Articles | Volume 17, issue 11
https://doi.org/10.5194/essd-17-6199-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-6199-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
PaleoRiada: a new integrated spatial database of palaeofloods in Spain
Kelly Patricia Sandoval-Rincón
Department of Geo-Hazards & Climate Change, Geological and Mining Institute of Spain (IGME), Spanish Scientific Research Council (CSIC), Rios Rosas 23, Madrid, Spain
Julio Garrote-Revilla
Department of Geodynamics, Stratigraphy and Palaeontology, Complutense University of Madrid, José Antonio Novais 12, Madrid, Spain
Daniel Vázquez-Tarrío
Department of Geo-Hazards & Climate Change, Geological and Mining Institute of Spain (IGME), Spanish Scientific Research Council (CSIC), Rios Rosas 23, Madrid, Spain
Silvia Cervel
Department of Geo-Hazards & Climate Change, Geological and Mining Institute of Spain (IGME), Spanish Scientific Research Council (CSIC), Rios Rosas 23, Madrid, Spain
Jose Hernández-Manchado
Department of Geo-Hazards & Climate Change, Geological and Mining Institute of Spain (IGME), Spanish Scientific Research Council (CSIC), Rios Rosas 23, Madrid, Spain
Juan López-Vinielles
Department of Geo-Hazards & Climate Change, Geological and Mining Institute of Spain (IGME), Spanish Scientific Research Council (CSIC), Rios Rosas 23, Madrid, Spain
Rosa María Mateos
Department of Geo-Hazards & Climate Change, Geological and Mining Institute of Spain (IGME), Spanish Scientific Research Council (CSIC), Rios Rosas 23, Madrid, Spain
Juan Antonio Ballesteros-Cánovas
Department of Geology, National Museum of Natural Sciences (MNCN), Spanish Scientific Research Council (CSIC), José Gutiérrez Abascal 2, Madrid, Spain
Gerardo Benito
Department of Geology, National Museum of Natural Sciences (MNCN), Spanish Scientific Research Council (CSIC), José Gutiérrez Abascal 2, Madrid, Spain
Department of Geo-Hazards & Climate Change, Geological and Mining Institute of Spain (IGME), Spanish Scientific Research Council (CSIC), Rios Rosas 23, Madrid, Spain
Related authors
No articles found.
Marcos Marín-Martín, Ernesto Tejedor, Gerardo Benito, Miguel A. Saz, Mariano Barriendos, Edurne Martínez del Castillo, Jan Esper, and Martín de Luis
Clim. Past, 21, 2205–2223, https://doi.org/10.5194/cp-21-2205-2025, https://doi.org/10.5194/cp-21-2205-2025, 2025
Short summary
Short summary
The Mediterranean faces more extreme weather. To understand these changes beyond short modern records, we studied Spanish pine tree rings, reconstructing over 500 years of rainfall. Our findings show that while past centuries had wet and dry periods, recent decades have experienced an unprecedented surge in both severe droughts and extreme wet events. This long-term view helps assess current climate shifts and their impact on ecosystems and water resources, highlighting the need for adaptation.
Tamir Grodek and Gerardo Benito
Nat. Hazards Earth Syst. Sci., 25, 4343–4360, https://doi.org/10.5194/nhess-25-4343-2025, https://doi.org/10.5194/nhess-25-4343-2025, 2025
Short summary
Short summary
Protecting urbanized alluvial fan canals and levees from flooding requires effective sediment retention measures, such as check dams, terraces, and trees on steep basins. However, their effectiveness declines over time due to sedimentation and aging, increasing the risk of catastrophic breaching floods. To enhance urban resilience, we propose preserving natural mountain basins and allocating about 35 % of the alluvial fan to channel migration and sediment deposition corridors.
Roberto Sarro, Mauro Rossi, Paola Reichenbach, and Rosa María Mateos
Nat. Hazards Earth Syst. Sci., 25, 1459–1479, https://doi.org/10.5194/nhess-25-1459-2025, https://doi.org/10.5194/nhess-25-1459-2025, 2025
Short summary
Short summary
This study proposes a novel systematic workflow that integrates source area identification, deterministic runout modelling, the classification of runout outputs to derive susceptibility zonation, and robust procedures for validation and comparison. The proposed approach enables the integration and comparison of different modelling, introducing a robust and consistent workflow/methodology that allows us to derive and verify rockfall susceptibility zonation, considering different steps.
Oriol Monserrat, Anna Barra, Marta Béjar-Pizarro, Jonathan S. Rivera, Jorge Pedro Galve, Carolina Guardiola, Maria Cuevas-González, Rosa Maria Mateos, Pablo Ezquerro, Jose Miguel Azañon, Saeedeh Shahbazi, Jose Navarro, Michele Crosetto, and Guido Luzi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 351–356, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-351-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-351-2024, 2024
Gerardo Benito, Olegario Castillo, Juan A. Ballesteros-Cánovas, Maria Machado, and Mariano Barriendos
Hydrol. Earth Syst. Sci., 25, 6107–6132, https://doi.org/10.5194/hess-25-6107-2021, https://doi.org/10.5194/hess-25-6107-2021, 2021
Short summary
Short summary
Climate change is expected to increase the intensity of floods, but changes are difficult to project. We compiled historical and modern flood data of the Rio Duero (Spain) to evaluate flood hazards beyond decadal climate cycles. Historical floods were obtained from documentary sources, identifying 69 floods over 1250–1871 CE. Discharges were calculated from reported flood heights. Flood frequency using historical datasets showed the most robust results, guiding climate change adaptation.
Cited articles
Amrhein, D. E., Hakim, G. J., and Parsons, L. A.: Quantifying Structural Uncertainty in Paleoclimate Data Assimilation With an Application to the Last Millennium, Geophysical Research Letters, 47, e2020GL090485, https://doi.org/10.1029/2020GL090485, 2020.
Archer, D. R., Parkin, G., and Fowler, H. J.: Assessing long term flash flooding frequency using historical information, Hydrology Research, 48, 1–16, https://doi.org/10.2166/nh.2016.031, 2017.
Arsuaga, J. L., Baquedano, E., Pérez-González, A., Sala, N., Quam, R. M., Rodríguez, L., García, R., García, N., Álvarez-Lao, D. J., Laplana, C., Huguet, R., Sevilla, P., Maldonado, E., Blain, H.-A., Ruiz-Zapata, M. B., Sala, P., Gil-García, M. J., Uzquiano, P., Pantoja, A., and Márquez, B.: Understanding the Ancient Habitats of the Last-Interglacial (Late MIS 5) Neanderthals of Central Iberia: Paleoenvironmental and Taphonomic Evidence from the Cueva Del Camino (Spain) Site, Quaternary International, 275, 55–75, https://doi.org/10.1016/j.quaint.2012.04.019, 2012.
Baker, V. R.: Paleoflood hydrologic techniques for the extension of stream flow records, Transportation Research Record, 18–23, ISSN 03611981, 1983.
Baker, V. R.: Paleoflood hydrology: Origin, progress, prospects, Geomorphology, 101, 1–13, https://doi.org/10.1016/j.geomorph.2008.05.016, 2008.
Baker, V. R., Webb, R. H., and House, P. K.: The scientific and societal value of paleoflood hydrology, in: Ancient Floods, Modern Hazards: Principles and Applications of Paleoflood Hydrology, Science and Application Series, 5(1), edited by: House, P. K., Webb, R. H., Baker, V. R., and Levish, D. R., American Geophysical Union, Washington D.C., USA, 127–146, https://doi.org/10.1029/WS005p0001, 2002.
Baker, V. R., Benito, G., Brown, A. G., Carling, P. A., Enzel, Y., Greenbaum, N., Herget, J., Kale, V. S., Latrubesse, E. M., Macklin, M. G., Nanson, G. C., Oguchi, T., Thorndycraft, V. R., Ben Dor, Y., and Zituni, R.: Fluvial palaeohydrology in the 21st century and beyond, Earth Surface Processes and Landforms, 47, 58–81, https://doi.org/10.1002/esp.5275, 2022.
Ballesteros-Cánovas, J. A., Bodoque, J. M., Díez-Herrero, A., Sanchez-Silva, M., and Stoffel, M.: Calibration of floodplain roughness and estimation of flood discharge based on tree-ring evidence and hydraulic modelling, Journal of Hydrology, 403, 103–115, https://doi.org/10.1016/j.jhydrol.2011.03.045, 2011a.
Ballesteros-Cánovas, J. A., Eguibar, M., Bodoque, J. M., Díez-Herrero, A., Stoffel, M., and Gutiérrez-Pérez, I.: Estimating flash flood discharge in an ungauged mountain catchment with 2D hydraulic models and dendrogeomorphic palaeostage indicators, Hydrol. Process., 25, 970–979, https://doi.org/10.1002/hyp.7888, 2011b.
Ballesteros-Cánovas, J. A., Sanchez-Silva, M., Bodoque, J. M., and Díez-Herrero, A.: An Integrated Approach to Flood Risk Management: A Case Study of Navaluenga (Central Spain), Water Resources Management, 27, 3051–3069, https://doi.org/10.1007/s11269-013-0332-1, 2013.
Ballesteros-Cánovas, J. A., Butler, D. R., and Stoffel, M.: R. S. Sigafoos's 1961 and 1964 Papers on Botanical Evidence of Paleofloods, Progress in Physical Geography, 39, 405–411, https://doi.org/10.1177/0309133315569339, 2015a.
Ballesteros-Cánovas, J. A., Stoffel, M., St George, S., and Hirschboeck, K.: A review of flood records from tree rings, Progress in Physical Geography: Earth and Environment, 39, 794–816, https://doi.org/10.1177/0309133315608758, 2015b.
Ballesteros-Cánovas, J. A., Stoffel, M., Spyt, B., Janecka, K., Kaczka, R. J., and Lempa, M.: Paleoflood discharge reconstruction in Tatra Mountain streams, Geomorphology, 272, 92–101, https://doi.org/10.1016/j.geomorph.2015.12.004, 2016.
Benito, G. and Díez-Herrero, A.: Palaeoflood Hydrology. En Hydro-Meteorological Hazards, Risks and Disasters, Elsevier, 65–104, https://doi.org/10.1016/B978-0-12-394846-5.00003-5, 2015.
Benito, G. and O’Connor, J. E.: Quantitative paleoflood hydrology, in: Treatise on Geomorphology, vol. 9, edited by: Shroder, J. F. and Wohl, E., Elsevier, Poland, 459–474, https://doi.org/10.1016/B978-0-12-374739-6.00250-5, 2013.
Benito, G. and Thorndycraft, V. (Eds.): Systematic, palaeoflood and historical data for the improvement of flood risk estimation: Methodological guidelines, CSIC-Centro de Ciencias Medioambientales, Madrid, Spain, 112, ISBN 84-921958-3-5, 2004.
Benito, G. and Thorndycraft, V. R.: Palaeoflood hydrology and its role in applied hydrological sciences, Journal of Hydrology, 313, 3–15, https://doi.org/10.1016/j.jhydrol.2005.02.002, 2005.
Benito, G. and Thorndycraft, V. R.: Catastrophic glacial-lake outburst flooding of the Patagonian Ice Sheet, Earth-Science Reviews, 200, 102996, https://doi.org/10.1016/j.earscirev.2019.102996, 2020.
Benito, G., Lang, M., Barriendos, M., Llasat, M. C., Francés, F., Ouarda, T., Thorndycraft, V., Enzel, Y., Bardossy, A., Coeur, D., and Bobée, B.: Use of Systematic, Palaeoflood and Historical Data for the Improvement of Flood Risk Estimation. Review of Scientific Methods, Natural Hazards, 31, 623–643, https://doi.org/10.1023/B:NHAZ.0000024895.48463.eb, 2004.
Benito, G., Ouarda, T. B. M. J., and Bárdossy, A.: Applications of palaeoflood hydrology and historical data in flood risk analysis, Journal of Hydrology, 313, 1–2, https://doi.org/10.1016/j.jhydrol.2005.02.001, 2005.
Benito, G., Rico, M., Thorndycraft, V.R., Sánchez-Moya, Y., Sopeña, A., Díez-Herrero, A., and Jiménez, A.: Palaeoflood records applied to assess dam safety in SE Spain, in: River Flow 2006, edited by: Ferreira, R., Alves, E., Leal, J., and Cardoso, A., Taylor and Francis Group, London, 2113–2120, ISBN 0-415-40815-6, 2006.
Benito, G., Thorndycraft, V. R., Rico, M., Sánchez-Moya, Y., and Sopeña, A.: Palaeoflood and floodplain records from Spain: Evidence for long-term climate variability and environmental changes, Geomorphology, 101, 68–77, https://doi.org/10.1016/j.geomorph.2008.05.020, 2008.
Benito, G., Botero, B. A., Thorndycraft, V. R., Rico, M., Sánchez-Moya, Y., Sopeña, A., Machado, M. J., and Dahan, O.: Rainfall-runoff modelling and palaeoflood hydrology applied to reconstruct centennial scale records of flooding and aquifer recharge in ungauged ephemeral rivers, Hydrol. Earth Syst. Sci., 15, 1185–1196, https://doi.org/10.5194/hess-15-1185-2011, 2011.
Benito, G., Brázdil, R., Herget, J., and Machado, M. J.: Quantitative historical hydrology in Europe, Hydrol. Earth Syst. Sci., 19, 3517–3539, https://doi.org/10.5194/hess-19-3517-2015, 2015a.
Benito, G., Macklin, M. G., Zielhofer, C., Jones, A. F., and Machado, M. J.: Holocene flooding and climate change in the Mediterranean, CATENA, 130, 13–33, https://doi.org/10.1016/j.catena.2014.11.014, 2015b.
Benito, G., Sanchez-Moya, Y., Medialdea, A., Barriendos, M., Calle, M., Rico, M., Sopeña, A., and Machado, M. J.: Extreme Floods in Small Mediterranean Catchments: Long-Term Response to Climate Variability and Change, Water, 12, https://doi.org/10.3390/w12041008, 2020.
Benito, G., Castillo, O., Ballesteros-Cánovas, J. A., Machado, M., and Barriendos, M.: Enhanced flood hazard assessment beyond decadal climate cycles based on centennial historical data (Duero basin, Spain), Hydrol. Earth Syst. Sci., 25, 6107–6132, https://doi.org/10.5194/hess-25-6107-2021, 2021.
Benito, G., Harden, T. M., and O'Connor, J.: Quantitative Paleoflood Hydrology, in: Treatise on Geomorphology, Elsevier, 743–764, https://doi.org/10.1016/B978-0-12-409548-9.12495-9, 2022.
Benito, G., Ballesteros-Cánovas, J. A., and Díez-Herrero, A.: Paleoflood hydrology, Hydro-Meteorological Hazards, Risks, and Disasters, 5, 33–83, https://doi.org/10.1016/B978-0-12-819101-9.00009-1, 2023a.
Benito, G., Greenbaum, N., Medialdea, A., Calle, M., Sanchez-Moya, Y., Machado, M., Ballesteros-Cánovas, J. A., and Corella, J. P.: Late Pleistocene–Holocene multi-decadal patterns of extreme floods in NW Iberia: The Duero River palaeoflood record, Quaternary Science Reviews, 321, 108356, https://doi.org/10.1016/j.quascirev.2023.108356, 2023b.
Bodoque, J. M., Eguibar, M. A., Díez-Herrero, A., Gutiérrez-Pérez, I., and Ruíz-Villanueva, V.: Can the discharge of a hyperconcentrated flow be estimated from paleoflood evidence?, Water Resources Research, 47, https://doi.org/10.1029/2011WR010380, 2011.
Boisson, E., Wilhelm, B., Garnier, E., Mélo, A., Anquetin, S., and Ruin, I.: Geo-historical database of flood impacts in Alpine catchments (HIFAVa database, Arve River, France, 1850–2015), Nat. Hazards Earth Syst. Sci., 22, 831–847, https://doi.org/10.5194/nhess-22-831-2022, 2022.
Bothe, O. and Zorita, E.: Technical note: Considerations on using uncertain proxies in the analogue method for spatiotemporal reconstructions of millennial-scale climate, Clim. Past, 17, 721–751, https://doi.org/10.5194/cp-17-721-2021, 2021.
Branson, J.: The GLOCOPH database. Data structure information, Geodata Institute, University of Southampton, 1995.
Casas Planes, A., Benito, G., Díez-Herrero, A., and Barriendos, M.: SPHERE-GIS: Implementation of a historical and palaeoflood geographical information system, in: Palaeofloods, historical data, and climatic variability: applications in flood risk assessment, edited by: Thorndycraft, V., Benito, G., Barriendos, M., and Llasat, Centro de Ciencias Medioambientales, 363–368, ISBN 8492195827, 2003.
Chatters, J. C. and Hoover, K. A.: Changing late Holocene flooding frequencies on the Columbia River, Washington, Quaternary Research, 26, 309–320, 1986.
Claps, P., Evangelista, G., Ganora, D., Mazzoglio, P., and Monforte, I.: FOCA: a new quality-controlled database of floods and catchment descriptors in Italy, Earth Syst. Sci. Data, 16, 1503–1522, https://doi.org/10.5194/essd-16-1503-2024, 2024.
Cloete, G., Benito, G., Grodek, T., Porat, N., Hoffman, J., and Enzel, Y.: Palaeoflood records to assist in design of civil infrastructure in ephemeral rivers with scarce hydrological data: Ugab River, Namibia, Journal of Hydrology: Regional Studies, 44, 101263, https://doi.org/10.1016/j.ejrh.2022.101263, 2022.
Codd, E. F.: A relational model of data for large shared data banks, Communications of ACM, 13, 377–387, https://doi.org/10.1145/362384.362685, 1970.
Date, C. J. (Ed.): An Introduction to Database Systems, 8th edn., Addison-Wesley Longman, ISBN 0-321-19784-4, 1999.
Delus, C., Sartor, J., Bonnot, E., François, D., Abèle, J., and Drogue, G.: New insights into Moselle River floods revealed by instrumental data, Hydrological Sciences Journal, 68, 1553–1566, https://doi.org/10.1080/02626667.2023.2224506, 2023.
Díez-Herrero, A.: Propuesta para superar el paradigma del periodo de retorno en el análisis y mitigación de los riesgos por inundaciones en ríos, in: Soluciones ante los riesgos climáticos en ríos y costas, edited by: Thomsen, A., Farinós, J., and Perero, E., Fundación Conama, 165–173, ISBN 978-84-09-35690-4, 2021.
Díez-Herrero, A., Benito, G., and Laín-Huerta, L.: Regional palaeoflood databases applied to flood hazards and palaeoclimate analysis, in: Palaeohydrology and Environmental Change, edited by: Benito, G., Baker, V. R., and Gregory, K. J., John Wiley and Sons Ltd, Chichester, UK, 335–347, ISBN 978-0-471-98465-8, 1998.
Díez-Herrero, A., Mateos, R. M., Vázquez-Tarrío, D., López-Marcos, A., and Brao-González, F. J.: One catastrophic flood every millennium: Synchronicity of extreme floods and global warm periods in the multi-archive record of the Roman theatre of Guadix (Granada, SE Spain), Global and Planetary Change, 233, 104363, https://doi.org/10.1016/j.gloplacha.2024.104363, 2024.
Efstratiadis, A., Koussis, A. D., Koutsoyiannis, D., and Mamassis, N.: Flood design recipes vs. reality: can predictions for ungauged basins be trusted?, Nat. Hazards Earth Syst. Sci., 14, 1417–1428, https://doi.org/10.5194/nhess-14-1417-2014, 2014.
Ely, L. L.: Response of extreme floods in the southwestern United States to climatic variations in the late Holocene, Geomorphology, 19, 175–201, 1997.
Ely, L. L. and Baker, V. R.: Reconstructing paleoflood hydrology with slackwater deposits: Verde river, Arizona, Phys. Geog., 6, 103–126, 1985.
Ely, L. L., Enzel, Y., O'Connor, J. E., and Baker, V. R.: Paleoflood Records and Risk Assessment: Examples from the Colorado River Basin, in: Water Resources Engineering Risk Assessment, edited by: Ganoulis, J., NATO ASI Series, Springer, 29, https://doi.org/10.1007/978-3-642-76971-9_8, 1991.
Enzel, Y., Ely, L. L., House, P. K., Baker, V. R., and Webb, R. H.: Paleoflood evidence for a natural upper bound to flood magnitudes in the Colorado River Basin, Water Resources Research, 29, 2287–2297, https://doi.org/10.1029/93WR00411, 1993.
Evin, G., Wilhelm, B., and Jenny, J.-P.: Flood hazard assessment of the Rhône River revisited with reconstructed discharges from lake sediments, Global and Planetary Change, 172, 114–123, https://doi.org/10.1016/j.gloplacha.2018.09.010, 2019.
Feinberg, J. M., Lascu, I., Lima, E. A., Weiss, B. P., Dorale, J. A., Alexander, E. C., and Edwards, R. L.: Magnetic detection of paleoflood layers in stalagmites and implications for historical land use changes, Earth and Planetary Science Letters, 530, 115946, https://doi.org/10.1016/j.epsl.2019.115946, 2020.
Fernández de Villalta, M., Benito, G., and Díez-Herrero, A.: Historical flood data analysis using a GIS: The PalaeoTagus Database, in: The Use of Historical Data in Natural Hazard Assessments, edited by: Glade, T., Albini, P., and Francés, F., Advances in Natural and Technological Hazards Research, https://doi.org/10.1007/978-94-017-3490-5, 2001.
Francés, F.: Using the TCEV distribution function with systematic and non-systematic data in a regional flood frequency analysis, Stochastic Hydrology and Hydraulics, 12(4), 267–283, https://doi.org/10.1007/s004770050021, 1998.
Garrote, J., Díez-Herrero, A., Génova, M., Bodoque, J. M., Perucha, M. A., and Mayer, P. L.: Improving Flood Maps in Ungauged Fluvial Basins with Dendrogeomorphological Data. An Example from the Caldera de Taburiente National Park (Canary Islands, Spain), Geosciences, 8, Article 8, https://doi.org/10.3390/geosciences8080300, 2018.
Garrote, J., Vazquez-Tarrio, D., Díez-Herrero, A., Gómez-Heras, M., and Martínez, J.: Hydromorphological modelling of the September 9th 2018 flash flood event at Medieval Sta. María de Huerta Monastery (Soria, Spain). A detailed hazard analysis for flood risk mitigation proposal, 10th International Conference on Geomorphology, Coimbra, Portugal, 12–16 Sep 2022, ICG2022-211, https://doi.org/10.5194/icg2022-211, 2022.
Gil-Guirado, S., Pérez-Morales, A., and Lopez-Martinez, F.: SMC-Flood database: a high-resolution press database on flood cases for the Spanish Mediterranean coast (1960–2015), Nat. Hazards Earth Syst. Sci., 19, 1955–1971, https://doi.org/10.5194/nhess-19-1955-2019, 2019.
Greenbaum, N., Schick, A. P., and Baker, V. R.: The palaeoflood record of a hyperarid catchment, Nahal Zin, Negev Desert, Israel, Earth Surface Processes and Landforms, 25, 951–971, https://doi.org/10.1002/1096-9837(200008)25:9<951::AID-ESP110>3.0.CO;2-8, 2000.
Greenbaum, N., Schwartz, U., Schick, A. P., and Enzell, Y.: Paleofloods and the Estimation of Long Term Transmission Losses and Recharge to the Lower Nahal Zin Alluvial Aquifer, Negev Desert, Israel, in: Ancient Floods, Modern Hazards, American Geophysical Union (AGU), 311–328, https://doi.org/10.1029/WS005p0311, 2002.
Greenbaum, N., Harden, T. M., Baker, V. R., Weisheit, J., Cline, M. L., Porat, N., Halevi, R., and Dohrenwend, J.: A 2000 year natural record of magnitudes and frequencies for the largest Upper Colorado River floods near Moab, Utah, Water Resources Research, 50, 5249–5269, https://doi.org/10.1002/2013WR014835, 2014.
Guo, Y., Ge, Y., Mao, P., Liu, T., Fu, X., and Wu, S.: Geomorphologic evidences and hydrologic reconstruction of Holocene catastrophic flood events in the Yarlung Tsangpo Grand Canyon, Eastern Himalaya, Journal of Hydrology, 626, 130146, https://doi.org/10.1016/j.jhydrol.2023.130146, 2023.
Harden, T. M., Ryberg, K. R., O'Connor, J. E., Friedman, J. M., and Kiang, J. E.: Historical and paleoflood analyses for probabilistic flood-hazard assessments – Approaches and review guidelines, in: Techniques and Methods (4-B6), U. S. Geological Survey, https://doi.org/10.3133/tm4B6, 2021.
Harrison, S. S. and Reid, J. R.: A flood-frequency graph based on tree-scar data, Proceedings of the North Dakota Academy of Science, 21, 23–33, 1967.
Hirschboeck, K., Wood, M. L., Fenbiao, N., and Baker, V.: The Global Paleoflood Database Project, Second International Meeting on Global Continental Paleohydrology, 1996.
Hrachowitz, M., Savenije, H. H. G., Blöschl, G., McDonnell, J. J., Sivapalan, M., Pomeroy, J. W., Arheimer, B., Blume, T., Clark, M. P., Ehret, U., Fenicia, F., Freer, J. E., Gelfan, A., Gupta, H. V., Hughes, D. A., Hut, R. W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P. A., Uhlenbrook, S., Wagener, T., Winsemius, H. C., Woods, R. A., Zehe, E., and Cudennec, C.: A decade of Predictions in Ungauged Basins (PUB) – A review, Hydrological Sciences Journal, 18, 1198–1255, https://doi.org/10.1080/02626667.2013.803183, 2013.
Jarrett, R. D. and Tomlinson, E. M.: Regional interdisciplinary paleoflood approach to assess extreme flood potential, Water Resources Research, 36, 2957–2984, https://doi.org/10.1029/2000WR900098, 2000.
Jean-François, B.: Hydrological and post-depositional impacts on the distribution of Holocene archaeological sites: The case of the Holocene middle Rhône River basin, France, Geomorphology, 129, 167–182, https://doi.org/10.1016/j.geomorph.2011.02.021, 2011.
Jenny, J.-P., Wilhelm, B., Arnaud, F., Sabatier, P., Giguet Covex, C., Mélo, A., Fanget, B., Malet, E., Ployon, E., and Perga, M. E.: A 4D sedimentological approach to reconstructing the flood frequency and intensity of the Rhône River (Lake Bourget, NW European Alps), Journal of Paleolimnology, 51, 469–483, https://doi.org/10.1007/s10933-014-9768-4, 2014.
Jiménez Álvarez, A., García Montañés, C., Mediero Orduña, L., Inicio Caballero, L., and Garrote Revilla, J.: El mapa de caudales máximos de las cuencas intercomunitarias, Revista de Obras Públicas: Órgano Profesional de los Ingenieros de Caminos, Canales y Puertos, 3533, 7–32, ISSN 0034-8616 No. 3.533, 2012.
Kale, V. S.: Palaeoflood Hydrology in the Indian Context, Geological Society of India, 71, 56–66, ISSN 0974-6889, 2008.
Kehl, M., Álvarez-Alonso, D., de Andrés-Herrero, M., Díez-Herrero, A., Klasen, N., Rethemeyer, J., and Weniger, G.-C.: The rock shelter Abrigo del Molino (Segovia, Spain) and the timing of the late Middle Paleolithic in Central Iberia, Quaternary Research, 90, 180–200, https://doi.org/10.1017/qua.2018.13, 2018.
Kjeldsen, T. R., Macdonald, N., Lang, M., Mediero, L., Albuquerque, T., Bogdanowicz, E., Brázdil, R., Castellarin, A., David, V., Fleig, A., Gül, G. O., Kriauciuniene, J., Kohnová, S., Merz, B., Nicholson, O., Roald, L. A., Salinas, J. L., Sarauskiene, D., Šraj, M., Strupczewski, W., Szolgay, J., Toumazis, A., Vanneuville, W., Veijalainen, N., and Wilson, D.:: Documentary evidence of past floods in Europe and their utility in flood frequency estimation, Journal of Hydrology, 517, 963–973, https://doi.org/10.1016/j.jhydrol.2014.06.038, 2014.
Kochel, R. C. and Baker, V. R.: Paleoflood Hydrology, Science, 215, 353–361, https://doi.org/10.1126/science.215.4531.353, 1982.
Lam, D., Thompson, C., Croke, J., Sharma, A., and Macklin, M.: Reducing uncertainty with flood frequency analysis: The contribution of paleoflood and historical flood information, Water Resources Research, 53, 2312–2327, https://doi.org/10.1002/2016WR019959, 2017.
Levish, D., Ostenaa, D., and O’Connell, D.: Paleoflood hydrology and dam safety, in: Waterpower 97: Proceedings of the International Conference on Hydropower, edited by: Mahoney, D. J., Atlanta, Georgia, August 5–8, 2205–2214, ISBN 0784402663, 1997.
Levish, D. R.: Paleohydrologic Bounds: Nonexceedance information for flood hazard assessment, in: Ancient Floods, Modern Hazards, American Geophysical Union (AGU), 175–190, https://doi.org/10.1029/WS005p0175, 2002.
Liu, T., Greenbaum, N., Baker, V. R., Ji, L., Onken, J., Weisheit, J., Porat, N., and Rittenour, T.: Paleoflood hydrology on the lower Green River, upper Colorado River Basin, USA: An example of a naturalist approach to flood-risk analysis, Journal of Hydrology, 580, 124337, https://doi.org/10.1016/j.jhydrol.2019.124337, 2020.
Llasat, M. C., Llasat-Botija, M., and López, L.: A press database on natural risks and its application in the study of floods in Northeastern Spain, Nat. Hazards Earth Syst. Sci., 9, 2049–2061, https://doi.org/10.5194/nhess-9-2049-2009, 2009.
Macdonald, N. and Black, A. R.: Reassessment of flood frequency using historical information for the River Ouse at York, UK (1200–2000), Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 55, 1152–1162, https://doi.org/10.1080/02626667.2010.508873, 2010.
Machado, M. J., Botero, B. A., López, J., Francés, F., Díez-Herrero, A., and Benito, G.: Flood frequency analysis of historical flood data under stationary and non-stationary modelling, Hydrol. Earth Syst. Sci., 19, 2561–2576, https://doi.org/10.5194/hess-19-2561-2015, 2015.
Macklin, M. G. and Lewin, J.: River sediments, great floods and centennial-scale Holocene climate change, Journal of Quaternary Science, 18, 101–105, https://doi.org/10.1002/jqs.751, 2003.
Malaak, K., Henning, R., Holger, L., and Jurgen, K.: Extreme Value Analysis Considering Trends: Application to Discharge Data of the Danube River Basin, in: In Extremis: Disruptive Events and Trends in Climate and Hydrology, edited by: Kropp, J. and Schellnhuber, H. J., https://doi.org/10.1007/978-3-642-14863-7, 2011.
Menéndez-Campo, M. and Quintas Ripoll, L.: Tratamiento y difusión de los datos hidrológicos: anuario de aforos y base de datos, Revista Digital del CEDEX, (80), 37, ISSN 0213-8468, 1991.
Miller, J. R., Walsh, D., and Villarroel, L. F.: Use of Paleoflood Deposits to Determine the Contribution of Anthropogenic Trace Metals to Alluvial Sediments in the Hyperarid Rio Loa Basin, Chile, Geosciences, 9, Article 6, https://doi.org/10.3390/geosciences9060244, 2019.
Moreno, A., Valero-Garcés, B. L., González-Sampériz, P., and Rico, M.: Flood response to rainfall variability during the last 2000 years inferred from the Taravilla Lake record (Central Iberian Range, Spain), Journal of Paleolimnology, 40, 943–961, https://doi.org/10.1007/s10933-008-9209-3, 2008.
Napolitano, E., Marchesini, I., Salvati, P., Donnini, M., Bianchi, C., and Guzzetti, F.: LAND-deFeND – An innovative database structure for landslides and floods and their consequences, Journal of Environmental Management, 207, 203–218, https://doi.org/10.1016/j.jenvman.2017.11.022, 2018.
O'Connell, D. R. H., Ostenaa, D. A., Levish, D. R., and Klinger, R. E.: Bayesian flood frequency analysis with paleohydrologic bound data, Water Resources Research, 38, 16-1–16-13, https://doi.org/10.1029/2000WR000028, 2002.
O'Connor, J. E., Webb, R. H., and Baker, V. R.: Paleohydrology of pool-and-riffle pattern development: Boulder Creek, Utah, GSA Bulletin, 97, 410–420, https://doi.org/10.1130/0016-7606(1986)97<410:POPPDB>2.0.CO;2, 1986.
Patton, P. C. and Dibble, D. S.: Archeologic and geomorphic evidence for the paleohydrologic record of the Pecos River in West Texas, American Journal of Science, 282, 97–121, https://doi.org/10.2475/ajs.282.2.97, 1982.
Reinders, J. B. and Muñoz, S. E.: Improvements to Flood Frequency Analysis on Alluvial Rivers Using Paleoflood Data, Water Resources Research, 57, e2020WR028631, https://doi.org/10.1029/2020WR028631, 2021.
Renard, B.: Use of a national flood mark database to estimate flood hazard in the distant past, Hydrological Sciences Journal, 68, 1078–1094, https://doi.org/10.1080/02626667.2023.2212165, 2023.
Sandoval-Rincón, K. P., Garrote, J., Vázquez Tarrío, D., Cervel, S., Hernández, J. R., López Vinielles, J., Mateos, R. M., Ballesteros-Cánovas, J., Benito, G., and Díez Herrero, A.: PaleoRiada: A New Integrated Spatial Database of Palaeofloods in Spain (Version 4), Zenodo [data set], https://doi.org/10.5281/zenodo.17391823, 2025.
Schillereff, D. N., Chiverrell, R. C., Macdonald, N., Hooke, J. M., Welsh, K. E., Piliposian, G., and Croudace, I.: Convergent human and climate forcing of late-Holocene flooding in Northwest England, Global and Planetary Change, 182, 102998, https://doi.org/10.1016/j.gloplacha.2019.102998, 2019.
Sigafoos, R. S.: Vegetation in relation to flood frequency near Washington, DC, US Geological Survey, Professional Paper 424-C, 248–249, 1961.
Sigafoos, R. S.: Botanical evidence of floods and flood-plain deposition, US Geological Survey Professional Paper 485A, 1964.
Sivapalan, M.: Prediction in ungauged basins: A grand challenge for theoretical hydrology, Hydrological Processes, 17, 3163–3170, https://doi.org/10.1002/hyp.5155, 2003.
Thorndycraft, V. R. and Benito, G.: Late Holocene fluvial chronology of Spain: The role of climatic variability and human impact, Catena, 66, 34–41, https://doi.org/10.1016/j.catena.2005.07.007, 2006.
Thorndycraft, V. R., Benito, G., Rico, M., Sopeña, A., Sánchez-Moya, Y., and Casas, A.: A long-term flood discharge record derived from slackwater flood deposits of the Llobregat River, NE Spain, Journal of Hydrology, 313, 16–31, https://doi.org/10.1016/j.jhydrol.2005.02.003, 2005.
Thorndycraft, V. R., Barriendos, M., Benito, G., Rico, M., and Casas, A.: The catastrophic floods of AD 1617 in Catalonia (northeast Spain) and their climatic context, Hydrological Sciences Journal, 51, 899–912, https://doi.org/10.1623/hysj.51.5.899, 2006.
Van Der Meulen, B., Defilet, M. P., Tebbens, L. A., and Cohen, K. M.: Palaeoflood level reconstructions in a lowland setting from urban archaeological stratigraphy, Rhine river delta, the Netherlands, Catena, 212, 106031, https://doi.org/10.1016/j.catena.2022.106031, 2022.
Watt, A. and Eng, N.: Database Design, 2nd edn., BCcampues, Victoria, B. C., https://opentextbc.ca/dbdesign01/ (last access: 12 November 2025), 2014.
Webb, R. H., O'Connor, J. E., and Baker, V. R.: Paleohydrologic reconstruction of flood frequency on the Escalante river, south-central Utah, in: Flood Geomorphology, edited by: Baker, R. V., Kochel, R. C., and Patton, P. C., John Wiley and Sons, 403–418, ISBN 978-0-471-62558-2, 1988.
Wilhelm, B., Arnaud, F., Sabatier, P., Magand, O., Chapron, E., Courp, T., Tachikawa, K., Fanget, B., Malet, E., Pignol, C., Bard, E., and Delannoy, J. J.: Palaeoflood activity and climate change over the last 1400 years recorded by lake sediments in the north-west European Alps, Journal of Quaternary Science, 28, 189–199, https://doi.org/10.1002/jqs.2609, 2013.
Wilhelm, B., Ballesteros Cánovas, J. A., Macdonald, N., Toonen, W. H. J., Baker, V., Barriendos, M., Benito, G., Brauer, A., Corella, J. P., Denniston, R., Glaser, R., Ionita, M., Kahle, M., Liu, T., Luetscher, M., Macklin, M., Mudelsee, M., Munoz, S., Schulte, L., St. George, S., Stoffel, M., and Wetter, O.: Interpreting historical, botanical, and geological evidence to aid preparations for future floods, WIREs Water, 6, e1318, https://doi.org/10.1002/wat2.1318, 2019.
Wilhelm, B., Rapuc, W., Amann, B., Anselmetti, F. S., Arnaud, F., Blanchet, J., Brauer, A., Czymzik, M., Giguet-Covex, C., Gilli, A., Glur, L., Grosjean, M., Irmler, R., Nicolle, M., Sabatier, P., Swierczynski, T., and Wirth, S. B.: Impact of warmer climate periods on flood hazard in the European Alps, Nature Geoscience, 15, 118–123, https://doi.org/10.1038/s41561-021-00878-y, 2022.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., Bonino da Silva Santos, L., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., ’t Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management and stewardship, Scientific Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016.
Wu, L., Zhu, C., Ma, C., Li, F., Meng, H., Liu, H., Li, L., Wang, X., Sun, W., and Song, Y.: Mid-Holocene palaeoflood events recorded at the Zhongqiao Neolithic cultural site in the Jianghan Plain, middle Yangtze River Valley, China, Quaternary Science Reviews, 173, 145–160, https://doi.org/10.1016/j.quascirev.2017.08.018, 2017.
Zituni, R., Greenbaum, N., Porat, N., and Benito, G.: Magnitude, frequency and hazard assessment of the largest floods in steep, mountainous bedrock channels of the Southern Judean Desert, Israel, Journal of Hydrology: Regional Studies, 37, 100886, https://doi.org/10.1016/j.ejrh.2021.100886, 2021.
Short summary
Most published palaeoflood databases are outdated, lack hydrological data, and are difficult to access, especially for non-academic users such as flood risk managers. PaleoRiada, the first open palaeoflood database for Spain, addresses these issues by compiling data from 299 palaeoflood records, accessible through an open-access web platform. The database supports the revision of Potential Significant Flood Risk Areas and provides insights for regions not included in current national flood maps.
Most published palaeoflood databases are outdated, lack hydrological data, and are difficult to...
Altmetrics
Final-revised paper
Preprint