hyper-parameter tuning for
any of the models. Instead, our goal with this experimental
setup was to establish baseline results and to analyze model
performance both qualitatively and quantitatively under re-
alistic computational and data constraints. All models were
trained using the default hyper-parameters reported in their
original publications. Tables 2 and 3 summarize the most
important training parameters for each model. Note that the
models differ in the specific hyper-parameters relevant to
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their architecture and training setup. Future work will focus
on exploring more sophisticated modeling strategies, system-
atic hyper-parameter optimization, and additional training re-
finements.

Each model was trained and evaluated on two distinct for-
mulations of the instance segmentation task. The first formu-
lation treats a contrail as a single object, even if it is com-
posed of multiple disconnected regions or fragmented seg-
ments. In this setup, the model must learn to group visu-
ally and spatially separated regions that correspond to the
same physical contrail. The second formulation simplifies
the problem by treating each visible polygon as an indepen-
dent instance. In this formulation, the model is not required
to group disjoint segments belonging to the same contrail;
instead, it simply detects and segments each distinct region.
This approach corresponds to a modular processing pipeline
where instance merging and flight attribution occur at a later
stage, as will be discussed in future work.

6.2 Evaluation

We evaluate both semantic and instance-level segmenta-
tion performance using a combination of standard and task-
adapted metrics.

For semantic segmentation, we report the mean Intersec-
tion over Union (mloU) and the Dice coefficient. Both met-
rics quantify the overlap between predicted and ground-truth
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Table 2. Default hyper-parameters for Mask2Former models.
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Hyper-parameter Default value

Notes/Differences

Training iterations 20K

Learning Rate -

Batch Size -

Image Size 1024 x 1024

Class Weight 2.0

Mask Weight 5.0

Dice Weight 5.0

Importance Sample Ratio  0.75

Oversample Ratio 3.0

Augmentations Rotation (90°), vertical flip, horizontal flip

Same for image and video

3.75 x 1072 (Image), 1.25 x 107> (Video)

6 (Image), 2 (Video)

Same for image and video

Same for image and video

Same for image and video

Same for image and video

Same for image and video

Same for image and video

Applied at image level (Image); applied at clip level (Video)

Table 3. Default hyper-parameters for U-Net model trained with
discriminative loss.

Hyper-parameter Default value

Architecture U-Net

Backbone tu-maxvit_base_tf_512.inlk
Input image size 1024 x 1024

Precision 16-mixed

Epochs 100

Batch size 1

Gradient accumulation steps 32
Learning rate 5% 1076

Optimizer AdamW (weight decay = 1074
Scheduler Cosine with warm-up
Augmentations Rotation (90°), vertical flip, horizontal flip

masks, with values ranging from 0 (no overlap) to 1 (perfect
match).
The mloU is calculated as:

Area of Intersection
mloU = - , (H
Area of Union

where the intersection is the set of pixels correctly predicted

as contrail, and the union includes all pixels predicted as con-

trail plus all true contrail pixels. This metric equally penal-

izes both false positives (predicting contrail where there is

none) and false negatives (missing actual contrail pixels).
The Dice coefficient is calculated as:

. 2 x Area of Intersection
Dice = — — - . (2
Size of Prediction + Size of Ground Truth

The factor of 2 in the numerator makes the Dice coeffi-
cient emphasize correct overlap more strongly than mloU. It
is particularly sensitive to small or thin structures, making
it well-suited for evaluating contrails, which often appear as
narrow, elongated features that occupy a small fraction of the
image.

6.2.1 Temporal Evaluation Strategy

For video-based models, inference is performed using a slid-
ing window approach, where each video is divided into over-
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lapping short clips of fixed length, matching the clip length
used during training (e.g., 3 frames for the Swin-L model, 5
frames for the Swin-B model). These clips advance by one
frame at a time (stride one), allowing the model to leverage
temporal context effectively while respecting memory con-
straints during inference. Crucially, segmentation accuracy is
computed only on the central frame of each short clip. This
design ensures that each frame in the video contributes ex-
actly once to the evaluation metrics, only when it appears as
the center frame of a clip. This prevents duplicate evalua-
tion and enables fair comparison with image-based models,
which predict on single frames independently. For example,
if a 5-frame clip is used on a video with frames numbered
1 through 10, the first evaluation clip spans frames 1-5 with
evaluation on frame 3; the next clip covers frames 2—6 (eval-
uated on frame 4), and so on. This guarantees unique evalua-
tion for frames 3 to 8, each exactly once.

It should be noted that the video-based Mask2Former
model maintains temporally consistent instance identifiers
within each clip. That is, if a contrail is labelled as in-
stance #3 in one frame of a clip, it retains this identifier
across all frames in the same clip. However, since clips are
processed independently, these identifiers are not guaranteed
to remain consistent between consecutive clips. A given con-
trail may receive a different identifier in adjacent clips. To
enable continuous tracking of contrails throughout the en-
tire video, we introduce a simple post-processing method that
links and reconciles these instance identifiers to generate co-
herent, continuous tracks; this method is described in detail
in AppendixA.

Instance Segmentation Metrics

Model performance is evaluated using both semantic and
instance-level segmentation metrics. All metrics are com-
puted globally by aggregating predictions and ground truths
across the entire test set before applying the metric calcula-
tions. This global computation prevents biases that can arise
from averaging metrics computed independently on each ob-
servation (i.e., frame), which is particularly important in set-
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tings with imbalanced or sparse data such as contrail segmen-
tation.

Instance segmentation performance is assessed using
COCO-style metrics (Lin et al., 2014) computed globally
over the dataset. To accommodate the specific challenges
posed by contrails, we adapt the IoU threshold range. The no-
tation X@[IoU range | size category | max detections] speci-
fies three parameters:

— IoU range. The range of Intersection over Union thresh-
olds used. A prediction is considered a “true positive”
only if its IoU with a ground-truth object exceeds the
threshold. Average Precision (AP) is computed across
multiple thresholds and averaged.

— Size category. Filters objects by area —“small” (<
322 pixels), “medium” (322 to 962 pixels), “large” (>
962 pixels), or “all” (no filtering).

— Max detections. The maximum number of predicted in-
stances considered per image (e.g., 100).

For example, AP@[0.25:0.75 | all | 100] denotes Average
Precision computed over IoU thresholds ranging from 0.25 to
0.75, across all object sizes, with a maximum of 100 detec-
tions evaluated per image. In the results that follow, we report
both Average Precision (AP) and Average Recall (AR) using
this notation.

We restrict the IoU threshold range to [0.25, 0.75], rather
than the standard COCO range of [0.50, 0.95], to better ac-
commodate the elongated and thin geometry of contrails,
where very high IoU thresholds are overly strict. Contrails
are thin, irregular, and may extend across large image por-
tions, making exact mask overlap challenging. A predic-
tion overlapping 30 % of a contrail would be ignored under
COCO’s default minimum IoU of 0.5 but counted as a true
positive under our more lenient thresholds. This adaptation
better reflects practical segmentation quality for contrails.

By adjusting the IoU range, the metrics better reflect prac-
tical segmentation quality for contrails, balancing sensitivity
to spatial accuracy with tolerance for slight misalignments
and fragmentations inherent to this domain. It is important
to note that these adapted metrics are not directly compara-
ble to standard COCO scores but are specifically tailored to
provide meaningful evaluation in the context of contrail seg-
mentation.

This evaluation framework, combining semantic and in-
stance segmentation metrics computed globally with appro-
priate IoU thresholds and size categories, offers a compre-
hensive and interpretable means of assessing model perfor-
mance. It facilitates fair comparisons across models and sup-
ports future benchmarking on our contrail dataset.

Tables 4 and 5 summarize the results for the semantic and
instance segmentation tasks, respectively. All results are re-
ported for both single-image and video-based models. In-
stance segmentation results are further disaggregated by an-
notation style: M refers to multi-polygon annotations, and
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Table 4. Semantic segmentation metrics. For the Mask2Former
variants, values without parentheses refer to Swin-B; values in
parentheses refer to Swin-L.

Single Images Videos
Metric  Mask2Former U-Net Mask2Former
Dice 0.56 (0.60) 0.59 0.57 (0.59)
mloU 0.38 (0.43) 0.42 0.40 (0.42)

S refers to single-polygon annotations. For Mask2Former
models, values without parentheses correspond to the Swin-
B backbone, while those in parentheses refer to Swin-L.

In the semantic segmentation task, performance remains
consistent across all models and variants, with Dice and
mloU scores showing little variation. This stability is ex-
pected, as semantic segmentation only requires classifying
each pixel as either contrail or sky, without distinguishing be-
tween separate contrail instances. The U-Net model achieves
results on par with the more advanced Mask2Former models,
indicating that per-pixel contrail detection is largely driven
by local visual features, such as shape, brightness, and tex-
ture, which U-Net captures effectively.

These results also reflect the quality and consistency of
our dataset: although based on ground-level imagery, the seg-
mentation performance is in line with results reported in pre-
vious studies using satellite data (Jarry et al., 2024; Ortiz
et al., 2025). Although differences in imaging modality and
scene geometry preclude direct comparisons, the consistency
in results suggests that semantic contrail segmentation is a
well-posed task for modern architectures, with strong perfor-
mance achievable across diverse data sources.

Instance segmentation results reveal clear differences be-
tween model architectures. These differences are more sub-
stantial than those observed in the semantic segmenta-
tion task, highlighting the added complexity introduced by
instance-level reasoning. Mask2Former, which is designed
for panoptic segmentation through object-level queries and
global spatial reasoning, consistently outperforms U-Net
across all instance metrics. The performance gap is par-
ticularly pronounced in the multi-polygon setting, where
contrails appear fragmented and must be correctly grouped
into coherent instances. These results highlight the value
of architectures specifically built for instance-aware tasks:
Mask2Former’s ability to reason globally and associate dis-
joint segments makes it better suited for detecting and track-
ing individual contrails.

A more nuanced comparison emerges when evaluating
image-based versus video-based Mask2Former models. For
the Swin-B backbone, the image-based model achieves
higher instance segmentation performance, while the video-
based model slightly outperforms it on semantic segmenta-
tion metrics. This suggests that although video models ben-
efit from temporal consistency and motion cues, the added
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Table 5. Instance segmentation metrics. “M” refers to multi-polygon, whereas “S” indicates single-polygon. For the Mask2Former variants,
values without parentheses refer to Swin-B; values in parentheses refer to Swin-L.

Single Images Videos

Type Metric Mask2Former U-Net Mask2Former
AP@[0.25:0.75 | all | 100] 0.34 (0.34) 0.05 0.31 (0.33)
AP@[0.25:0.75 | small | 100] 0.21 (0.21) 0.01 0.14 (0.17)
AP@]0.25:0.75 | medium | 100] 0.39 (0.40) 0.13 0.37 (0.38)
AP@]0.25:0.75 | large | 100] 0.44 (0.47) 0.12 0.46 (0.47)

M AR@[0.25:0.75 | all | 1] 0.10 (0.10) 0.03 0.09 (0.09)
AR@[0.25:0.75 I all | 10] 0.41 (0.41) 0.18 0.38 (0.40)
AR@[0.25:0.75 | all | 100] 0.44 (0.44) 0.22 0.43 (0.44)
AR@[0.25:0.75 | small | 100] 0.30 (0.30) 0.14 0.26 (0.29)
AR@[0.25:0.75 | medium | 100] 0.50 (0.50) 0.25 0.49 (0.50)
AR@][0.25:0.75 | large | 100] 0.55 (0.55) 0.22 0.57 (0.56)
AP@]0.25:0.75 | all | 100] 0.35(0.37) 0.06 0.31 (0.34)
AP@[0.25:0.75 | small | 100] 0.24 (0.26) 0.03 0.17 (0.21)
AP@[0.25:0.75 | medium | 100] 0.44 (0.45) 0.14 0.41 (0.43)
AP@]0.25:0.75 | large | 100] 0.37 (0.43) 0.11 0.46 (0.47)

S AR@[0.25:0.75 I all | 1] 0.08 (0.08) 0.03 0.07 (0.08)
AR@[0.25:0.75 | all | 10] 0.37 (0.38) 0.18 0.35(0.37)
AR@][0.25:0.75 | all | 100] 0.44 (0.45) 0.21 0.42 (0.45)
AR@[0.25:0.75 | small | 100] 0.33(0.34) 0.15 0.28 (0.32)
AR@[0.25:0.75 | medium | 100] 0.53 (0.53) 0.26 0.52 (0.55)
AR@][0.25:0.75 | large | 100] 0.54 (0.56) 0.25 0.58 (0.60)

complexity of enforcing cross-frame coherence may intro-
duce challenges that slightly hinder instance-level prediction
accuracy, particularly when using a lower-capacity backbone
like Swin-B.

In the Swin-L setting, the image-based model performs
best overall. It achieves both the highest instance segmenta-
tion score and slightly superior semantic segmentation per-
formance. These results indicate that temporal modeling
does not always yield performance improvements, especially
when the temporal context is limited (e.g., 3-frame clips) or
when the spatial representation capacity of the model is al-
ready high. The image-based model benefits from pretraining
on COCO, which may favor precise spatial delineation, while
the video-based variant relies on pretraining on YouTubeVIS,
which is more focused on temporal coherence. However, it
is important to note that the video-based model performs an
additional task: tracking. By maintaining consistent instance
identities across frames, it enables temporally coherent seg-
mentation that is not achievable with image-based models.
The metrics reported here are computed on a per-frame basis
and do not account for flickering or instance identity con-
sistency over time. These temporal aspects are particularly
important in video applications and are not captured by the
conventional frame-level evaluation scores presented herein.

An important caveat is that all reported metrics are com-
puted independently for each frame and do not account
for temporal consistency of instance identities over time.
Video-based models are explicitly trained to maintain coher-
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ent instance tracks across frames through end-to-end tempo-
ral modeling, jointly optimizing segmentation and tracking
within a unified objective. In contrast, image-based models
require post-hoc association algorithms (such as the Hun-
garian matching method described in Appendix A) to link
instances temporally based on spatial overlap alone. While
both approaches can achieve tracking, video models learn
temporal correspondences from motion cues and appear-
ance features during training, potentially offering more ro-
bust handling of occlusions, fragmentations, and brief dis-
appearances. However, the per-frame metrics reported here
(AP, AR, Dice, mloU) primarily assess spatial segmentation
quality and do not reward temporal consistency. As a result,
while video models do not uniformly outperform image mod-
els in per-frame scores, they provide qualitative benefits in
terms of reduced instance ID flickering and smoother tempo-
ral transitions that are not captured by these metrics. Future
work should incorporate video-specific evaluation metrics
(e.g., tracking accuracy, ID switches, fragmentation) to fully
characterize the advantages of temporal modeling. Addition-
ally, the short clip lengths used in this study (3-5 frames)
were dictated by hardware constraints; longer temporal con-
texts may yield further improvements and warrant investiga-
tion with more capable architectures.

Overall, Swin-L outperforms Swin-B across all setups, re-
inforcing the benefit of increased model capacity for fine-
grained spatial understanding and instance-level reasoning.
Nonetheless, this comes at the cost of higher computational
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requirements, particularly in the video setting, underscoring
a trade-off between performance and scalability.

Another important trend observed in the evaluation is that
model performance is strongly influenced by contrail size
and detection caps. Generally speaking, larger contrails are
segmented more accurately due to their higher pixel counts
and lower ambiguity, while allowing more predicted in-
stances (e.g., increasing the detection limit) improves re-
call by removing constraints on how many objects can be
reported. These trends are consistent with general findings
in object detection and reinforce the shared challenges be-
tween contrail segmentation and broader instance segmenta-
tion tasks.

Comparing the multi-polygon and single-polygon formu-
lations reveals a difference in task difficulty: the single-
polygon setting is inherently easier. Across all models and
data modalities, instance segmentation metrics are consis-
tently higher when using the single-polygon formulation.
This is because the task removes the need to group frag-
mented or spatially disjoint contrail segments into separate
instances. Instead, all parts of a contrail, regardless of their
separation, are treated as a single mask, greatly simplifying
the model’s objective. The model is no longer required to
learn complex grouping strategies or reason over spatial and
temporal discontinuities. Note that semantic segmentation
metrics remain virtually unchanged between the two formu-
lations, indicating that identifying contrail pixels is equally
feasible in both cases. The difference lies solely in how those
pixels are grouped into instances. This distinction confirms
that the main challenge in the multi-polygon task is not pixel
classification but instance association.

These results have important practical implications for dif-
ferent contrail detection scenarios. For older contrails, such
as those typically observed in satellite imagery or in ground-
based images when the contrail formed outside the camera’s
field of view, it is extremely difficult to associate the con-
trail with its source flight. In these cases, the only viable
option is to group visible fragments into instances based
solely on visual information. This makes multi-polygon in-
stance segmentation essential, as it allows models to detect
and associate disjoint contrail segments without relying on
external data. Our dataset and Mask2Former-based models
are specifically designed for this setting, enabling effective
instance-level detection even when contrails are fragmented,
occluded, or spatially disconnected.

In contrast, when a contrail forms directly above the cam-
era and additional data such as aircraft trajectories and wind
fields are available, a different approach becomes feasible.
In these situations, one can perform single-polygon instance
segmentation, where contrail fragments are grouped into a
single instance using post-hoc association based on flight
paths and advection. This formulation is simpler from a com-
puter vision perspective and is commonly used in the liter-
ature (Ortiz et al., 2025; Chevallier et al., 2023; Van Huf-
fel et al., 2025), mainly because multi-polygon annotated
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datasets have not been available until now. However, this
method depends on access to external data and is only ap-
plicable to contrails formed during the observation window,
after the aircraft has entered the scene.

By supporting both the multi- and single-polygon formu-
lations, our dataset enables training and evaluation across a
broader set of operational use cases. The multi-polygon task
is essential for vision-only detection of older contrails or
those in satellite imagery, while the single-polygon formula-
tion may be more suitable when additional metadata enables
contrail-to-flight attribution. This distinction will be further
explored in future work focused on linking contrails to their
source aircraft.

6.3 lllustrative examples

We present two test-set examples to illustrate the challenges
of the multi-polygon contrail segmentation task. In both
cases, we compare predictions from image-based and video-
based versions of the Mask2Former model, trained from pre-
trained Swin-L backbones. These examples highlight how
temporal context affects instance predictions and expose typ-
ical failure modes, including contrail fragmentation, occlu-
sion by clouds, and confusion between contrails and visually
similar cloud structures.

Figure 5 shows a frame from 25 April 2024 at 05:51:00
(UTC), under clear-sky conditions. The background is uni-
formly blue, providing favorable conditions for both human
and machine segmentation. The corresponding ground-truth
annotations include several contrails labelled as fragmented
(e.g., identifiers 0, 1, and 5), based on known flight trajecto-
ries available to annotators during the labelling process. This
makes the example suitable for evaluating instance-level un-
derstanding in the multi-polygon setting.

Figure 6 shows predictions from both models for this
scene. Despite the favorable background, both models ex-
hibit instance-level errors. The image-based model correctly
infers that contrail 1 is fragmented but detects just one seg-
ment of contrail 0, missing the other entirely. It completely
misses contrail 4 and erroneously merges contrails 3 and 6
into a single prediction. The video-based model makes sim-
ilar mistakes: it also merges contrails 3 and 6, and fails to
detect contrail 4. Additionally, it predicts the second frag-
ment of contrail O but assigns it to a different instance, and it
incorrectly splits contrail 1 into two separate instances.

From a semantic segmentation perspective, both models
perform relatively well, as expected in a high-contrast scene.
The image-based model achieves a Dice score of 0.76 and a
mean IoU of 0.64, while the video-based model slightly out-
performs it with a Dice of 0.79 and mean IoU of 0.67. How-
ever, due to the instance grouping errors, the image model
achieves a slightly higher AP@[0.25:0.75 | all | 100] (0.62)
than the video model (0.55).

Figure 7 shows a more challenging frame captured on
19 November 2023 at 08:49:30 (UTC). Here, several cirrus
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Figure 5. Original projected and enhanced image as well as ground truth annotations for 25 April 2024 at 05:51:00 (UTC). (a) Original

projected and enhanced image. (b) Ground truth annotations.

(a)]

Figure 6. Predicted instances for the frame shown in Fig. 5, using Swin-L models with image and video inputs. (a) Image-based model

prediction. (b) Video-based model prediction.

clouds are present in the background, which introduces am-
biguity, as some of these cloud structures resemble contrails.
This scene also includes multiple contrails that are spatially
aligned and fragmented, increasing the complexity of the in-
stance segmentation task.

This scene illustrates a common failure mode: fragmen-
tation and misgrouping of visually aligned but semantically
distinct contrails. Contrail 6 is split into two segments with
contrail 0 lying in between; although they appear collinear,
contrail 0 is a distinct instance generated by a separate flight.
Contrail 7 appears shortly after and may be misassociated
with contrails 6 and 0 in the absence of flight metadata. The
image-based model correctly separates contrail 0 from 6 but
incorrectly merges contrails 6 and 7. The video model groups
all three (6, 0, and 7) into a single prediction. Interestingly,
this error reflects a plausible human interpretation without
flight context, highlighting the challenge of the task.

https://doi.org/10.5194/essd-18-1037-2026

Both models fail to detect contrails 1 and 8, which are
partially occluded by clouds. They also produce a false pos-
itive (labelled as contrail 9), segmenting a cirrus structure
that resembles a contrail. While the dataset is of high quality
and was carefully annotated with access to flight informa-
tion, some visually ambiguous cases, such as the one dis-
cussed, remain inherently difficult to label with certainty. In
this example, the predicted region resembles a contrail in
both structure and intensity, making it unclear whether the
false positive stems from a model error or an understandable
omission in the ground truth. These rare edge cases highlight
the potential influence of mild label noise in visually com-
plex scenes. Future work could benefit from complementary
strategies such as confident learning (Northcutt et al., 2021)
to further refine annotations and improve robustness in bor-
derline cases.

Semantic segmentation performance in this scene is lower
than in the previous one, reflecting increased difficulty. The
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Figure 7. Original projected and enhanced image as well as ground truth annotations for 19 November 2023 at 08:49:30 (UTC). (a) Original

projected and enhanced image. (b) Ground truth annotations.

(a)]

(b))

10

r

Figure 8. Predicted instances for the frame shown in Fig. 7, using Swin-L models with image and video inputs. (a) Image-based model

prediction. (b) Video-based model prediction.

image model achieves a Dice score of 0.61 and mIoU of 0.43,
while the video model scores 0.70 and 0.54, respectively.
Instance-level AP@[0.25:0.75 | all | 100] scores are 0.35 and
0.37, respectively, similar to the average metrics, making this
a representative case.

These examples illustrate several key challenges in multi-
polygon contrail segmentation: (1) correct grouping of frag-
mented contrail segments from the same flight; (2) visual am-
biguity due to clouds that resemble contrails; (3) occlusion;
and (4) spatial overlap of contrails from different flights.
While video-based models benefit from temporal informa-
tion, they may over-group distinct instances. Image-based
models avoid this but often fail to connect fragmented seg-
ments. Overall, these examples demonstrate the inherent dif-
ficulty of the task and the limitations of current models.
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7 Data availability

The GVCCS dataset is openly available on Zenodo at
https://doi.org/10.5281/zenodo.1641965 (Jarry et al., 2025)
under a CC BY 4.0 license. The dataset includes 122 video
sequences with instance-level annotations, images, COCO-
format annotations, and associated flight data in parquet for-
mat. The dataset is structured into training and test folders,
each containing images, annotations in COCO JSON format,
and flight trajectory data.

8 Conclusions

This work introduces a new dataset (Jarry et al., 2025)
and baseline models for contrail segmentation from ground-
based camera imagery. Our experiments show that modern
computer vision methods, particularly panoptic segmentation
models like Mask2Former, can be effectively applied to this
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task, especially when using large pretrained models and tem-
poral information. However, performance gains often come
at the cost of increased computational and memory demands,
highlighting a trade-off between accuracy and practicality.

The main contribution of this study is the release of
the first video-annotated dataset specifically designed for
instance-level contrail segmentation, tracking, and flight at-
tribution in the visual spectrum. Along with detailed evalu-
ation metrics, including average precision and recall across
multiple intersection-over-union thresholds and object size
bins, this benchmark provides a reproducible baseline for fur-
ther research in this emerging field.

A key limitation of our current setup is that the visible-
light camera restricts observations to daytime conditions.
Yet contrails often have their greatest radiative impact at
night, when they reduce outgoing longwave radiation and
contribute to atmospheric warming. To address this, we are
deploying a co-located infrared imaging system that enables
continuous, day-and-night monitoring. This may also allow
us to begin estimating the radiative forcing of individual con-
trails under real atmospheric conditions.

In parallel, we are working on a contrail-to-flight attribu-
tion algorithm that links observed contrails to specific aircraft
using ADS-B trajectory data. This tool, and the associated
data and code, will be openly released in a future publica-
tion. Attribution is of utmost importance because it allows
each contrail to be linked to detailed aircraft and engine pa-
rameters, such as aircraft type, engine model, fuel burn rate,
flight altitude, and ambient conditions. These inputs are nec-
essary to reproduce the contrail using physical models like
CoCiP, assess its expected properties (e.g., ice crystal num-
ber, optical depth, lifetime), and ultimately validate or refine
these models using real-world observations.

We are also extending this work by annotating a new
dataset of contrails in satellite imagery, with instance-level
and sequence-based labels. This dataset will allow us to test
and evaluate the full multi-scale tracking pipeline proposed
in this paper: starting from high-resolution, ground-based de-
tection, followed by attribution to flights, and finally linking
to the same contrails as they evolve in satellite imagery. This
approach offers a unique opportunity to study contrail for-
mation, spreading, and dissipation over time and at scale. We
also plan to use our ground-based dataset to evaluate the pre-
dictions of physical models such as CoCiP. Direct compar-
isons between observed and simulated contrail evolution will
help assess model accuracy and potentially inform improve-
ments in contrail forecasting and climate modeling.

Ideally, contrail detection, tracking, and attribution should
be addressed by a single deep learning architecture capable
of jointly processing video, flight trajectory data, and me-
teorological fields. For instance, a variant of Mask2Former
could be adapted for this purpose. Such an integrated ap-
proach would enable end-to-end learning and exploit the
complementary nature of the inputs, as weather conditions
and aircraft traffic data are highly informative for both de-
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tecting and tracking contrails. However, this integration is
not straightforward. It requires careful design of input data
representations to handle spatio-temporal and multi-modal
inputs, the creation of aligned and consistent annotations for
all tasks, and the development of loss functions that balance
competing objectives across detection, segmentation, track-
ing, and attribution. Despite these challenges, we encourage
the research community to explore this unified approach.

Additionally, deploying multiple cameras in a spatially
distributed network would enable stereographic height analy-
sis: contrails observed simultaneously from different viewing
angles could be triangulated to determine altitude directly,
rather than assuming a fixed height. This would provide cru-
cial validation data for contrail formation models and im-
prove flight attribution accuracy by eliminating altitude un-
certainty.

More broadly, we hope this work encourages the devel-
opment of similar ground-based contrail monitoring systems
in other regions. A collaborative, open-science approach —
sharing datasets, models, and observational infrastructure —
will be essential to building a geographically diverse and
temporally continuous picture of contrail behavior. We view
this paper as a first step toward a collaborative, open-science
framework for contrail research: one that integrates physi-
cal modeling with observational data through openly shared
datasets and tools, spans spatial and temporal scales through
multi-platform monitoring, and supports long-term efforts to
better understand and reduce aviation’s impact on climate.
By providing high-quality ground-based data alongside base-
line computer vision models, we aim to facilitate model-data
comparison, enable validation of physical models, and en-
courage the development of complementary monitoring sys-
tems worldwide.

Appendix A: Consistent Instance Tracking Algorithm

Due to memory limitations, the video segmentation model
operates on short temporal clips of fixed length N frames,
using a sliding window of stride 1. While instance segmen-
tation within each clip is temporally consistent (i.e., instance
identifiers are maintained across frames within the clip), the
model processes each clip independently. As a result, in-
stance identifiers are not necessarily consistent across clips.

To enforce globally consistent instance identifiers across
the full video sequence, we implement a deterministic post-
processing method that aligns instance predictions across
overlapping clips. The method uses mask overlap similar-
ity — specifically, IoU — across shared frames and performs
optimal bipartite matching using the Hungarian algorithm.
Below, we provide a rigorous description of the method.

For a given frame index t € {N, N + 1, ..., T}, we define:

— The current clip as the
FI—N+19 Ft—N-‘rz» L) Ft'

sequence
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— The previous clip as the sequence
FI—N7 FI—N+19 LR F[—l'
The two clips overlap in N — 1 frames: F;_y+1,..., Fr—1.

Only frame F; is newly introduced in the current clip. At each
step, we seek to propagate consistent instance identifiers by
matching instances across the overlapping frames. Let:

— Zprev = {1, ..., K}: instance identifiers in the previous
clip.

— Zeurr = {1, ..., M}: instance identifiers in the current
clip.

We define a cost matrix C € RM*K  where each element

C;; encodes the negative temporal IoU between instance i €
Zeurr and instance j € Zprey Over the overlapping frames:

1 t—1

Ci=—m—t Y 1oU(MIMT), (A1)
T f=1—N+1
where l?,“;r and /\/lr;r?v denote the binary masks of instances

i and j at frame f, réspectively. If an instance does not ap-
pear in a given frame (e.g., missing mask), its contribution is
treated as zero overlap.

To eliminate unlikely or noisy matches, we apply a thresh-
old T € [0, 1] on the mean IoU:

Cij if—CijZ‘L',

Cij= .
+00 otherwise.

(A2)

where the threshold 7 is selected empirically to balance pre-
cision and robustness; we recommend T = 0.1.

We remove rows and columns of the cost matrix that con-
tain only 400 entries. Using the modified cost matrix, we
solve the bipartite assignment problem via the Hungarian al-
gorithm (Kuhn, 1955) — an optimization method that finds the
optimal one-to-one matching minimizing total cost — obtain-
ing a one-to-one (or partial) mapping between current and
previous instances. Let o : Zeurr = Zprev U {D} denote the re-
sulting assignment. We then update the instance identifiers in
the current clip to match those of the assigned instances in the
previous clip. Unmatched instances are assigned new unique
identifiers. The pseudo-code of the algorithm is presented in
Algorithm Al.

This process is applied sequentially from frame t = N to
T, ensuring that instance identifiers are globally consistent
across the video.
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Algorithm A1l Post-processing for Consistent Instance
Tracking.

Require: Predicted instance masks for video frames Fy,..., Fr,
threshold
1: Initialize unique identifier counter

2: Previous clip instances <— Predicted instances on clip (Fy, ..., Fy)

3: Assign unique identifiers to all instances in Previous clip in-
stances
4: fort=N+1toT do
5:  Current clip instances <«
Predicted instances on clip (F;—n 41, ..., Ft)
6:  Compute cost matrix C over frames Fy_y41,..., Fr_]
7:  Apply threshold t and prune rows/columns with all +o0
8: o < Hungarian Algorithm(C)
9 Update instance identifiers in Current clip instances using
mapping o
10:  Assign new identifiers to unmatched instances
11:  Previous clip instances <— Current clip instances
12: end for

Author contributions. GJ: Conceptualization, Data curation,
Formal analysis, Investigation, Methodology, Software, Visualiza-
tion, Writing (original draft preparation). RD: Formal analysis, In-
vestigation, Methodology, Software, Visualization, Writing (origi-
nal draft preparation). PV: Conceptualization, Data curation, For-
mal analysis, Funding acquisition, Investigation, Resources, Soft-
ware, Writing (original draft preparation). FB: Data curation,
Project administration, Supervision, Writing (review and editing).
SDB: Data curation, Formal analysis, Investigation, Methodology,
Software, Writing (review and editing).

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. The authors bear the ultimate responsibil-
ity for providing appropriate place names. Views expressed in the
text are those of the authors and do not necessarily reflect the views
of the publisher.

Acknowledgements. The authors would like to express their
gratitude to the annotation team at Encord for their professional data
labeling services, which were instrumental in the development of
the GVCCS dataset. We also thank the engineering team at Reuni-
watt for their technical support and for providing the high-resolution
imaging hardware (CamVision) used in this study.

Review statement. This paper was edited by Alexander
Kokhanovsky and reviewed by two anonymous referees.

https://doi.org/10.5194/essd-18-1037-2026



G. Jarry et al.: GVCCS

References

Appleman, H.: The Formation of Exhaust Condensation Trails by
Jet Aircraft, Bulletin of the American Meteorological Society,
34, 14-20, https://doi.org/10.1175/1520-0477-34.1.14, 1953.

Borella, A., Boucher, O., Shine, K. P., Stettler, M., Tanaka,
K., Teoh, R., and Bellouin, N.: The importance of an in-
formed choice of COj-equivalence metrics for contrail avoid-
ance, Atmospheric Chemistry and Physics, 24, 9401-9417,
https://doi.org/10.5194/acp-24-9401-2024, 2024.

Bugliaro, L., Mannstein, H., and Kox, S.: Ice clouds proper-
ties from space, in: Atmospheric Physics — Background, Meth-
ods, Trends, edited by: Schumann, U., Springer, Heidelberg,
https://doi.org/10.1007/978-3-642-30183-4_25, 2012.

Campello, R. J. G. B., Moulavi, D., and Sander, J.: Density-based
clustering based on hierarchical density estimates, in: Pacific-
Asia Conference on Knowledge Discovery and Data Min-
ing (PAKDD), Springer, 160-172, https://doi.org/10.1007/978-
3-642-37456-2_14, 2013.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and
Zagoruyko, S.: End-to-End Object Detection with Transform-
ers, in: European Conference on Computer Vision (ECCV), 213—
229, https://doi.org/10.1007/978-3-030-58452-8_13, 2020.

Chen, L.-C., Papandreou, G., Schroff, F., and Adam, H.: Rethink-
ing atrous convolution for semantic image segmentation, arXiv
[preprint], https://doi.org/10.48550/arXiv.1706.05587, 2017.

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and Adam,
H.: Encoder-decoder with atrous separable convolution for
semantic image segmentation, in: Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), 801-818,
https://doi.org/10.1007/978-3-030-01234-2_49, 2018.

Cheng, B., Choudhuri, A., Misra, L., Kirillov, A., Girdhar, R., and
Schwing, A. G.: Mask2Former for Video Instance Segmentation,
arXiv [preprint], https://doi.org/10.48550/arXiv.2112.10764,
2021a.

Cheng, B., Schwing, A. G., and Kirillov, A.: Per-Pixel Classifica-
tion is Not All You Need for Semantic Segmentation, in: Ad-
vances in Neural Information Processing Systems (NeurIPS),
https://doi.org/10.48550/arXiv.2107.06278, 2021b.

Cheng, B., Misra, 1., Schwing, A. G., Kirillov, A., and Gird-
har, R.: Mask2Former Software Library, GitHub [code], https://
github.com/facebookresearch/Mask2Former (last access: 14 Oc-
tober 2025), 2021c.

Cheng, B., Misra, 1., Schwing, A. G., Kirillov, A., and Gird-
har, R.: Masked-Attention Mask Transformer for Universal Im-
age Segmentation, in: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
https://doi.org/10.1109/CVPR52688.2022.00135, 2022.

Chevallier, R., Shapiro, M., Engberg, Z., Soler, M., and Delahaye,
D.: Linear contrails detection, tracking and matching with air-
craft using geostationary satellite and air traffic data, Aerospace,
10, 578, https://doi.org/10.3390/aerospace10070578, 2023.

Dai, Z., Liu, H., Le, Q. V., and Tan, M.: CoAtNet: Marrying convo-
lution and attention for all data sizes, Advances in Neural Infor-
mation Processing Systems, 34, 3965-3977, 2021.

De Brabandere, B., Neven, D., and Van Gool, L.: Semantic In-
stance Segmentation with a Discriminative Loss Function, arXiv
[preprint], https://doi.org/10.48550/arXiv.1708.02551, 2017.

https://doi.org/10.5194/essd-18-1037-2026

1057

Duda, D. P.,, Minnis, P., Khlopenkov, K., Chee, T. L., and Boeke,
R.: Estimation of 2006 Northern Hemisphere contrail coverage
using MODIS data, Geophysical Research Letters, 40, 612-617,
2013.

Ewald, E., Bugliaro, L., Mannstein, H., and Mayer, B.: An improved
cirrus detection algorithm MeCiDA2 for SEVIRI and its evalu-
ation with MODIS, Atmospheric Measurement Techniques, 6,
309-322, https://doi.org/10.5194/amt-6-309-2013, 2013.

Forkert, T., Strauss, B., and Wendling, P.: A new algorithm for the
automated detection of jet contrails from NOAA-AVHRR satel-
lite images, in: Proc. of the 6th AVHRR Data Users’ Meeting,
EUMETSAT-Joint Research Centre of the Commission of the
EC, 513-519, https://elib.dlr.de/31899/ (last access: 28 January
2026), 1993.

Fritz, T. M., Eastham, S. D., Speth, R. L., and Barrett, S. R. H.: The
role of plume-scale processes in long-term impacts of aircraft
emissions, Atmospheric Chemistry and Physics, 20, 5697-5727,
https://doi.org/10.5194/acp-20-5697-2020, 2020.

Geraedts, S., Brand, E., Dean, T. R., Eastham, S., Elkin, C., Eng-
berg, Z., Hager, U., Langmore, 1., McCloskey, K., Ng, J. Y.-H.,
Platt, J. C., Sankar, T., Sarna, A., Shapiro, M. and Goyalm N.:
A scalable system to measure contrail formation on a per-flight
basis, Environmental Research Communications, 6, 015008,
https://doi.org/10.1088/2515-7620/ad11ab, 2024.

Gierens, K., Matthes, S., and Rohs, S.: How Well Can
Persistent Contrails Be Predicted?, Aerospace, 7, 169,
https://doi.org/10.3390/aerospace7120169, 2020.

Gourgue, N., Boucher, O., and Barthes, L.: A dataset of
annotated ground-based images for the development of
contrail detection algorithms, Data in Brief, 59, 111364,
https://doi.org/10.1016/j.dib.2025.111364, 2025.

Hamann, U., Walther, A., Baum, B., Bennartz, R., Bugliaro, L.,
Derrien, M., Francis, P. N., Heidinger, A., Joro, S., Kniftka, A.,
Le Gléau, H., Lockhoff, M., Lutz, H.-J., Meirink, J. F., Min-
nis, P., Palikonda, R., Roebeling, R., Thoss, A., Platnick, S.,
Watts, P, and Wind, G.: Remote sensing of cloud top pres-
sure/height from SEVIRI: analysis of ten current retrieval al-
gorithms, Atmospheric Measurement Techniques, 7, 2839-2867,
https://doi.org/10.5194/amt-7-2839-2014, 2014.

He, K., Gkioxari, G., Dollar, P.,, and Girshick, R.: Mask
R-CNN, in: Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2961-2969,
https://doi.org/10.1109/ICCV.2017.322, 2017.

Iwabuchi, H., Yang, P, Liou, K. N., and Minnis, P.: Physical and
optical properties of persistent contrails: Climatology and inter-
pretation, Journal of Geophysical Research: Atmospheres, 117,
D06215, https://doi.org/10.1029/2011JD017020, 2012.

Jarry, G., Very, P, Heffar, A., and Torjman-Levavasseur,
V.. Deep Semantic Contrails Segmentation of GOES-
16  Satellite Images: A Hyperparameter Exploration,
https://www.sesarju.eu/sites/default/files/documents/sid/2024/
papers/SIDs_2024_paper_028%?20final.pdf (last access: 28 Jan-
uary 2026), 2024.

Jarry, G., Very, P, Ballerini, F., and Dalmau, R.: GVCCS:
Ground Visible Camera Contrail Sequences, Zenodo [data set],
https://doi.org/10.5281/zenodo.16419651, 2025.

Kox, S., Bugliaro, L., and Ostler, A.: Retrieval of cirrus cloud
optical thickness and top altitude from geostationary remote

Earth Syst. Sci. Data, 18, 1037-1059, 2026


https://doi.org/10.1175/1520-0477-34.1.14
https://doi.org/10.5194/acp-24-9401-2024
https://doi.org/10.1007/978-3-642-30183-4_25
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1007/978-3-030-58452-8_13
https://doi.org/10.48550/arXiv.1706.05587
https://doi.org/10.1007/978-3-030-01234-2_49
https://doi.org/10.48550/arXiv.2112.10764
https://doi.org/10.48550/arXiv.2107.06278
https://github.com/facebookresearch/Mask2Former
https://github.com/facebookresearch/Mask2Former
https://doi.org/10.1109/CVPR52688.2022.00135
https://doi.org/10.3390/aerospace10070578
https://doi.org/10.48550/arXiv.1708.02551
https://doi.org/10.5194/amt-6-309-2013
https://elib.dlr.de/31899/
https://doi.org/10.5194/acp-20-5697-2020
https://doi.org/10.1088/2515-7620/ad11ab
https://doi.org/10.3390/aerospace7120169
https://doi.org/10.1016/j.dib.2025.111364
https://doi.org/10.5194/amt-7-2839-2014
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1029/2011JD017020
https://www.sesarju.eu/sites/default/files/documents/sid/2024/papers/SIDs_2024_paper_028%20final.pdf
https://www.sesarju.eu/sites/default/files/documents/sid/2024/papers/SIDs_2024_paper_028%20final.pdf
https://doi.org/10.5281/zenodo.16419651

1058

sensing, Atmospheric Measurement Techniques, 7, 3233-3246,
https://doi.org/10.5194/amt-7-3233-2014, 2014.

Kuhn, H. W.: The Hungarian method for the assignment problem,
Naval Research Logistics Quarterly, 2, 83-97, 1955.

Kulik, L.: Satellite-based detection of contrails using deep learning,
Ph.D. thesis, Massachusetts Institute of Technology, https://hdl.
handle.net/1721.1/124179 (last access: 28 January 2026), 2019.

Lee, D. S., Fahey, D. W., Skowron, A., Allen, M. R., Burkhardt,
U., Chen, Q., Doherty, S. J., Freeman, S., Forster, P. M.,
Fuglestvedt, J., A. Gettelman De Leén, R. R., Lim, L. L.,
Lund, M. T., Millar, R. J., Owen, B., Penner, J. E., Pitari,
G., Prather, M. J., Sausen, R., and Wilcox, L. J.: The con-
tribution of global aviation to anthropogenic climate forcing
for 2000 to 2018, Atmospheric Environment, 244, 117834,
https://doi.org/10.1016/j.atmosenv.2020.117834, 2021.

Lin, T.-Y., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick,
R. B., Hays, J., Perona, P., Ramanan, D., Dolldr, P., and Zitnick,
C. L.: Microsoft COCO: Common Objects in Context, arXiv
[preprint], https://doi.org/10.48550/arXiv.1405.0312, 2014.

Low, J., Teoh, R., Ponsonby, J., Gryspeerdt, E., Shapiro, M., and
Stettler, M. E. J.: Ground-based contrail observations: com-
parisons with reanalysis weather data and contrail model sim-
ulations, Atmospheric Measurement Techniques, 18, 37-56,
https://doi.org/10.5194/amt-18-37-2025, 2025.

Mannstein, H. and Schumann, U.: Aircraft induced contrail cir-
rus over Europe, Meteorologische Zeitschrift, 14, 549-554,
https://doi.org/10.1127/0941-2948/2005/0058, 2005.

Mannstein, H., Meyer, R., and Wendling, P.: Operational detection
of contrails from NOAA-AVHRR data, International Journal of
Remote Sensing, 20, 1641-1660, 1999.

Mannstein, H., Bromser, A., and Bugliaro, L.: Ground-based ob-
servations for the validation of contrails and cirrus detection
in satellite imagery, Atmospheric Measurement Techniques, 3,
655-669, https://doi.org/10.5194/amt-3-655-2010, 2010.

Mannstein, H., Vazquez-Navarro, M., Graf, K., Duda, D. P,
and Schumann, U.: Contrail detection in satellite images,
in: Atmospheric Physics — Background, Methods, Trends,
edited by Schumann, U., Springer, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-642-30183-4_26, 2012.

McCloskey, K. J. F,, Geraedts, S. D., Jackman, B. H., Meijer, V. R.,
Brand, E. W., Fork, D. K., Platt, J. C., Elkin, C., and Van Ar-
sdale, C. H.: A Human-Labeled Landsat-8 Contrails Dataset,
in: Proceedings of the ICML Workshop on Tackling Climate
Change with Machine Learning, https://www.climatechange.ai/
papers/icml2021/2 (last access: 28 January 2026), 2021.

Meijer, V. R., Kulik, L., Eastham, S. D., Allroggen, F., Speth,
R. L., Karaman, S., and Barrett, S. R.: Contrail cover-
age over the United States before and during the COVID-
19 pandemic, Environmental Research Letters, 17, 034039,
https://doi.org/10.1127/0941-2948/2005/0056, 2022.

Meijer, V. R., Eastham, S. D., Waitz, I. A., and Barrett, S. R.
H.: Contrail altitude estimation using GOES-16 ABI data and
deep learning, Atmospheric Measurement Techniques, 17, 6145—
6162, https://doi.org/10.5194/amt-17-6145-2024, 2024.

Meyer, R., Mannstein, H., Meerkotter, R., Schumann, U.,
and Wendling, P.: Regional radiative forcing by line-shaped
contrails derived from satellite data, Journal of Geophys-
ical Research: Atmospheres, 107, ACL 17-1-ACL 17-15,
https://doi.org/10.1029/2001JD000426, 2002.

Earth Syst. Sci. Data, 18, 1037-1059, 2026

G. Jarry et al.: GVCCS

Meyer, R., Buell, R., Leiter, C., Mannstein, H., Pechtl, S., Oki, T.,
and Wendling, P.: Contrail observations over Southern and East-
ern Asia in NOAA/AVHRR data and comparisons to contrail
simulations in a GCM, International Journal of Remote Sensing,
28, 2049-2069, https://doi.org/10.1080/01431160600641707,
2007.

Minnis, P., Palikonda, R., Walter, B. J., Ayers, J. K., and
Mannstein, H.: Contrail properties over the eastern North Pacific
from AVHRR data, Meteorologische Zeitschrift, 14, 515-523,
https://doi.org/10.1127/0941-2948/2005/0056, 2005.

Ng,J. Y.-H., McCloskey, K., Cui, J., Meijer, V. R., Brand, E., Sarna,
A., Goyal, N., Van Arsdale, C., and Geraedts, S.: OpenCon-
trails: Benchmarking contrail detection on GOES-16 ABI, arXiv
[preprint], https://doi.org/10.48550/arXiv.2304.02122, 2023.

Northcutt, C., Jiang, L., and Chuang, I.: Confident Learn-

ing: Estimating Uncertainty in Dataset Labels, Jour-
nal of Artificial Intelligence Research, 70, 1373-1411,
https://doi.org/10.1613/jair.1.12125, 2021.

Ortiz, 1., Garcfa-Heras, J., Jafarimoghaddam, A., and
Soler, M.: Enhancing GOES-16 Contrail Segmen-
tation through Ensemble Neural Network Modeling
and Optical Flow Corrections, Authorea [preprint],

https://doi.org/10.36227/techrxiv.173749955.56653418/v1,
2025.

Palikonda, R., Minnis, P.,, Duda, D. P, and Mannstein, H.:
Contrail coverage derived from 2001 AVHRR data over the
continental United States and surrounding areas, Meteorolo-
gische Zeitschrift, 14, 525-536, https://doi.org/10.1127/0941-
2948/2005/0051, 2005.

Pertino, P.,, Pavarino, L., Lomolino, S., Miotto, E., Cam-
brin, D. R., Garza, P, and Ogliari, E. G. C.: Ground-
Based Contrail Detection by Means of Computer Vision
Models: A Comparison Between Visible and Infrared Im-
ages, 2024 IEEE 8th Forum on Research and Technolo-
gies for Society and Industry Innovation (RTSI), 254-259,
https://doi.org/10.1109/RTS161910.2024.10761667, 2024.

Pratt, W. K.: Digital image processing: PIKS Sci-
entific inside, vol. 4, Wiley Online Library,
https://doi.org/10.1002/0470097434, 2007.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.: You only
look once: Unified, real-time object detection, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 779-788, https://doi.org/10.1109/CVPR.2016.91,
2016.

Ren, S., He, K., Girshick, R., and Sun, J.: Faster R-CNN: Towards
real-time object detection with region proposal networks, IEEE
Transactions on Pattern Analysis and Machine Intelligence,
39, 1137-1149, https://doi.org/10.1109/TPAMI.2016.2577031,
2017.

Ridnik, T., Ben Baruch, E., Noy, A., and Zelnik-Manor, L.:
ImageNet-21K Pretraining for the Masses, arXiv [preprint],
https://doi.org/10.48550/arXiv.2104.10972, 2021.

Riggi-Carrolo, E., Dubot, T., Sarrat, C., and Bedouet, J.: AI-Driven
Identification of Contrail Sources: Integrating Satellite Observa-
tion and Air Traffic Data, Journal of Open Aviation Science, 1,
https://doi.org/10.59490/joas.2023.7209, 2023.

Ronneberger, O., Fischer, P., and Brox, T.. U-Net: Con-
volutional networks for biomedical image segmentation,
in: International Conference on Medical Image Comput-

https://doi.org/10.5194/essd-18-1037-2026


https://doi.org/10.5194/amt-7-3233-2014
https://hdl.handle.net/1721.1/124179
https://hdl.handle.net/1721.1/124179
https://doi.org/10.1016/j.atmosenv.2020.117834
https://doi.org/10.48550/arXiv.1405.0312
https://doi.org/10.5194/amt-18-37-2025
https://doi.org/10.1127/0941-2948/2005/0058
https://doi.org/10.5194/amt-3-655-2010
https://doi.org/10.1007/978-3-642-30183-4_26
https://www.climatechange.ai/papers/icml2021/2
https://www.climatechange.ai/papers/icml2021/2
https://doi.org/10.1127/0941-2948/2005/0056
https://doi.org/10.5194/amt-17-6145-2024
https://doi.org/10.1029/2001JD000426
https://doi.org/10.1080/01431160600641707
https://doi.org/10.1127/0941-2948/2005/0056
https://doi.org/10.48550/arXiv.2304.02122
https://doi.org/10.1613/jair.1.12125
https://doi.org/10.36227/techrxiv.173749955.56653418/v1
https://doi.org/10.1127/0941-2948/2005/0051
https://doi.org/10.1127/0941-2948/2005/0051
https://doi.org/10.1109/RTSI61910.2024.10761667
https://doi.org/10.1002/0470097434
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.48550/arXiv.2104.10972
https://doi.org/10.59490/joas.2023.7209

G. Jarry et al.: GVCCS

ing and Computer-Assisted Intervention, Springer, 234-241,
https://doi.org/10.1007/978-3-319-24574-4_28, 2015.

Sarna, A., Meijer, V., Chevallier, R., Duncan, A., McConnaughay,
K., Geraedts, S., and McCloskey, K.: Benchmarking and im-
proving algorithms for attributing satellite-observed contrails to
flights, Atmospheric Measurement Techniques, 18, 3495-3532,
https://doi.org/10.5194/amt-18-3495-2025, 2025.

Schmidt, E.: Die Entstehung von Eisnebel aus den Auspuffgasen
von Flugmotoren, in: Schriften der Deutschen Akademie der
Luftfahrtforschung, vol. 44, Verlag R. Oldenbourg, Miinchen,
1-15, http://elib.dlr.de/107948/ (last access: 28 January 2026),
1941.

Schumann, U.: On conditions for contrail formation from
aircraft exhausts, Meteorologische Zeitschrift, 5, 4-23,
https://doi.org/10.1127/metz/5/1996/4, 1996.

Schumann, U.: A contrail cirrus prediction model, Geoscientific
Model Development, 5, 543-580, https://doi.org/10.5194/gmd-
5-543-2012, 2012.

Schumann, U., Mayer, B., Graf, K., Mannstein, H., and Meerkotter,
R.: A parametric radiative forcing model for cirrus and contrail
cirrus, in: ESA Atmospheric Science Conference, ESA SP-676,
Barcelona, Spain, 1-6, ISBN 978-92-9221-240-7 https://elib.dlr.
de/63058/ (last access 28 January 2026), 2009.

Schumann, U., Hempel, R., Flentje, H., Garhammer, M., Graf, K.,
Kox, S., Losslein, H., and Mayer, B.: Contrail study with ground-
based cameras, Atmospheric Measurement Techniques, 6, 3597—
3612, https://doi.org/10.5194/amt-6-3597-2013, 2013.

Strandgren, J., Bugliaro, L., Sehnke, F., and Schroder, L.: Cirrus
cloud retrieval with MSG/SEVIRI using artificial neural net-
works, Atmospheric Measurement Techniques, 10, 3547-3573,
https://doi.org/10.5194/amt-10-3547-2017, 2017a.

Strandgren, J., Fricker, J., and Bugliaro, L.: Characterisation of the
artificial neural network CiPS for cirrus cloud remote sensing
with MSG/SEVIRI, Atmospheric Measurement Techniques, 10,
4317-4339, https://doi.org/10.5194/amt-10-4317-2017, 2017b.

https://doi.org/10.5194/essd-18-1037-2026

1059

Sun, J. and Roosenbrand, E.: Few-Shot Contrail Segmen-
tation in Remote Sensing Imagery With Loss Func-
tion in Hough Space, IEEE Journal of Selected Top-
ics in Applied Earth Observations and Remote Sensing,
https://doi.org/10.1109/JSTARS.2025.3525576, 2025.

Teoh, R., Schumann, U., and Stettler, M. E.: Beyond con-
trail avoidance: Efficacy of flight altitude changes to
minimise contrail climate forcing, Aerospace, 7, 121,
https://doi.org/10.3390/aerospace7090121, 2020.

Teoh, R., Engberg, Z., Schumann, U., Voigt, C., Shapiro, M., Rohs,
S., and Stettler, M. E. J.: Global aviation contrail climate effects
from 2019 to 2021, Atmospheric Chemistry and Physics, 24,
6071-6093, https://doi.org/10.5194/acp-24-6071-2024, 2024.

Tu, Z., Talebi, H., Zhang, H., Yang, F., Milanfar, P., Bovik, A.,
and Li, Y.: MaxViT: Multi-axis vision transformer, in: Eu-
ropean Conference on Computer Vision, Springer, 459-479,
https://doi.org/10.1007/978-3-031-20053-3_27, 2022.

Van Huffel, J., Ehrmanntraut, R., and Croes, D.: Contrail Detec-
tion and Classification using Computer Vision with Ground-
Based Cameras, in: 2025 Integrated Communications, Nav-
igation and Surveillance Conference (ICNS), IEEE, 1-6,
https://doi.org/10.1109/ICNS65417.2025.10976944, 2025.

Vazquez-Navarro, M., Mannstein, H., and Mayer, B.: An automatic
contrail tracking algorithm, Atmospheric Measurement Tech-
niques, 3, 1089-1101, https://doi.org/10.5194/amt-3-1089-2010,
2010.

Viazquez-Navarro, M., Mannstein, H., and Kox, S.: Contrail life
cycle and properties from 1 year of MSG/SEVIRI rapid-scan
images, Atmospheric Chemistry and Physics, 15, 8739-8749,
https://doi.org/10.5194/acp-15-8739-2015, 2015.

Yang, L., Fan, Y., and Xu, N.: Video instance segmentation, in:
ICCYV, https://doi.org/10.1109/ICCV.2019.00529, 2019.

Earth Syst. Sci. Data, 18, 1037-1059, 2026


https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.5194/amt-18-3495-2025
http://elib.dlr.de/107948/
https://doi.org/10.1127/metz/5/1996/4
https://doi.org/10.5194/gmd-5-543-2012
https://doi.org/10.5194/gmd-5-543-2012
https://elib.dlr.de/63058/
https://elib.dlr.de/63058/
https://doi.org/10.5194/amt-6-3597-2013
https://doi.org/10.5194/amt-10-3547-2017
https://doi.org/10.5194/amt-10-4317-2017
https://doi.org/10.1109/JSTARS.2025.3525576
https://doi.org/10.3390/aerospace7090121
https://doi.org/10.5194/acp-24-6071-2024
https://doi.org/10.1007/978-3-031-20053-3_27
https://doi.org/10.1109/ICNS65417.2025.10976944
https://doi.org/10.5194/amt-3-1089-2010
https://doi.org/10.5194/acp-15-8739-2015
https://doi.org/10.1109/ICCV.2019.00529

	Abstract
	Introduction
	Background
	The Science of Contrails
	Computer Vision Techniques for Contrail Monitoring

	State of the Art
	Datasets
	Models

	Dataset
	Data collection and labelling campaign
	Dataset Description

	Segmentation Models
	Mask2Former
	U-Net with Discriminative Loss

	Results
	Training
	Evaluation
	Temporal Evaluation Strategy

	Illustrative examples

	Data availability
	Conclusions
	Appendix A: Consistent Instance Tracking Algorithm
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

