Articles | Volume 17, issue 12
https://doi.org/10.5194/essd-17-6911-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-6911-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mexico's High Resolution Climate Database (MexHiResClimDB): a new daily high-resolution gridded climate dataset for Mexico covering 1951–2020
Jaime J. Carrera-Hernández
CORRESPONDING AUTHOR
Instituto de Geociencias, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
Cited articles
Aalto, J., Pirinen, P., and Jylhä, K.: New gridded daily climatology of Finland: Permutation-based uncertainty estimates and temporal trends in climate, Journal of Geophysical Research, 121, 3807–3823, https://doi.org/10.1002/2015JD024651, 2016. a
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., and Hegewisch, K. C.: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015, Scientific Data, 5, 1–12, https://doi.org/10.1038/sdata.2017.191, 2018. a
Aguilar-Barajas, I., Sisto, N. P., Ramirez, A. I., and Magaña-Rueda, V.: Building urban resilience and knowledge co-production in the face of weather hazards: flash floods in the Monterrey Metropolitan Area (Mexico), Environmental Science and Policy, 99, 37–47, https://doi.org/10.1016/j.envsci.2019.05.021, 2019. a, b
Alcántara-Ayala, I.: Hazard assessment of rainfall-induced landsliding in Mexico, Geomorphology, 61, 19–40, https://doi.org/10.1016/j.geomorph.2003.11.004, 2004. a
Alcántara-Ayala, I., Esteban-Chávez, O., and Parrot, J. F.: Landsliding related to land-cover change: A diachronic analysis of hillslope instability distribution in the Sierra Norte, Puebla, Mexico, Catena, 65, 152–165, https://doi.org/10.1016/j.catena.2005.11.006, 2006. a
Alcántara-Ayala, I., Garnica-Peña, R. J., Domínguez-Morales, L., González-Huesca, A. E., and Calderón-Vega, A.: The La Pintada landslide, Guerrero, Mexico: hints from the Pre-Classic to the disasters of modern times, Landslides, 14, 1195–1205, https://doi.org/10.1007/s10346-017-0808-9, 2017. a
Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Nelson, B. R., and Prat, O. P.: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies, Bulletin of the American Meteorological Society, 96, 69–83, https://doi.org/10.1175/BAMS-D-13-00068.1, 2015. a, b, c
Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., and Ziese, M.: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present, Earth Syst. Sci. Data, 5, 71–99, https://doi.org/10.5194/essd-5-71-2013, 2013. a
Beguería, S., Peña-Angulo, D., Trullenque-Blanco, V., and González-Hidalgo, C.: MOPREDAScentury: a long-term monthly precipitation grid for the Spanish mainland, Earth Syst. Sci. Data, 15, 2547–2575, https://doi.org/10.5194/essd-15-2547-2023, 2023. a
Behrangi, A., Guan, B., Neiman, P. J., Schreier, M., and Lambrigtsen, B.: On the quantification of atmospheric rivers precipitation from space: Composite assessments and case studies over the eastern north pacific ocean and the Western United States, Journal of Hydrometeorology, 17, 369–382, https://doi.org/10.1175/JHM-D-15-0061.1, 2016. a
Borja-Baeza, R. C. and Alcántara-Ayala, I.: Procesos de remocion en masa y riesgos asociados en zacapoaxtla, puebla, Investigaciones Geograficas, 53, 7–26, 2004. a
Capra, L., Lugo-Hubp, J., and Borselli, L.: Mass movements in tropical volcanic terrains: The case of Teziutlán (México), Engineering Geology, 69, 359–379, https://doi.org/10.1016/S0013-7952(03)00071-1, 2003a. a
Capra, L., Lugo-Hubp, J., and Dávila-Hernández, N.: Fenómenos de remoción en masa en el poblado de Zapotitlán de Méndez, Puebla: Relación entre litología y tipo de movimiento, Revista Mexicana de Ciencias Geologicas, 20, 95–106, 2003b. a
Carrera-Hernández, J. J.: A tale of Mexico's most exploited-and connected-watersheds: the Basin of Mexico and the Lerma-Chapala Basin, Wiley Interdisciplinary Reviews: Water, 5, e1247, https://doi.org/10.1002/wat2.1247, 2018. a, b
Carrera-Hernández, J.: Not all DEMs are equal: An evaluation of six globally available 30 m resolution DEMs with geodetic benchmarks and LiDAR in Mexico, Remote Sensing of Environment, 261, 19, https://doi.org/10.1016/j.rse.2021.112474, 2021. a
Carrera-Hernández, J. J.: Mexico's High Resolution Climate Database (MexHiResClimDB): daily, monthly, yearly and 30 year normals of precipitation and temperature (minimum, average and maximum) for the 1951–2020 period at a resolution of 20 arc sec, FigShare [data set], https://doi.org/10.6084/m9.figshare.c.7689428.v2, 2025a. a, b, c, d, e, f
Carrera-Hernández, J. J.: Mexico's High Resolution Climate Database (MexHiResClimDB): daily minimum temperature for Mexico, FigShare [data set], https://doi.org/10.6084/m9.figshare.28462808, 2025b. a, b
Carrera-Hernández, J. J.: Mexico's High Resolution Climate Database (MexHiResClimDB): daily average temperature for Mexico, FigShare [data set], https://doi.org/10.6084/m9.figshare.28462835, 2025c. a, b
Carrera-Hernández, J. J.: Mexico's High Resolution Climate Database (MexHiResClimDB): daily maximum temperature for Mexico, FigShare [data set], https://doi.org/10.6084/m9.figshare.28462820, 2025d. a, b
Carrera-Hernández, J. J.: Mexico's High Resolution Climate Database (MexHiResClimDB): daily precipitation for Mexico, FigShare [data set], https://doi.org/10.6084/m9.figshare.28462796, 2025e. a, b
Carrera-Hernández, J. J.: Mexico's High Resolution Climate Database (MexHiResClimDB): monthly minimum temperature for Mexico, FigShare [data set], https://doi.org/10.6084/m9.figshare.28124789, 2025f. a, b
Carrera-Hernández, J. J.: Mexico's High Resolution Climate Database (MexHiResClimDB): monthly average temperature for Mexico, FigShare [data set], https://doi.org/10.6084/m9.figshare.28462769, 2025g. a, b
Carrera-Hernández, J. J.: Mexico's High Resolution Climate Database (MexHiResClimDB): monthly maximum temperature for Mexico, FigShare [data set], https://doi.org/10.6084/m9.figshare.28462679, 2025h. a, b
Carrera-Hernández, J. J.: Mexico's High Resolution Climate Database (MexHiResClimDB): monthly precipitation for Mexico, FigShare [data set], https://doi.org/10.6084/m9.figshare.28462787, 2025i. a, b
Carrera-Hernández, J. J.: Mexico's High Resolution Climate Database (MexHiResClimDB): yearly data of Tmin, Tavg, Tmax and Precipitation for Mexico, FigShare [data set], https://doi.org/10.6084/m9.figshare.28074998, 2025j. a, b
Carrera-Hernández, J. J.: Mexico's High Resolution Climate Database (MexHiResClimDB): Monthly and yearly normals (1951–1980) of Tmin, Tavg, Tmax and Precipitation for Mexico, FigShare [data set], https://doi.org/10.6084/m9.figshare.28464398, 2025k. a, b
Carrera-Hernández, J. J.: Mexico's High Resolution Climate Database (MexHiResClimDB): Monthly and yearly normals (1961–1990) of Tmin, Tavg, Tmax and Precipitation for Mexico, FigShare [data set], https://doi.org/10.6084/m9.figshare.28464458, 2025l. a, b
Carrera-Hernández, J. J.: Mexico's High Resolution Climate Database (MexHiResClimDB): Monthly and yearly normals (1971–2000) of Tmin, Tavg, Tmax and Precipitation for Mexico, FigShare [data set], https://doi.org/10.6084/m9.figshare.28464461, 2025m. a, b
Carrera-Hernández, J. J.: Mexico's High Resolution Climate Database (MexHiResClimDB): Monthly and yearly normals (1981–2010) of Tmin, Tavg, Tmax and Precipitation for Mexico, FigShare [data set], https://doi.org/10.6084/m9.figshare.28464488, 2025n. a, b
Carrera-Hernández, J. J.: Mexico's High Resolution Climate Database (MexHiResClimDB): Monthly and yearly normals (1991–2020) of Tmin, Tavg, Tmax and Precipitation for Mexico, FigShare [data set], https://doi.org/10.6084/m9.figshare.28464494, 2025o. a, b
Carrera-Hernández, J. J.: Parallel Kriging in R using PostgreSQL and GRASS; code snippet, FigShare [code], https://doi.org/10.6084/m9.figshare.29840129, 2025p. a, b
Carrera-Hernández, J. J.: The MexHiResClimDB and the MexWatDB: Two new country-wide databases in Mexico to improve hydrological modelling from regional to local scales., EGU General Assembly 2025, Vienna, Austria, 27 Apr–2 May 2025, EGU25-4925, https://doi.org/10.5194/egusphere-egu25-4925, 2025q. a
Carrera-Hernández, J. and Gaskin, S.: Spatio temporal analysis of daily precipitation and temperature in the Basin of Mexico, Journal of Hydrology, 336, 231–249, https://doi.org/10.1016/j.jhydrol.2006.12.021, 2007. a, b, c
Carrera-Hernández, J. and Gaskin, S.: Spatio-temporal analysis of potential aquifer recharge: Application to the Basin of Mexico, Journal of Hydrology, 353, 228–246, https://doi.org/10.1016/j.jhydrol.2008.02.012, 2008a. a
Carrera-Hernández, J. and Gaskin, S.: The Basin of Mexico Hydrogeological Database (BMHDB): Implementation, queries and interaction with open source software, Environmental Modelling & Software, 23, 1271–1279, https://doi.org/10.1016/j.envsoft.2008.02.012, 2008b. a
Carrera-Hernández, J., Smerdon, B., and Mendoza, C.: Estimating groundwater recharge through unsaturated flow modelling: Sensitivity to boundary conditions and vertical discretization, Journal of Hydrology, 452, 90–101, 2012. a
Carrera-Hernández, J. J., Carreón-Freyre, D., Cerca-Martínez, M., and Levresse, G.: Groundwater flow in a transboundary fault-dominated aquifer and the importance of regional modeling: the case of the city of Querétaro, Mexico, Hydrogeology Journal, 24, 373–393, https://doi.org/10.1007/s10040-015-1363-x, 2016. a
Carrera-Hernández, J. J., Levresse, G. P., and Hernández-Espriú, J. A.: Geostatistical Analysis of Yearly Precipitation at the National Level: Stratification and Anisotropy Considerations in Mexico, Hydrol. Sc. J., https://doi.org/10.1080/02626667.2025.2534192, 2025. a, b, c
Carslaw, D. C. and Ropkins, K.: Openair – An r package for air quality data analysis, Environmental Modelling and Software, 27–28, 52–61, https://doi.org/10.1016/j.envsoft.2011.09.008, 2012. a
Castañeda, S., Botello, F., Sánchez-Cordero, V., and Sarkar, S.: Spatio-Temporal Distribution of Monarch Butterflies Along Their Migratory Route, Frontiers in Ecology and Evolution, 7, https://doi.org/10.3389/fevo.2019.00400, 2019. a
Cavazos, T., Luna‐Niño, R., Cerezo‐Mota, R., Fuentes‐Franco, R., Méndez, M., Martínez, L. F. P., and Valenzuela, E.: Climatic trends and regional climate models intercomparison over the CORDEX‐CAM (Central America, Caribbean, and Mexico) domain, International Journal of Climatology, 40, 1396–1420, https://doi.org/10.1002/joc.6276, 2020. a
CENAPRED: Socioeconomical impact of the main disasters that occurred in Mexico during 2013, Tech. rep., https://www.cenapred.unam.mx/es/Publicaciones/archivos/324-NO.15-IMPACTOSOCIOECONMICODELOSPRINCIPALESDESASTRESOCURRIDOSENMXICOENELAO2013.PDF (last access: November 2025), 2014. a
Colorado‐Ruiz, G. and Cavazos, T.: Trends of daily extreme and non‐extreme rainfall indices and intercomparison with different gridded data sets over Mexico and the southern United States, International Journal of Climatology, 41, 5406–5430, https://doi.org/10.1002/joc.7225, 2021. a
Conway, J., Eddelbuettel, D., Nishiyama, T., Kumar, S., and Tiffin, N.: RPostgreSQL: R Interface to the “PostgreSQL” Database System. R package version 0.7-5, https://cran.r-project.org/package=RPostgreSQL (last access: November 2025), 2023. a
Cuervo-Robayo, A. P., Téllez-Valdés, O., Gómez-Albores, M. A., Venegas-Barrera, C. S., Manjarrez, J., and Martínez-Meyer, E.: An update of high-resolution monthly climate surfaces for Mexico, International Journal of Climatology, 34, 2427–2437, https://doi.org/10.1002/joc.3848, 2014. a
Cuervo-Robayo, A. P., Ureta, C., Gómez-Albores, M. A., Meneses-Mosquera, A. K., Téllez-Valdés, O., and Martínez-Meyer, E.: One hundred years of climate change in Mexico, PLoS ONE, 15, 1–19, https://doi.org/10.1371/journal.pone.0209808, 2020. a
Cázares-Rodríguez, J. E., Vivoni, E. R., and Mascaro, G.: Comparison of two watershed models for addressing stakeholder flood mitigation strategies: Case study of Hurricane Alex in Monterrey, México, Journal of Hydrologic Engineering, 22, 1–16, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001560, 2017. a
Daly, C.: Guidelines for assessing the suitability of spatial climate data sets, International Journal of Climatology, 26, 707–721, https://doi.org/10.1002/joc.1322, 2006. a, b
de la Fraga, P., Del-Toro-Guerrero, F. J., Vivoni, E. R., Cavazos, T., and Kretzschmar, T.: Evaluation of gridded precipitation datasets in mountainous terrains of Northwestern Mexico, Journal of Hydrology: Regional Studies, 56, https://doi.org/10.1016/j.ejrh.2024.102019, 2024. a
Durre, I., Arguez, A., Schreck, C. J., Squires, M. F., and Vose, R. S.: Daily High-Resolution Temperature and Precipitation Fields for the Contiguous United States from 1951 to Present, Journal of Atmospheric and Oceanic Technology, 39, 1837–1855, https://doi.org/10.1175/JTECH-D-22-0024.1, 2022. a
Englehart, P. J. and Douglas, A. V.: Characterizing regional-scale variations in monthly and seasonal surface air temperature over Mexico, International Journal of Climatology, 24, 1897–1909, https://doi.org/10.1002/joc.1117, 2004. a
Esperon-Rodriguez, M., Correa-Metrio, A., Beaumont, L. J., Baumgartner, J. B., and Lenoir, J.: Evaluating the impact of protected areas in lowering extinction risks in a biodiversity hotspot, Biological Conservation, 297, 110728, https://doi.org/10.1016/j.biocon.2024.110728, 2024. a
Esquivel-Arriaga, G., Huber-Sannwald, E., Reyes-Gómez, V. M., Bravo-Peña, L. C., Dávila-Ortiz, R., Martínez-Tagüeña, N., and Velázquez-Zapata, J. A.: Performance Evaluation of Global Precipitation Datasets in Northern Mexico Drylands, Journal of Applied Meteorology and Climatology, 63, 1545–1558, https://doi.org/10.1175/JAMC-D-23-0227.1, 2024. a
Farfán, L. M., D'Sa, E. J., biu Liu, K., and Rivera-Monroy, V. H.: Tropical Cyclone Impacts on Coastal Regions: the Case of the Yucatán and the Baja California Peninsulas, Mexico, Estuaries and Coasts, 37, 1388–1402, https://doi.org/10.1007/s12237-014-9797-2, 2014. a
Feeley, K. J., Bravo-Avila, C., Fadrique, B., Perez, T. M., and Zuleta, D.: Climate-driven changes in the composition of New World plant communities, Nature Climate Change, 10, 965–970, https://doi.org/10.1038/s41558-020-0873-2, 2020. a
Fernández-Eguiarte, A. R., Romero-Cenento, R., and Zavala-Hidalgo, J.: Atlas climático de México y áreas adyacentes, vol. 1, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, https://atlasclimatico.unam.mx/ACM/ (last access: November 2025), 2012. a
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas, International Journal of Climatology, 37, 4302–4315, https://doi.org/10.1002/joc.5086, 2017. a
Frick, C., Steiner, H., Mazurkiewicz, A., Riediger, U., Rauthe, M., Reich, T., and Gratzki, A.: Central European high-resolution gridded daily data sets (HYRAS): Mean temperature and relative humidity, Meteorologische Zeitschrift, 23, 15–32, https://doi.org/10.1127/0941-2948/2014/0560, 2014. a
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The climate hazards infrared precipitation with stations – A new environmental record for monitoring extremes, Scientific Data, 2, 1–21, https://doi.org/10.1038/sdata.2015.66, 2015. a, b
García, E.: Modification to Koppen's climate classification system, Institute of Geography, UNAM, 5th edn., https://publicaciones.geografia.unam.mx/index.php/ig/catalog/view/83/82/251 (last access: November 2025), 2004. a
Goovaerts, P.: Geostatistics for Natural Resources and Evaluation, Oxford University Press, https://doi.org/10.1093/oso/9780195115383.001.0001, 1997. a
Goovaerts, P.: Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall, J. of Hydrology, 228, 113–129, 2000. a
Herrera, S., Cardoso, R. M., Soares, P. M., Espírito-Santo, F., Viterbo, P., and Gutiérrez, J. M.: Iberia01: a new gridded dataset of daily precipitation and temperatures over Iberia, Earth Syst. Sci. Data, 11, 1947–1956, https://doi.org/10.5194/essd-11-1947-2019, 2019. a
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A.: Very high resolution interpolated climate surfaces for global land areas, International Journal of Climatology, 25, 1965–1978, https://doi.org/10.1002/joc.1276, 2005. a
Hollis, D., McCarthy, M., Kendon, M., Legg, T., and Simpson, I.: HadUK-Grid—A new UK dataset of gridded climate observations, Geoscience Data Journal, 6, 151–159, https://doi.org/10.1002/gdj3.78, 2019. a
Hopkinson, R. F., McKenney, D. W., Milewska, E. J., Hutchinson, M. F., Papadopol, P., and Vincent, L. A.: Impact of Aligning Climatological Day on Gridding Daily Maximum–Minimum Temperature and Precipitation over Canada, Journal of Applied Meteorology and Climatology, 50, 1654–1665, https://doi.org/10.1175/2011JAMC2684.1, 2011. a
Huntington, T. G., Weiskel, P. K., Wolock, D. M., and McCabe, G. J.: A new indicator framework for quantifying the intensity of the terrestrial water cycle, Journal of Hydrology, 559, 361–372, https://doi.org/10.1016/j.jhydrol.2018.02.048, 2018. a
Hutchinson, M.: ANUSPLIN version 4.3, Tech. rep., Australian National University, https://fennerschool.anu.edu.au/research/products/anusplin-version-4-4 (last access: November 2025), 2007. a
Isaaks, E. H. and Srivastava, M.: An introduction to applied geostatistics, Oxford University Press, https://global.oup.com/academic/product/an-introduction-to-applied-geostatistics-9780195050134?cc=mx&lang=en&# (last access: November 2025), 1989. a
Jauregui, E.: Climatology of landfalling hurricanes and tropical storms in Mexico, Atmósfera, 16, 193–204, 2003. a
Livneh, B., Bohn, T. J., Pierce, D. W., Munoz-Arriola, F., Nijssen, B., Vose, R., Cayan, D. R., and Brekke, L.: A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950–2013, Scientific Data, 2, 150042, https://doi.org/10.1038/sdata.2015.42, 2015. a, b, c, d
Mankin, K. R., Mehan, S., Green, T. R., and Barnard, D. M.: Review of gridded climate products and their use in hydrological analyses reveals overlaps, gaps, and the need for a more objective approach to selecting model forcing datasets, Hydrol. Earth Syst. Sci., 29, 85–108, https://doi.org/10.5194/hess-29-85-2025, 2025. a
Meyer-Arendt, K. J.: Hurricane Gilbert: The storm of the century, GeoJournal, 23, 323–325, https://doi.org/10.1007/BF00193605, 1991. a, b
Page, T., Beven, K. J., Hankin, B., and Chappell, N. A.: Interpolation of rainfall observations during extreme rainfall events in complex mountainous terrain, Hydrological Processes, 36, 1–21, https://doi.org/10.1002/hyp.14758, 2022. a
Patterson, T. and Jenny, B.: The Development and Rationale of Cross-blended Hypsometric Tints, Cartographic Perspectives, 31–46, https://doi.org/10.14714/CP69.20, 2011. a
Pebesma, E. and Bivand, R.: Spatial Data Science, Chapman and Hall/CRC, https://doi.org/10.1201/9780429459016, 2023. a, b
Pedrozo-Acuña, A., Breña-Naranjo, J. A., and Domínguez-Mora, R.: The hydrological setting of the 2013 floods in Mexico, Weather, 69, 295–302, https://doi.org/10.1002/wea.2355, 2014. a
Perdigón-Morales, J., Romero-Centeno, R., Pérez, P. O., and Barrett, B. S.: The midsummer drought in Mexico: perspectives on duration and intensity from the CHIRPS precipitation database, International Journal of Climatology, 38, 2174–2186, https://doi.org/10.1002/joc.5322, 2018. a
Perez-Navarro, M. A., Broennimann, O., Esteve, M. A., Moya-Perez, J. M., Carreño, M. F., Guisan, A., and Lloret, F.: Temporal variability is key to modelling the climatic niche, Diversity and Distributions, 27, 473–484, https://doi.org/10.1111/ddi.13207, 2021. a
Ramírez-Arce, D., Ochoa-Ochoa, L., Lira-Noriega, A., and Martorell, C.: Reptile Diversity Patterns Under Climate and Land Use Change Scenarios in a Subtropical Montane Landscape in Mexico, Journal of Biogeography, https://doi.org/10.1111/jbi.15017, 2024. a
Razafimaharo, C., Krähenmann, S., Höpp, S., Rauthe, M., and Deutschländer, T.: New high-resolution gridded dataset of daily mean, minimum, and maximum temperature and relative humidity for Central Europe (HYRAS), Theoretical and Applied Climatology, 142, 1531–1553, https://doi.org/10.1007/s00704-020-03388-w, 2020. a
Rosengaus-Moshinsky, M., Arreguín-Cortés, F. I., Korenfeld-Federman, D., and Rubio-Gutiérrez, H.: Visión panorámica de las precipitaciones pluviales combinadas por los efectos de los ciclones tropicales Ingrid-Manuel, Tecnologia y Ciencias del Agua, 7, 73–92, 2016. a
Sáenz-Romero, C., Rehfeldt, G. E., Crookston, N. L., Duval, P., St-Amant, R., Beaulieu, J., Richardson, B. A., and Bryce, B.: Spline models of contemporary, 2030, 2060 and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation, Climatic Change, volume 102, 595–623, https://doi.org/10.1007/s10584-009-9753-5, 2010. a, b
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., and Rudolf, B.: GPCC's new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle, Theoretical and Applied Climatology, 115, 15–40, https://doi.org/10.1007/s00704-013-0860-x, 2014. a
Sekulić, A., Kilibarda, M., Protić, D., and Bajat, B.: A high-resolution daily gridded meteorological dataset for Serbia made by Random Forest Spatial Interpolation, Scientific Data, 8, 1–12, https://doi.org/10.1038/s41597-021-00901-2, 2021. a
Serrano-Notivoli, R. and Tejedor, E.: From rain to data: A review of the creation of monthly and daily station-based gridded precipitation datasets, WIREs Water, 8, https://doi.org/10.1002/wat2.1555, 2021. a, b
Serrano-Notivoli, R., Beguería, S., Saz, M. Á., Longares, L. A., and de Luis, M.: SPREAD: a high-resolution daily gridded precipitation dataset for Spain – an extreme events frequency and intensity overview, Earth Syst. Sci. Data, 9, 721–738, https://doi.org/10.5194/essd-9-721-2017, 2017. a
Shepard, D. S.: Computer mapping: the SYMAP interpolation algorithm, pp. 133–45, D. Reidel Publishing Company, 1984. a
Tadić, M. P.: Gridded Croatian climatology for 1961–1990, Theoretical and Applied Climatology, 102, 87–103, https://doi.org/10.1007/s00704-009-0237-3, 2010. a
Tang, G., Clark, M. P., Newman, A. J., Wood, A. W., Papalexiou, S. M., Vionnet, V., and Whitfield, P. H.: SCDNA: a serially complete precipitation and temperature dataset for North America from 1979 to 2018, Earth Syst. Sci. Data, 12, 2381–2409, https://doi.org/10.5194/essd-12-2381-2020, 2020. a
Thornton, P. E., Shrestha, R., Thornton, M., Kao, S.-C., Wei, Y., and Wilson, B. E.: Gridded daily weather data for North America with comprehensive uncertainty quantification, Scientific Data, 8, 190, https://doi.org/10.1038/s41597-021-00973-0, 2021. a, b, c, d
Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J.-M., Hoegh-Guldberg, O., and Bairlein, F.: Ecological responses to recent climate change, Nature, 416, 389–395, https://doi.org/10.1038/416389a, 2002. a
Wehner, M., Easterling, D. R., Lawrimore, J. H., Heim, R. R., Vose, R. S., and Santer, B. D.: Projections of Future Drought in the Continental United States and Mexico, Journal of Hydrometeorology, 12, 1359–1377, https://doi.org/10.1175/2011jhm1351.1, 2011. a, b
Willmott, C. J. and Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Climate Research, 30, 79–82, https://doi.org/10.3354/cr030079, 2005. a, b
Willmott, C. J. and Matsuura, K.: On the use of dimensioned measures of error to evaluate the performance of spatial interpolators, International Journal of Geographical Information Science, 20, 89–102, https://doi.org/10.1080/13658810500286976, 2006. a
Willmott, C. J., Robeson, S. M., Matsuura, K., and Ficklin, D. L.: Assessment of three dimensionless measures of model performance, Environmental Modelling and Software, 73, 167–174, https://doi.org/10.1016/j.envsoft.2015.08.012, 2015. a
WMO: WMO Guidelines on the Calculation of Climate Normals, WMO-No. 1203, p. 29, https://library.wmo.int/doc_num.php?explnum_id=4166 (last access: August 2025), 2017. a
Xavier, A. C., Scanlon, B. R., King, C. W., and Alves, A. I.: New improved Brazilian daily weather gridded data (1961–2020), International Journal of Climatology, 42, 8390–8404, https://doi.org/10.1002/joc.7731, 2022. a
Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh, A.: APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges, Bulletin of the American Meteorological Society, 93, 1401–1415, https://doi.org/10.1175/BAMS-D-11-00122.1, 2012. a
Zambrano-Bigiarini, M.: hydroTSM: Time Series Management, Analysis and Interpolation for Hydrological Modelling, Zenodo, https://doi.org/10.5281/zenodo.839565, 2024. a
Short summary
Mexico's High Resolution Database (MexHiResClimDB) provides gridded, high-resolution data (600 m) of daily, monthly and yearly precipitation and Tmin, Tmax, Tavg for the 1951–2020 period. With this new database it was possible to summarize extreme events of precipitation and temperature in Mexico and to show that there is an undeniable warming trend in Mexico; however, further studies are needed in order to pinpoint the areas where climate change is having a profound impact.
Mexico's High Resolution Database (MexHiResClimDB) provides gridded, high-resolution data (600...
Altmetrics
Final-revised paper
Preprint