Articles | Volume 17, issue 2
https://doi.org/10.5194/essd-17-741-2025
https://doi.org/10.5194/essd-17-741-2025
Data description paper
 | 
26 Feb 2025
Data description paper |  | 26 Feb 2025

Time series of Landsat-based bimonthly and annual spectral indices for continental Europe for 2000–2022

Xuemeng Tian, Davide Consoli, Martijn Witjes, Florian Schneider, Leandro Parente, Murat Şahin, Yu-Feng Ho, Robert Minařík, and Tomislav Hengl

Related authors

OpenLandMap-soildb: global soil information at 30 m spatial resolution for 2000–2022+ based on spatiotemporal Machine Learning and harmonized legacy soil samples and observations
Tomislav Hengl, Davide Consoli, Xuemeng Tian, Travis W. Nauman, Madlene Nussbaum, Mustafa Serkan Isik, Leandro Parente, Yu-Feng Ho, Rolf Simoes, Surya Gupta, Alessandro Samuel-Rosa, Taciara Zborowski Horst, José Lucas Safanelli, and Nancy Harris
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-336,https://doi.org/10.5194/essd-2025-336, 2025
Preprint under review for ESSD
Short summary

Cited articles

Baumann, P.: On the analysis-readiness of spatio-temporal earth data and suggestions for its enhancement, Environ. Model. Softw., 176, 106017, https://doi.org/10.1016/j.envsoft.2024.106017, 2024. a
Beeson, P. C., Daughtry, C. S., and Wallander, S. A.: Estimates of conservation tillage practices using landsat archive, Remote Sens., 12, 2665, https://doi.org/10.3390/rs12162665, 2020. a, b
Bolton, D. K., Gray, J. M., Melaas, E. K., Moon, M., Eklundh, L., and Friedl, M. A.: Continental-scale land surface phenology from harmonized Landsat8 and Sentinel-2 imagery, Remote Sens. Environ., 240, 111685, https://doi.org/10.1016/j.rse.2020.111685, 2020. a, b
Broeg, T., Don, A., Gocht, A., Scholten, T., Taghizadeh-Mehrjardi, R., and Erasmi, S.: Using local ensemble models and Landsat bare soil composites for large-scale soil organic carbon maps in cropland, Geoderma, 444, 116850, https://doi.org/10.1016/j.geoderma.2024.116850, 2024. a
Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S. B., Mazzariello, J., Czerwinski, W., Pasquarella, V. J., Haertel, R., Ilyushchenko, S., et al.: Dynamic World, Near real-time global 10 m land use land cover mapping, Sci. Data, 9, 251, https://doi.org/10.1038/s41597-022-01307-4, 2022. a
Download
Short summary
Our study introduces a Landsat-based data cube simplifying access to detailed environmental data across Europe from 2000 to 2022, covering vegetation, water, soil, and crops. Our experiments demonstrate its effectiveness in developing environmental models and maps. Tailored feature selection is crucial for its effective use in environmental modeling. It aims to support comprehensive environmental monitoring and analysis, helping researchers and policy-makers in managing environmental resources.
Share
Altmetrics
Final-revised paper
Preprint