Articles | Volume 17, issue 2
https://doi.org/10.5194/essd-17-741-2025
https://doi.org/10.5194/essd-17-741-2025
Data description paper
 | 
26 Feb 2025
Data description paper |  | 26 Feb 2025

Time series of Landsat-based bimonthly and annual spectral indices for continental Europe for 2000–2022

Xuemeng Tian, Davide Consoli, Martijn Witjes, Florian Schneider, Leandro Parente, Murat Şahin, Yu-Feng Ho, Robert Minařík, and Tomislav Hengl

Related authors

OpenLandMap-soildb: global soil information at 30 m spatial resolution for 2000–2022+ based on spatiotemporal Machine Learning and harmonized legacy soil samples and observations
Tomislav Hengl, Davide Consoli, Xuemeng Tian, Travis W. Nauman, Madlene Nussbaum, Mustafa Serkan Isik, Leandro Parente, Yu-Feng Ho, Rolf Simoes, Surya Gupta, Alessandro Samuel-Rosa, Taciara Zborowski Horst, José Lucas Safanelli, and Nancy Harris
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-336,https://doi.org/10.5194/essd-2025-336, 2025
Preprint under review for ESSD
Short summary

Related subject area

Domain: ESSD – Land | Subject: Land Cover and Land Use
An annual cropland extent dataset for Africa at 30 m spatial resolution from 2000 to 2022
Zihang Lou, Dailiang Peng, Zhou Shi, Hongyan Wang, Ke Liu, Yaqiong Zhang, Xue Yan, Zhongxing Chen, Su Ye, Le Yu, Jinkang Hu, Yulong Lv, Hao Peng, Yizhou Zhang, and Bing Zhang
Earth Syst. Sci. Data, 17, 3777–3796, https://doi.org/10.5194/essd-17-3777-2025,https://doi.org/10.5194/essd-17-3777-2025, 2025
Short summary
Global agricultural lands in the year 2015
Zia Mehrabi, Kaitai Tong, Julie Fortin, Radost Stanimirova, Mark Friedl, and Navin Ramankutty
Earth Syst. Sci. Data, 17, 3473–3496, https://doi.org/10.5194/essd-17-3473-2025,https://doi.org/10.5194/essd-17-3473-2025, 2025
Short summary
The GIEMS-MethaneCentric database: a dynamic and comprehensive global product of methane-emitting aquatic areas
Juliette Bernard, Catherine Prigent, Carlos Jimenez, Etienne Fluet-Chouinard, Bernhard Lehner, Elodie Salmon, Philippe Ciais, Zhen Zhang, Shushi Peng, and Marielle Saunois
Earth Syst. Sci. Data, 17, 2985–3008, https://doi.org/10.5194/essd-17-2985-2025,https://doi.org/10.5194/essd-17-2985-2025, 2025
Short summary
An annual 30 m cultivated-pasture dataset of the Tibetan Plateau from 1988 to 2021
Binghong Han, Jian Bi, Shengli Tao, Tong Yang, Yongli Tang, Mengshuai Ge, Hao Wang, Zhenong Jin, Jinwei Dong, Zhibiao Nan, and Jin-Sheng He
Earth Syst. Sci. Data, 17, 2933–2952, https://doi.org/10.5194/essd-17-2933-2025,https://doi.org/10.5194/essd-17-2933-2025, 2025
Short summary
GloUCP: a global 1 km spatially continuous urban canopy parameters for the WRF model
Weilin Liao, Yanman Li, Xiaoping Liu, Yuhao Wang, Yangzi Che, Ledi Shao, Guangzhao Chen, Hua Yuan, Ning Zhang, and Fei Chen
Earth Syst. Sci. Data, 17, 2535–2551, https://doi.org/10.5194/essd-17-2535-2025,https://doi.org/10.5194/essd-17-2535-2025, 2025
Short summary

Cited articles

Baumann, P.: On the analysis-readiness of spatio-temporal earth data and suggestions for its enhancement, Environ. Model. Softw., 176, 106017, https://doi.org/10.1016/j.envsoft.2024.106017, 2024. a
Beeson, P. C., Daughtry, C. S., and Wallander, S. A.: Estimates of conservation tillage practices using landsat archive, Remote Sens., 12, 2665, https://doi.org/10.3390/rs12162665, 2020. a, b
Bolton, D. K., Gray, J. M., Melaas, E. K., Moon, M., Eklundh, L., and Friedl, M. A.: Continental-scale land surface phenology from harmonized Landsat8 and Sentinel-2 imagery, Remote Sens. Environ., 240, 111685, https://doi.org/10.1016/j.rse.2020.111685, 2020. a, b
Broeg, T., Don, A., Gocht, A., Scholten, T., Taghizadeh-Mehrjardi, R., and Erasmi, S.: Using local ensemble models and Landsat bare soil composites for large-scale soil organic carbon maps in cropland, Geoderma, 444, 116850, https://doi.org/10.1016/j.geoderma.2024.116850, 2024. a
Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S. B., Mazzariello, J., Czerwinski, W., Pasquarella, V. J., Haertel, R., Ilyushchenko, S., et al.: Dynamic World, Near real-time global 10 m land use land cover mapping, Sci. Data, 9, 251, https://doi.org/10.1038/s41597-022-01307-4, 2022. a
Download
Short summary
Our study introduces a Landsat-based data cube simplifying access to detailed environmental data across Europe from 2000 to 2022, covering vegetation, water, soil, and crops. Our experiments demonstrate its effectiveness in developing environmental models and maps. Tailored feature selection is crucial for its effective use in environmental modeling. It aims to support comprehensive environmental monitoring and analysis, helping researchers and policy-makers in managing environmental resources.
Share
Altmetrics
Final-revised paper
Preprint