Articles | Volume 17, issue 2
https://doi.org/10.5194/essd-17-741-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-741-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Time series of Landsat-based bimonthly and annual spectral indices for continental Europe for 2000–2022
Xuemeng Tian
CORRESPONDING AUTHOR
OpenGeoHub, Doorwerth, the Netherlands
Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, Wageningen, the Netherlands
Davide Consoli
OpenGeoHub, Doorwerth, the Netherlands
Martijn Witjes
OpenGeoHub, Doorwerth, the Netherlands
Florian Schneider
Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany
Leandro Parente
OpenGeoHub, Doorwerth, the Netherlands
Murat Şahin
OpenGeoHub, Doorwerth, the Netherlands
Yu-Feng Ho
OpenGeoHub, Doorwerth, the Netherlands
Robert Minařík
OpenGeoHub, Doorwerth, the Netherlands
Tomislav Hengl
OpenGeoHub, Doorwerth, the Netherlands
Related authors
Tomislav Hengl, Davide Consoli, Xuemeng Tian, Travis W. Nauman, Madlene Nussbaum, Mustafa Serkan Isik, Leandro Parente, Yu-Feng Ho, Rolf Simoes, Surya Gupta, Alessandro Samuel-Rosa, Taciara Zborowski Horst, José Lucas Safanelli, and Nancy Harris
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-336, https://doi.org/10.5194/essd-2025-336, 2025
Preprint under review for ESSD
Short summary
Short summary
We used satellite data and thousands of soil samples to create detailed global maps showing how soil changes over time. These maps reveal important patterns in soil health, such as a significant global loss of soil carbon in the past 25 years. Our results help track land degradation and support better land restoration efforts. This work provides a new global tool for understanding and protecting soil, a key resource for food, water, and climate.
Joséphine Hazera, David Sebag, Isabelle Kowalewski, Herman Ravelojaona, Eric Verrecchia, Gergely Jakab, Dóra Zacháry, Florian Schneider, Luca Trombino, Raphaël J. Manlay, Julien Fouché, and Tiphaine Chevallier
EGUsphere, https://doi.org/10.5194/egusphere-2025-4991, https://doi.org/10.5194/egusphere-2025-4991, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Adjusting Rock-Eval® cycle is needed to avoid the need for post-hoc corrections to estimate soil organic (SOC) and inorganic (SIC) carbon. PYRO520 is a cycle with a pyrolysis ending at 520°C instead of 650°C to avoid SIC decomposition while preserving the SOC characterization during pyrolysis. This cycle corrects the misallocation of the end-of-pyrolysis signals and thus repeatably and accurately estimates SOC and SIC contents without using corrections, while preserving the SOC characterization.
Tomislav Hengl, Davide Consoli, Xuemeng Tian, Travis W. Nauman, Madlene Nussbaum, Mustafa Serkan Isik, Leandro Parente, Yu-Feng Ho, Rolf Simoes, Surya Gupta, Alessandro Samuel-Rosa, Taciara Zborowski Horst, José Lucas Safanelli, and Nancy Harris
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-336, https://doi.org/10.5194/essd-2025-336, 2025
Preprint under review for ESSD
Short summary
Short summary
We used satellite data and thousands of soil samples to create detailed global maps showing how soil changes over time. These maps reveal important patterns in soil health, such as a significant global loss of soil carbon in the past 25 years. Our results help track land degradation and support better land restoration efforts. This work provides a new global tool for understanding and protecting soil, a key resource for food, water, and climate.
Surya Gupta, Tomislav Hengl, Peter Lehmann, Sara Bonetti, and Dani Or
Earth Syst. Sci. Data, 13, 1593–1612, https://doi.org/10.5194/essd-13-1593-2021, https://doi.org/10.5194/essd-13-1593-2021, 2021
Cited articles
Baumann, P.: On the analysis-readiness of spatio-temporal earth data and suggestions for its enhancement, Environ. Model. Softw., 176, 106017, https://doi.org/10.1016/j.envsoft.2024.106017, 2024. a
Beeson, P. C., Daughtry, C. S., and Wallander, S. A.: Estimates of conservation tillage practices using landsat archive, Remote Sens., 12, 2665, https://doi.org/10.3390/rs12162665, 2020. a, b
Bolton, D. K., Gray, J. M., Melaas, E. K., Moon, M., Eklundh, L., and Friedl, M. A.: Continental-scale land surface phenology from harmonized Landsat8 and Sentinel-2 imagery, Remote Sens. Environ., 240, 111685, https://doi.org/10.1016/j.rse.2020.111685, 2020. a, b
Broeg, T., Don, A., Gocht, A., Scholten, T., Taghizadeh-Mehrjardi, R., and Erasmi, S.: Using local ensemble models and Landsat bare soil composites for large-scale soil organic carbon maps in cropland, Geoderma, 444, 116850, https://doi.org/10.1016/j.geoderma.2024.116850, 2024. a
Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S. B., Mazzariello, J., Czerwinski, W., Pasquarella, V. J., Haertel, R., Ilyushchenko, S., et al.: Dynamic World, Near real-time global 10 m land use land cover mapping, Sci. Data, 9, 251, https://doi.org/10.1038/s41597-022-01307-4, 2022. a
Brown, M., De Beurs, K., and Marshall, M.: Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26 years, Remote Sens. Environ., 126, 174–183, https://doi.org/10.1016/j.rse.2012.08.009, 2012. a
Caparros-Santiago, J. A., Rodriguez-Galiano, V., and Dash, J.: Land surface phenology as indicator of global terrestrial ecosystem dynamics: A systematic review, ISPRS J. Photogram. Remote Sens., 171, 330–347, https://doi.org/10.1016/j.isprsjprs.2020.11.019, 2021. a, b, c
Castaldi, F., Chabrillat, S., Don, A., and van Wesemael, B.: Soil organic carbon mapping using LUCAS topsoil database and Sentinel-2 data: An approach to reduce soil moisture and crop residue effects, Remote Sens., 11, 2121, https://doi.org/10.3390/rs11182121, 2019. a
Chahal, I., Hooker, D., Deen, B., Janovicek, K., and Van Eerd, L.: Long-term effects of crop rotation, tillage, and fertilizer nitrogen on soil health indicators and crop productivity in a temperate climate, Soil Till. Res., 213, 105121, https://doi.org/10.1016/j.still.2021.105121, 2021. a
Chatenoux, B., Richard, J.-P., Small, D., Roeoesli, C., Wingate, V., Poussin, C., Rodila, D., Peduzzi, P., Steinmeier, C., Ginzler, C., Psomas, A., Schaepman, M. E., and Giuliani, G.: The Swiss data cube, analysis ready data archive using earth observations of Switzerland, Sci. Data, 8, 295, https://doi.org/10.1038/s41597-021-01076-6, 2021. a, b
Chen, Y., Song, X., Wang, S., Huang, J., and Mansaray, L. R.: Impacts of spatial heterogeneity on crop area mapping in Canada using MODIS data, ISPRS J. Photogram. Remote Sens., 119, 451–461, https://doi.org/10.1016/j.isprsjprs.2016.07.007, 2016. a
Chen, Y., Ma, L., Yu, D., Zhang, H., Feng, K., Wang, X., and Song, J.: Comparison of feature selection methods for mapping soil organic matter in subtropical restored forests, Ecol. Indicat., 135, 108545, https://doi.org/10.1016/j.ecolind.2022.108545, 2022. a
Consoli, D., Parente, L., Simoes, R., Şahin, M., Tian, X., Witjes, M., Sloat, L., and Hengl, T.: A computational framework for processing time-series of Earth Observation data based on discrete convolution: global-scale historical Landsat cloud-free aggregates at 30 m spatial resolution, Peer J., 12, e18585, https://doi.org/10.7717/peerj.18585, 2024. a, b, c, d, e, f, g, h, i
d'Andrimont, R., Yordanov, M., Martinez-Sanchez, L., Eiselt, B., Palmieri, A., Dominici, P., Gallego, J., Reuter, H. I., Joebges, C., Lemoine, G., and van der Velde, M.: Harmonised LUCAS in-situ land cover and use database for field surveys from 2006 to 2018 in the European Union, Sci. Data, 7, 352, https://doi.org/10.6084/m9.figshare.12841202, 2020. a
d'Andrimont, R., Verhegghen, A., Lemoine, G., Kempeneers, P., Meroni, M., and Van der Velde, M.: From parcel to continental scale–A first European crop type map based on Sentinel-1 and LUCAS Copernicus in-situ observations, Remote Sens. Environ., 266, 112708, https://doi.org/10.1016/j.rse.2021.112708, 2021. a, b
Daughtry, C. S., Serbin, G., Reeves III, J. B., Doraiswamy, P. C., and Hunt Jr., E. R.: Spectral reflectance of wheat residue during decomposition and remotely sensed estimates of residue cover, Remote Sens., 2, 416–431, https://doi.org/10.3390/rs2020416, 2010. a
De Beurs, K. M. and Henebry, G. M.: Land surface phenology and temperature variation in the International Geosphere–Biosphere Program high-latitude transects, Global Change Biol., 11, 779–790, https://doi.org/10.1111/j.1365-2486.2005.00949.x, 2005. a
De Beurs, K. M. and Henebry, G. M.: Spatio-Temporal Statistical Methods for Modelling Land Surface Phenology, in: Phenological Research, edited by: Hudson, I. and Keatley, M.,Springer, Dordrecht, https://doi.org/10.1007/978-90-481-3335-2_9, 2010. a, b
de Jong, R. and de Bruin, S.: Linear trends in seasonal vegetation time series and the modifiable temporal unit problem, Biogeosciences, 9, 71–77, https://doi.org/10.5194/bg-9-71-2012, 2012. a
Demattê, J. A., Safanelli, J. L., Poppiel, R. R., Rizzo, R., Silvero, N. E. Q., Mendes, W. D. S., Bonfatti, B. R., Dotto, A. C., Salazar, D. F. U., Mello, F. A. D. O., da Silveira Paiva, A. F., Barros Souza, A., dos Santos, N. V., Nascimento, C. M., de Mello, D. C., Bellinaso, H., Neto, L. G., Amorim, M. T. A., de Resende, M. E. B., da Souza Vieira, J., de Queiroz, L. G., Gallo, B. C., Sayão, V. M., and da Silva Lisboa, C. J.: Bare earth's surface spectra as a proxy for soil resource monitoring, Sci. Rep., 10, 4461, https://doi.org/10.1038/s41598-020-61408-1, 2020. a, b, c, d, e, f, g
Diek, S., Fornallaz, F., Schaepman, M. E., and De Jong, R.: Barest pixel composite for agricultural areas using landsat time series, Remote Sens., 9, 1245, https://doi.org/10.3390/rs9121245, 2017. a, b
Dvorakova, K., Heiden, U., Pepers, K., Staats, G., van Os, G., and van Wesemael, B.: Improving soil organic carbon predictions from a Sentinel–2 soil composite by assessing surface conditions and uncertainties, Geoderma, 429, 116128, https://doi.org/10.1016/j.geoderma.2022.116128, 2023. a
Edlinger, A., Garland, G., Banerjee, S., Degrune, F., García-Palacios, P., Hallin, S., Herzog, C., Jansa, J., Kost, E., Maestre, F. T., Sánchez-Pescador, D., Philippot, L., Rillig, M., Romdhane, S., Saghaï, A., Spor, A., Frossard, E., van der Heijden, M., Hartman, K., and Held, A.: Edlinger_etal_database.xlsx, Figshare [data set], https://doi.org/10.6084/m9.figshare.15134328.v4, 2022. a
Edlinger, A., Garland, G., Banerjee, S., Degrune, F., García-Palacios, P., Herzog, C., Sánchez Pescador, D., Romdhane, S., Ryo, M., Saghaï, A., Hallin, S., Maestre, F. T., Philippot, L., Rillig, M., and van der Heijden, M.: The impact of agricultural management on soil aggregation and carbon storage is regulated by climate. Digging deeper Dataset, Figshare [data set], https://doi.org/10.6084/m9.figshare.19762114.v5, 2023. a
Eskandari, I., Navid, H., and Rangzan, K.: Evaluating spectral indices for determining conservation and conventional tillage systems in a vetch-wheat rotation, Int. Soil Water Conserv. Res., 4, 93–98, https://doi.org/10.1016/j.iswcr.2016.04.002, 2016. a
Estel, S., Kuemmerle, T., Alcántara, C., Levers, C., Prishchepov, A., and Hostert, P.: Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series, Remote Sens. Environ., 163, 312–325, https://doi.org/10.1016/j.rse.2015.03.028, 2015. a
Ettehadi Osgouei, P., Kaya, S., Sertel, E., and Alganci, U.: Separating built-up areas from bare land in mediterranean cities using Sentinel-2A imagery, Remote Sens., 11, 345, https://doi.org/10.3390/rs11030345, 2019. a, b
Eurostat: Agricultural practices (ef_mp_prac) [Data set], Eurostat [data set], https://doi.org/10.2908/EF_MP_PRAC, 2024. a
Ganguly, S., Friedl, M. A., Tan, B., Zhang, X., and Verma, M.: Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product, Remote Sens. Environ., 114, 1805–1816, https://doi.org/10.1016/j.rse.2010.04.005, 2010. a
Gao, B.-C.: NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space, Remote Sens. Environ., 58, 257–266, https://doi.org/10.1016/S0034-4257(96)00067-3, 1996. a, b
Giuliani, G., Chatenoux, B., De Bono, A., Rodila, D., Richard, J.-P., Allenbach, K., Dao, H., and Peduzzi, P.: Building an earth observations data cube: lessons learned from the swiss data cube (sdc) on generating analysis ready data (ard), Big Earth Data, 1, 100–117, https://doi.org/10.1080/20964471.2017.1398903, 2017. a, b, c
Giuliani, G., Cazeaux, H., Burgi, P.-Y., Poussin, C., Richard, J.-P., and Chatenoux, B.: SwissEnveo: A FAIR national environmental data repository for earth observation open science, Data Sci. J., 20, 22–22, https://doi.org/10.5334/dsj-2021-022, 2021. a, b, c
Gomes, L. C., Faria, R. M., de Souza, E., Veloso, G. V., Schaefer, C. E. G., and Fernandes Filho, E. I.: Modelling and mapping soil organic carbon stocks in Brazil, Geoderma, 340, 337–350, https://doi.org/10.1016/j.geoderma.2019.01.007, 2019. a
Gomes, V. C., Queiroz, G. R., and Ferreira, K. R.: An overview of platforms for big earth observation data management and analysis, Remote Sens., 12, 1253, https://doi.org/10.3390/rs12081253, 2020. a
Gómez, C., White, J. C., and Wulder, M. A.: Optical remotely sensed time series data for land cover classification: A review, ISPRS J. Photogram. Remote Sens., 116, 55–72, https://doi.org/10.1016/j.isprsjprs.2016.03.008, 2016. a
Google Sheet link: Landsat-based Spectral Indices Data Cube – Access Catalog, Google Sheet link [data set], https://docs.google.com/spreadsheets/d/1QTA6OkkYlZljfHst_inCrkC7DJcMAyHnM9k0iHulwpg/edit?usp=sharing (last access: 27 June 2024), 2024. a
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017. a
He, X., Yang, L., Li, A., Zhang, L., Shen, F., Cai, Y., and Zhou, C.: Soil organic carbon prediction using phenological parameters and remote sensing variables generated from Sentinel-2 images, Catena, 205, 105442, https://doi.org/10.1016/j.catena.2021.105442, 2021. a
Heiden, U., d'Angelo, P., Schwind, P., Karlshöfer, P., Müller, R., Zepp, S., Wiesmeier, M., and Reinartz, P.: Soil reflectance composites – improved thresholding and performance evaluation, Remote Sens., 14, 4526, https://doi.org/10.3390/rs14184526, 2022. a
Henebry, G. M. and De Beurs, K. M.: Remote sensing of land surface phenology: A prospectus, in: Phenology: An integrative environmental science, Springer, 385–411, https://doi.org/10.1007/978-94-007-6925-0_21, 2013. a, b, c
Hill, M. J. and Guerschman, J. P.: Global trends in vegetation fractional cover: Hotspots for change in bare soil and non-photosynthetic vegetation, Agr. Ecosyst. Environ., 324, 107719, https://doi.org/10.1016/j.agee.2021.107719, 2022. a
Huete, A. R.: A soil-adjusted vegetation index (SAVI), Remote Sens. Environ., 25, 295–309, https://doi.org/10.1016/0034-4257(88)90106-X, 1988. a, b
Iosifescu Enescu, I., de Espona, L., Haas-Artho, D., Kurup Buchholz, R., Hanimann, D., Rüetschi, M., Karger, D. N., Plattner, G.-K., Hägeli, M., Ginzler, C., Zimmermann, N. E., and Pellissier, L.: Cloud optimized raster encoding (core): A web-native streamable format for large environmental time series, Geomatics, 1, 369–382, https://doi.org/10.3390/geomatics1030021, 2021. a
Kansakar, P. and Hossain, F.: A review of applications of satellite earth observation data for global societal benefit and stewardship of planet earth, Space Policy, 36, 46–54, https://doi.org/10.1016/j.spacepol.2016.05.005, 2016. a
Killough, B.: Overview of the open data cube initiative, in: IGARSS 2018 – 2018 IEEE international geoscience and remote sensing symposium, 22–27 July 2018, Valencia, Spain, 8629–8632, https://doi.org/10.1109/IGARSS.2018.8517694, 2018. a
Killough, B.: The impact of analysis ready data in the Africa regional data cube, in: IGARSS 2019 – 2019 IEEE International Geoscience and Remote Sensing Symposium, 28 July–2 August 2019, Yokohama, Japan, 5646–5649, https://doi.org/10.1109/IGARSS.2019.8898321, 2019. a
Kooch, Y., Amani, M., and Abedi, M.: Vegetation degradation threatens soil health in a mountainous semi-arid regiony, Sci. Total Environ., 830, 154827, https://doi.org/10.1016/j.scitotenv.2022.154827, 2022. a
Lacagnina, C., David, R., Nikiforova, A., Kuusniemi, M.-E., Cappiello, C., Biehlmaier, O., Wright, L., Schubert, C., Bertino, A., Thiemann, H., and Dennis, R.: Towards a data quality framework for EOSC authorship community, PhD thesis, EOSC Association, Zenodo, https://doi.org/10.5281/zenodo.7515816, 2022. a
Lawrence, I. and Lin, K.: A concordance correlation coefficient to evaluate reproducibility, Biometrics, 45, 255–268, https://doi.org/10.2307/2532051, 1989. a
Lewis, A., Oliver, S., Lymburner, L., Evans, B., Wyborn, L., Mueller, N., Raevksi, G., Hooke, J., Woodcock, R., Sixsmith, J., Wu, W., Tan, P., Li, F., Killough, B., Minchin, S., Roberts, D., Ayers, D., Bala, B., Dwyer, J., Dekker, A., Dhu, T., Hicks, A., Ip, A., Purss, M., Richards, C., Sagar, S., Trenham, C., Wang, P., and Wang, L.-W.: The Australian geoscience data cube – foundations and lessons learned, Remote Sens. Environ., 202, 276–292, https://doi.org/10.1016/j.rse.2017.03.015, 2017. a
Li, L., Friedl, M. A., Xin, Q., Gray, J., Pan, Y., and Frolking, S.: Mapping crop cycles in China using MODIS-EVI time series, Remote Sens., 6, 2473–2493, https://doi.org/10.3390/rs6032473, 2014. a, b, c
Liu, C., Zhang, Q., Tao, S., Qi, J., Ding, M., Guan, Q., Wu, B., Zhang, M., Nabil, M., Tian, F., Zeng, H., Zhang, N., Bavuudorj, G., Rukundo, E., Liu, W., Bofana, J., Beyene, A. N., and Elnashar, A.: A new framework to map fine resolution cropping intensity across the globe: Algorithm, validation, and implication, Remote Sens. Environ., 251, 112095, https://doi.org/10.1016/j.rse.2020.112095, 2020. a, b
Lokers, R., Knapen, R., Janssen, S., van Randen, Y., and Jansen, J.: Analysis of Big Data technologies for use in agro-environmental science, Environ. Model. Softw., 84, 494–504, https://doi.org/10.1016/j.envsoft.2016.07.017, 2016. a, b
Magdoff, F. and Van Es, H.: Building soils for better crops, in: vol. 4, Sustainable Agriculture Network Beltsville, https://www.sare.org/wp-content/uploads/Building-Soils-for-Better-Crops.pdf (last access: 28 November 2024), 2000. a
Maynard, J. J. and Levi, M. R.: Hyper-temporal remote sensing for digital soil mapping: Characterizing soil-vegetation response to climatic variability, Geoderma, 285, 94–109, https://doi.org/10.1016/j.geoderma.2016.09.024, 2017. a, b
McBratney, A. B., Santos, M. M., and Minasny, B.: On digital soil mapping, Geoderma, 117, 3–52, https://doi.org/10.1016/S0016-7061(03)00223-4, 2003. a, b
Meroni, M., d'Andrimont, R., Vrieling, A., Fasbender, D., Lemoine, G., Rembold, F., Seguini, L., and Verhegghen, A.: Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and-2, Remote Sens. Environ., 253, 112232, https://doi.org/10.1016/j.rse.2020.112232, 2021. a, b
Montero, D., Aybar, C., Mahecha, M. D., Martinuzzi, F., Söchting, M., and Wieneke, S.: A standardized catalogue of spectral indices to advance the use of remote sensing in Earth system research, Scientific Data, 10, 197, https://doi.org/10.1038/s41597-023-02096-0, 2023 (code available at: https://github.com/awesome-spectral-indices/, last access: 27 June 2024). a, b, c, d, e
Myneni, R. and Williams, D.: On the relationship between FAPAR and NDVI, Remote Sens. Environ., 49, 200–211, https://doi.org/10.1016/0034-4257(94)90016-7, 1994. a
Mzid, N., Pignatti, S., Huang, W., and Casa, R.: An analysis of bare soil occurrence in arable croplands for remote sensing topsoil applications, Remote Sens., 13, 474, https://doi.org/10.3390/rs13030474, 2021. a, b, c, d
Nazari, S., Rostaminia, M., Ayoubi, S., Rahmani, A., and Mousavi, S. R.: Efficiency of Different Feature Selection Methods in Digital Mapping of Subgroup and Soil Family Classes with Data Mining Algorithms, Water Soil, 34, 973–987, https://doi.org/10.22067/jsw.v34i4.85748, 2020. a
Nguyen, L. H., Joshi, D. R., Clay, D. E., and Henebry, G. M.: Characterizing land cover/land use from multiple years of Landsat and MODIS time series: A novel approach using land surface phenology modeling and random forest classifier, Remote Sens. Environ., 238, 111017, https://doi.org/10.1016/j.rse.2018.12.016, 2020. a
Obuchowicz, C., Poussin, C., and Giuliani, G.: Change in observed long-term greening across Switzerland – evidence from a three decades NDVI time-series and its relationship with climate and land cover factors, Big Earth Data, 8, 1–32, https://doi.org/10.1080/20964471.2023.2268322, 2023. a, b
Patel, J. H. and Oza, M. P.: Deriving crop calendar using NDVI time-series, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-8, 869–873, https://doi.org/10.5194/isprsarchives-XL-8-869-2014, 2014. a
Pietrzykowski, M. and Krzaklewski, W.: An assessment of energy efficiency in reclamation to forest, Ecol. Eng., 30, 341–348, https://doi.org/10.1016/j.ecoleng.2007.04.003, 2007. a, b
Pôças, I., Gonçalves, J., Marcos, B., Alonso, J., Castro, P., and Honrado, J. P.: Evaluating the fitness for use of spatial data sets to promote quality in ecological assessment and monitoring, Int. J. Geogr. Inform. Sci., 28, 2356–2371, https://doi.org/10.1080/13658816.2014.924627, 2014. a
Poussin, C., Massot, A., Ginzler, C., Weber, D., Chatenoux, B., Lacroix, P., Piller, T., Nguyen, L., and Giuliani, G.: Drying conditions in Switzerland – indication from a 35-year Landsat time-series analysis of vegetation water content estimates to support SDGs, Big Earth Data, 5, 445–475, https://doi.org/10.1080/20964471.2021.1974681, 2021. a, b
Poussin, C., Timoner, P., Chatenoux, B., Giuliani, G., and Peduzzi, P.: Improved Landsat-based snow cover mapping accuracy using a spatiotemporal NDSI and generalized linear mixed model, Sci. Remote Sens., 7, 100078, https://doi.org/10.1016/j.srs.2023.100078, 2023. a
Radeloff, V. C., Roy, D. P., Wulder, M. A., Anderson, M., Cook, B., Crawford, C. J., Friedl, M., Gao, F., Gorelick, N., Hansen, M., Healey, S., Hostert, P., Hulley, G., Huntington, J. L., Johnson, D. M., Neigh, C., Lyapustin, A., Lymburner, L., Pahlevan, N., Pekel, J.-F., Scambos, T. A., Schaaf, C., Strobl, P., Woodcock, C. E., Zhang, H. K., and Zhu, Z.: Need and vision for global medium-resolution Landsat and Sentinel-2 data products, Remote Sens. Environ., 300, 113918, https://doi.org/10.1016/j.rse.2023.113918, 2024. a
Ranghetti, L., Busetto, L., Crema, A., Fasola, M., Cardarelli, E., and Boschetti, M.: Testing estimation of water surface in Italian rice district from MODIS satellite data, Int. J. Appli. Earth Obs. Geoinf., 52, 284–295, https://doi.org/10.1016/j.jag.2016.06.018, 2016. a, b, c
Reddy, N. M., Peerzada, I. A., Moonis, M., and Singh, O.: Application of biophysical, soil, and vegetation indices to better understand forest dynamics and develop strategies for forest conservation, in: Forest Dynamics and Conservation: Science, Innovations and Policies, Springer, 399–415, https://doi.org/10.1007/978-981-19-0071-6_19, 2022. a
Rhyma, P., Norizah, K., Hamdan, O., Faridah-Hanum, I., and Zulfa, A.: Integration of normalised different vegetation index and Soil-Adjusted Vegetation Index for mangrove vegetation delineation, Remote Sens. Appl.: Soc. Environ., 17, 100280, https://doi.org/10.1016/j.rsase.2019.100280, 2020. a
Rizzo, R., Wadoux, A. M.-C., Demattê, J. A., Minasny, B., Barrón, V., Ben-Dor, E., Francos, N., Savin, I., Poppiel, R., Silvero, N. E. Q., da Silva, F., Rosin, N. A., Rosas, J. T. F., Greschuk, L. T., Ballester, M. V. R., Gómez, A. M. R., Belllinaso, H., Safanelli, J. L., Chabrillat, S., Fiorio, P. R., Das, B. S., Malone, B. P., Zalidis, G., Tziolas, N., Tsakiridis, N., Karyotis, K., Samarinas, N., Kalopesa, E., Gholizadeh, A., Shepherd, K. D., Milewski, R., Vaudour, E., Wang, C., and Salama, E. S. M.: Remote sensing of the Earth's soil color in space and time, Remote Sens. Environ., 299, 113845, https://doi.org/10.1016/j.rse.2023.113845, 2023. a
Robinson, N. P., Allred, B. W., Smith, W. K., Jones, M. O., Moreno, A., Erickson, T. A., Naugle, D. E., and Running, S. W.: Terrestrial primary production for the conterminous United States derived from Landsat 30 m and MODIS 250 m, Remote Sens. Ecol. Conserv., 4, 264–280, https://doi.org/10.1002/rse2.74, 2018. a
Rogge, D., Bauer, A., Zeidler, J., Mueller, A., Esch, T., and Heiden, U.: Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014), Remote Sens. Environ., 205, 1–17, https://doi.org/10.1016/j.rse.2017.11.004, 2018. a, b
Safanelli, J. L., Chabrillat, S., Ben-Dor, E., and Demattê, J. A.: Multispectral models from bare soil composites for mapping topsoil properties over Europe, Remote Sens., 12, 1369, https://doi.org/10.3390/rs12091369, 2020. a, b
Salcedo-Sanz, S., Ghamisi, P., Piles, M., Werner, M., Cuadra, L., Moreno-Martínez, A., Izquierdo-Verdiguier, E., Muñoz-Marí, J., Mosavi, A., and Camps-Valls, G.: Machine learning information fusion in Earth observation: A comprehensive review of methods, applications and data sources, Inform. Fusion, 63, 256–272, https://doi.org/10.1016/j.inffus.2020.07.004, 2020. a, b
Salomonson, V. V. and Appel, I.: Development of the Aqua MODIS NDSI fractional snow cover algorithm and validation results, IEEE T. Geosci. Remote, 44, 1747–1756, https://doi.org/10.1109/TGRS.2006.876029, 2006. a, b
Seifert, C. A. and Lobell, D. B.: Response of double cropping suitability to climate change in the United States, Environ. Res. Lett., 10, 024002, https://doi.org/10.1088/1748-9326/10/2/024002, 2015. a
Sen, P. K.: Estimates of the regression coefficient based on Kendall's tau, J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.1080/01621459.1968.10480934, 1968. a
Sharma, P., Singh, A., Kahlon, C. S., Brar, A. S., Grover, K. K., Dia, M., and Steiner, R. L.: The role of cover crops towards sustainable soil health and agriculture – A review paper, Am. J. Plant Sci., 9, 1935–1951, https://doi.org/10.4236/ajps.2018.99140, 2018. a
Shi, J., Yang, L., Zhu, A.-X., Qin, C., Liang, P., Zeng, C., and Pei, T.: Machine-Learning Variables at Different Scales vs. Knowledge-based Variables for Mapping Multiple Soil Properties, Soil Sci. Soc. Am. J., 82, 645–656, https://doi.org/10.2136/sssaj2017.11.0392, 2018. a
Siebert, S., Portmann, F. T., and Döll, P.: Global patterns of cropland use intensity, Remote Sens., 2, 1625–1643, https://doi.org/10.3390/rs2071625, 2010. a
Sonmez, N. K. and Slater, B.: Measuring intensity of tillage and plant residue cover using remote sensing, Eur. J. Remote Sens., 49, 121–135, https://doi.org/10.5721/EuJRS20164907, 2016. a
Sothe, C., Gonsamo, A., Arabian, J., and Snider, J.: Large scale mapping of soil organic carbon concentration with 3D machine learning and satellite observations, Geoderma, 405, 115402, https://doi.org/10.1016/j.geoderma.2021.115402, 2022. a
Stern, C., Abernathey, R., Hamman, J., Wegener, R., Lepore, C., Harkins, S., and Merose, A.: Pangeo Forge: Crowdsourcing Analysis-Ready, Cloud Optimized Data Production, Front. Clim., 3, 782909, https://doi.org/10.3389/fclim.2021.782909, 2022. a
Storey, E. A., Stow, D. A., and O'Leary, J. F.: Assessing postfire recovery of chamise chaparral using multi-temporal spectral vegetation index trajectories derived from Landsat imagery, Remote Sens. Environ., 183, 53–64, https://doi.org/10.1016/j.rse.2016.05.018, 2016. a
Szabo, S., Gácsi, Z., and Balazs, B.: Specific features of NDVI, NDWI and MNDWI as reflected in land cover categories, Acta Geogr. Debrecina Landsc. Environ. Ser., 10, 194–202, https://doi.org/10.21120/LE/10/3-4/13, 2016. a
Taha, A. A. and Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool, BMC Med. Imag., 15, 1–28, https://doi.org/10.1186/s12880-015-0068-x, 2015. a
Theil, H.: A rank-invariant method of linear and polynomial regression analysis, Indagationes mathematicae, P. Roy. Neth. Acad. Sci., 53, Part I: 386–392, Part II: 521–525, Part III: 1397–1412, 1950. a
Tian, X., Ho, Y.-F., Witjes, M., Parente, L., Hengl, T., and Minarik, R.: Pan-EU Landmask: 10 m Resolution Geospatial Land Coverage with Administrative Boundary details on country and regional level (Version v20230722) [Data set], Zenodo [data set], https://doi.org/10.5281/zenodo.8171860, 2023. a, b
Tian, X., Consoli, D., Parente, L., Yufeng, H., and Hengl, T.: Landsat-based spectral indices for pan-EU 2000–2022, Zenodo [data set], https://doi.org/10.5281/zenodo.10776891, 2024a. a, b
Tian, X., Hengl, T., yu-feng-ho, and d-consoli: AI4SoilHealth/SoilHealthDataCube: v20241204-1 (v20241204-1), Zenodo [code], https://doi.org/10.5281/zenodo.12907281, 2024b. a, b
Tucker, C. J.: Red and photographic infrared linear combinations for monitoring vegetation, Remote Sens. Environ., 8, 127–150, https://doi.org/10.1016/0034-4257(79)90013-0, 1979. a
Turmel, M.-S., Speratti, A., Baudron, F., Verhulst, N., and Govaerts, B.: Crop residue management and soil health: A systems analysis, Agricult. Syst., 134, 6–16, https://doi.org/10.1016/j.agsy.2014.05.009, 2015. a
Van Deventer, A., Ward, A., Gowda, P., and Lyon, J.: Using thematic mapper data to identify contrasting soil plains and tillage practices, Photogram. Eng. Remote Sens., 63, 87–93, 1997. a
Wadoux, A. M.-C., Minasny, B., and McBratney, A. B.: Machine learning for digital soil mapping: Applications, challenges and suggested solutions, Earth-Sci. Rev., 210, 103359, https://doi.org/10.1016/j.earscirev.2020.103359, 2020. a, b, c
Wagemann, J., Siemen, S., Seeger, B., and Bendix, J.: Users of open Big Earth data – An analysis of the current state, Comput. Geosci., 157, 104916, https://doi.org/10.1016/j.cageo.2021.104916, 2021. a, b, c, d
Wentz, E. A. and Shimizu, M.: Measuring spatial data fitness-for-use through multiple criteria decision making, Ann. Am. Assoc. Geogr., 108, 1150–1167, https://doi.org/10.1080/24694452.2017.1411246, 2018. a
White, M. A., Thornton, P. E., and Running, S. W.: A continental phenology model for monitoring vegetation responses to interannual climatic variability, Global Biogeochem. Cy., 11, 217–234, https://doi.org/10.1029/97GB00330, 1997. a
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H.-J., and Kögel-Knabner, I.: Soil organic carbon storage as a key function of soils-A review of drivers and indicators at various scales, Geoderma, 333, 149–162, https://doi.org/10.1016/j.geoderma.2018.07.026, 2019. a, b, c, d
Wu, J., Lin, L., Li, T., Cheng, Q., Zhang, C., and Shen, H.: Fusing Landsat 8 and Sentinel-2 data for 10-m dense time-series imagery using a degradation-term constrained deep network, Int. J. Appl. Earth Obs. Geoinf. 108, 102738, https://doi.org/10.1016/j.jag.2022.102738, 2022. a
Wulder, M. A., Roy, D. P., Radeloff, V. C., Loveland, T. R., Anderson, M. C., Johnson, D. M., Healey, S., Zhu, Z., Scambos, T. A., Pahlevan, N., Hansen, M., Gorelick, N., Crawford, C. J., Masek, J. G., Hermosilla, T., White, J. C., Belward, A. S., Schaaf, C., Woodcock, C. E., Huntington, J. L., Lymburner, L., Hostert, P., Gao, F., Lyapustin, A., Pekel, J.-F., Strobl, P., and Cook, B. D.: Fifty years of Landsat science and impacts, Remote Sens. Environ., 280, 113195, https://doi.org/10.1016/j.rse.2022.113195, 2022. a, b
Xiang, X., Du, J., Jacinthe, P.-A., Zhao, B., Zhou, H., Liu, H., and Song, K.: Integration of tillage indices and textural features of Sentinel-2A multispectral images for maize residue cover estimation, Soil Till. Res., 221, 105405, https://doi.org/10.1016/j.still.2022.105405, 2022. a
Xue, Z., Du, P., and Feng, L.: Phenology-driven land cover classification and trend analysis based on long-term remote sensing image series, IEEE J. Select. Top. Appl. Earth Obs. Remote Sens., 7, 1142–1156, https://doi.org/10.1109/JSTARS.2013.2294956, 2014. a
Yang, L., He, X., Shen, F., Zhou, C., Zhu, A.-X., Gao, B., Chen, Z., and Li, M.: Improving prediction of soil organic carbon content in croplands using phenological parameters extracted from NDVI time series data, Soil Till. Res., 196, 104465, https://doi.org/10.1016/j.still.2019.104465, 2020. a
Yang, R.-M., Liu, L.-A., Zhang, X., He, R.-X., Zhu, C.-M., Zhang, Z.-Q., and Li, J.-G.: The effectiveness of digital soil mapping with temporal variables in modeling soil organic carbon changes, Geoderma, 405, 115407, https://doi.org/10.1016/j.geoderma.2021.115407, 2022. a
Yang, T., Siddique, K. H., and Liu, K.: Cropping systems in agriculture and their impact on soil health – A review, Global Ecol. Conserv., 23, e01118, https://doi.org/10.1016/j.gecco.2020.e01118, 2020. a
Yang, X., Blower, J., Bastin, L., Lush, V., Zabala, A., Masó, J., Cornford, D., Díaz, P., and Lumsden, J.: An integrated view of data quality in Earth observation, Philos. T. Roy. Soc. A, 371, 20120072, https://doi.org/10.1098/rsta.2012.0072, 2013. a
Zepp, S., Heiden, U., Bachmann, M., Möller, M., Wiesmeier, M., and van Wesemael, B.: Optimized bare soil compositing for soil organic carbon prediction of topsoil croplands in Bavaria using Landsat, ISPRS J. Photogram. Remote Sens., 202, 287–302, https://doi.org/10.3390/rs13030474, 2023. a, b
Zeraatpisheh, M., Garosi, Y., Owliaie, H. R., Ayoubi, S., Taghizadeh-Mehrjardi, R., Scholten, T., and Xu, M.: Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates, Catena, 208, 105723, https://doi.org/10.1016/j.catena.2021.105723, 2022. a, b, c
Zhang, X., Liu, L., Liu, Y., Jayavelu, S., Wang, J., Moon, M., Henebry, G. M., Friedl, M. A., and Schaaf, C. B.: Generation and evaluation of the VIIRS land surface phenology product, Remote Sens. Environ., 216, 212–229, https://doi.org/10.1016/j.rse.2018.06.047, 2018. a
Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., and Mi, J.: GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery, Earth Syst. Sci. Data, 13, 2753–2776, https://doi.org/10.5194/essd-13-2753-2021, 2021. a
Zheng, B., Campbell, J., Serbin, G., and Daughtry, C.: Multitemporal remote sensing of crop residue cover and tillage practices: A validation of the minNDTI strategy in the United States, J. Soil Water Conserv., 68, 120–131, https://doi.org/10.2489/jswc.68.2.120, 2013. a
Zhou, J., Jia, L., Menenti, M., and Gorte, B.: On the performance of remote sensing time series reconstruction methods – A spatial comparison, Remote Sens. Environ., 187, 367–384, https://doi.org/10.1016/j.rse.2016.10.025, 2016. a, b
Zhou, T., Geng, Y., Ji, C., Xu, X., Wang, H., Pan, J., Bumberger, J., Haase, D., and Lausch, A.: Prediction of soil organic carbon and the C:N ratio on a national scale using machine learning and satellite data: A comparison between Sentinel-2, Sentinel-3 and Landsat-8 images, Sci. Total Environ., 755, 142661, https://doi.org/10.1016/j.scitotenv.2020.142661, 2021. a
Short summary
Our study introduces a Landsat-based data cube simplifying access to detailed environmental data across Europe from 2000 to 2022, covering vegetation, water, soil, and crops. Our experiments demonstrate its effectiveness in developing environmental models and maps. Tailored feature selection is crucial for its effective use in environmental modeling. It aims to support comprehensive environmental monitoring and analysis, helping researchers and policy-makers in managing environmental resources.
Our study introduces a Landsat-based data cube simplifying access to detailed environmental data...
Altmetrics
Final-revised paper
Preprint