Articles | Volume 17, issue 11
https://doi.org/10.5194/essd-17-5983-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-5983-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Best practices for data management in marine science: lessons from the Nansen Legacy project
Norwegian Meteorological Institute, Oslo, Norway
The University Centre in Svalbard, Longyearbyen, Svalbard
Øystein Godøy
Norwegian Meteorological Institute, Oslo, Norway
Svalbard Integrated Arctic Earth Observing System, Longyearbyen, Svalbard
Tove Margrethe Gabrielsen
University of Agder, Kristiansand, Norway
The University Centre in Svalbard, Longyearbyen, Svalbard
Pål Gunnar Ellingsen
UiT the Arctic University of Norway, Tromsø, Norway
Marit Reigstad
UiT the Arctic University of Norway, Tromsø, Norway
Miriam Marquardt
UiT the Arctic University of Norway, Tromsø, Norway
Arnfinn Morvik
Institute of Marine Research, Bergen, Norway
Helge Sagen
Institute of Marine Research, Bergen, Norway
Stein Tronstad
Norwegian Polar Institute, Tromsø, Norway
Lara Ferrighi
Norwegian Meteorological Institute, Oslo, Norway
Related authors
No articles found.
Maria G. Digernes, Yasemin V. Bodur, Martí Amargant-Arumí, Oliver Müller, Jeffrey A. Hawkes, Stephen G. Kohler, Ulrike Dietrich, Marit Reigstad, and Maria L. Paulsen
Biogeosciences, 22, 601–623, https://doi.org/10.5194/bg-22-601-2025, https://doi.org/10.5194/bg-22-601-2025, 2025
Short summary
Short summary
Dissolved (DOM) and particulate organic matter (POM) are in constant exchange but are usually studied as distinct entities. We investigated the dynamics between POM and DOM in a sub-Arctic fjord across different seasons by conducting bi-monthly aggregation–dissolution experiments. During the productive period, POM concentrations increased in the experiment, and DOM molecules became more recalcitrant. During the winter period, POM concentrations decreased, and DOM molecules became more labile.
Johanna Tjernström, Michael Gallagher, Jareth Holt, Gunilla Svensson, Matthew D. Shupe, Jonathan J. Day, Lara Ferrighi, Siri Jodha Khalsa, Leslie M. Hartten, Ewan O'Connor, Zen Mariani, and Øystein Godøy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2088, https://doi.org/10.5194/egusphere-2024-2088, 2024
Preprint archived
Short summary
Short summary
The value of numerical weather predictions can be enhanced in several ways, one is to improve the representations of small-scale processes in models. To understand what needs to be improved, the model results need to be evaluated. Following standardized principles, a file format has been defined to be as similar as possible for both observational and model data. Python packages and toolkits are presented as a community resource in the production of the files and evaluation analysis.
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Taneil Uttal, Leslie M. Hartten, Siri Jodha Khalsa, Barbara Casati, Gunilla Svensson, Jonathan Day, Jareth Holt, Elena Akish, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Laura X. Huang, Robert Crawford, Zen Mariani, Øystein Godøy, Johanna A. K. Tjernström, Giri Prakash, Nicki Hickmon, Marion Maturilli, and Christopher J. Cox
Geosci. Model Dev., 17, 5225–5247, https://doi.org/10.5194/gmd-17-5225-2024, https://doi.org/10.5194/gmd-17-5225-2024, 2024
Short summary
Short summary
A Merged Observatory Data File (MODF) format to systematically collate complex atmosphere, ocean, and terrestrial data sets collected by multiple instruments during field campaigns is presented. The MODF format is also designed to be applied to model output data, yielding format-matching Merged Model Data Files (MMDFs). MODFs plus MMDFs will augment and accelerate the synergistic use of model results with observational data to increase understanding and predictive skill.
Zen Mariani, Sara M. Morris, Taneil Uttal, Elena Akish, Robert Crawford, Laura Huang, Jonathan Day, Johanna Tjernström, Øystein Godøy, Lara Ferrighi, Leslie M. Hartten, Jareth Holt, Christopher J. Cox, Ewan O'Connor, Roberta Pirazzini, Marion Maturilli, Giri Prakash, James Mather, Kimberly Strong, Pierre Fogal, Vasily Kustov, Gunilla Svensson, Michael Gallagher, and Brian Vasel
Earth Syst. Sci. Data, 16, 3083–3124, https://doi.org/10.5194/essd-16-3083-2024, https://doi.org/10.5194/essd-16-3083-2024, 2024
Short summary
Short summary
During the Year of Polar Prediction (YOPP), we increased measurements in the polar regions and have made dedicated efforts to centralize and standardize all of the different types of datasets that have been collected to facilitate user uptake and model–observation comparisons. This paper is an overview of those efforts and a description of the novel standardized Merged Observation Data Files (MODFs), including a description of the sites, data format, and instruments.
Pål Gunnar Ellingsen, Dag Lorentzen, David Kenward, James H. Hecht, J. Scott Evans, Fred Sigernes, and Marc Lessard
Ann. Geophys., 39, 849–859, https://doi.org/10.5194/angeo-39-849-2021, https://doi.org/10.5194/angeo-39-849-2021, 2021
Short summary
Short summary
Using the RENU2 rocket and ground-based instruments, we show that significant parts of the blue aurora above Svalbard at the time of launch were sunlit aurora. A sunlit aurora occurs when nitrogen molecules are ionised by extreme UV sunlight and subsequently hit by electrons from the Sun, resulting in blue and violet emissions. Understanding the source of an auroral emission gives insight into the interaction between the Sun and the Earth's upper atmosphere.
Joshua Dreyer, Noora Partamies, Daniel Whiter, Pål G. Ellingsen, Lisa Baddeley, and Stephan C. Buchert
Ann. Geophys., 39, 277–288, https://doi.org/10.5194/angeo-39-277-2021, https://doi.org/10.5194/angeo-39-277-2021, 2021
Short summary
Short summary
Small-scale auroral features are still being discovered and are not well understood. Where aurorae are caused by particle precipitation, the newly reported fragmented aurora-like emissions (FAEs) seem to be locally generated in the ionosphere (hence,
aurora-like). We analyse data from multiple instruments located near Longyearbyen to derive their main characteristics. They seem to occur as two types in a narrow altitude region (individually or in regularly spaced groups).
Cited articles
Assmy, P., Gradinger, R., Edvardsen, B., Wiktor, J., Tatarek, A., Kubiszyn, A. M., Goraguer, L., and Wold, A.: Nansen Legacy JC2-1 phytoplankton biodiversity, https://doi.org/10.21334/npolar.2022.afe4302c [data set], sampling event dataset accessed via GBIF.org on 15 August 2024, 2022a. a
Assmy, P., Gradinger, R., Edvardsen, B., Wiktor, J., Tatarek, A., Smola, Z., Goraguer, L., and Wold, A.: Nansen Legacy JC2-1 ice algae biodiversity, https://doi.org/10.21334/npolar.2022.afe4302c [data set], sampling event dataset accessed via GBIF.org on 15 August 2024, 2022b. a
Eaton, B., Gregory, J., Drach, B., Taylor, K., Hankin, S., Blower, J., Caron, J., Signell, R., Bentley, P., Rappa, G., Höck, H., Pamment, A., Juckes, M., Raspaud, M., Horne, R., Whiteaker, T., Blodgett, D., Zender, C., Lee, D., Hassell, D., Snow, A. D., Kölling, T., Allured, D., Jelenak, A., Sørensen, A. M., Gaultier, L., and Herlédan, S.: Climate and Forecast (CF) Metadata Conventions, https://cfconventions.org/ (last access: 6 November 2025), version 1.10, 2022. a
Eaton, B., Gregory, J., Drach, B., Taylor, K., Hankin, S., Blower, J., Caron, J., Signell, R., Bentley, P., Rappa, G., Höck, H., Pamment, A., Juckes, M., Raspaud, M., Horne, R., Whiteaker, T., Blodgett, D., Zender, C., Lee, D., Hassell, D., Snow, A. D., Kölling, T., Allured, D., Jelenak, A., Soerensen, A. M., Gaultier, L., Herlédan, S., Manzano, F., Bärring, L., Barker, C., and Bartholomew, S. L.: NetCDF Climate and Forecast (CF) Metadata Conventions, https://doi.org/10.5281/zenodo.11288138, 2024. a, b
Jones, E., Chierici, M., Lødemel, H. H., Møgster, J., Fonnes, L. L., and Fransson, A.: Water column data on dissolved inorganic nutrients (nitrite, nitrate, phosphate and silicic acid) from the Nansen Legacy cruises, https://doi.org/10.21335/NMDC-1698885798, 2024. a
Koenig, Z., Muilwijk, M., Sandven, H., Lundesgaard, Ø., Assmy, P., Lind, S., Assmann, K. M., Chierici, M., Fransson, A., Gerland, S., Jones, E., Renner, A. H., and Granskog, M. A.: From winter to late summer in the northwestern Barents Sea shelf: Impacts of seasonal progression of sea ice and upper ocean on nutrient and phytoplankton dynamics, Progress in Oceanography, 220, 103174, https://doi.org/10.1016/j.pocean.2023.103174, 2024. a
Magagna, B., Schultes, E. A., Pergl, R., Hettne, K. M., Kuhn, T., and Suchánek, M.: Reusable FAIR Implementation Profiles as Accelerators of FAIR Convergence, Springer International Publishing, Cham, 138–147, https://doi.org/10.31219/osf.io/2p85g, 2020. a
Marquardt, M., Patrohay, E., Goraguer, L., Dubourg, P., and Reigstad, M.: Concentration of Particulate Organic Carbon (POC) and Particulate Organic Nitrogen (PON) from the sea water and sea ice in the northern Barents Sea as part of the Nansen Legacy project, Cruise 2022702 JC3, [data set], https://doi.org/10.11582/2022.00052, 2022. a
Marquardt, M., Bluhm, B., and Gradinger, R.: Sea-ice meiofauna biodiversity from the Nansen Legacy cruise Q4 (cruise number: 2019711), https://doi.org/10.15468/gx9ujt [data set], sampling event dataset accessed via GBIF.org on 15 August 2024, 2023a. a
Marquardt, M., Goraguer, L., Assmy, P., Bluhm, B. A., Aaboe, S., Down, E., Patrohay, E., Edvardsen, B., Tatarek, A., Smoła, Z., Wiktor, J., and Gradinger, R.: Seasonal dynamics of sea-ice protist and meiofauna in the northwestern Barents Sea, Progress in Oceanography, 218, 103128, https://doi.org/10.1016/j.pocean.2023.103128, 2023b. a
Marsden, L.: How to publish FAIR Nansen Legacy data, https://doi.org/10.5281/zenodo.11067105, 2024a. a
Marsden, L.: NetCDF in Python – from beginner to pro, https://doi.org/10.5281/zenodo.10997447, 2024b. a
Marsden, L.: NetCDF in R – from beginner to pro, https://doi.org/10.5281/zenodo.11400754, 2024c. a
Marsden, L. and Schneider, O.: SIOS-Svalbard/Nansen_Legacy_template_generator: Nansen Legacy template generator, Zenodo [software], https://doi.org/10.5281/zenodo.8362212, 2023. a
Marsden, L. and Schneider, O.: The Nansen Legacy Template Generator for Darwin Core and CF-NetCDF, Data Science Journal, 23, https://doi.org/10.5334/dsj-2024-038, 2024. a
Müller, O., Petelenz, E., Tsagkaraki, T., Langvad, M., Olsen, L., Grytaas, A., Thiele, S., Stabell, H., Skjoldal, E., Våge, S., and Bratbak, G.: Flow cytometry measurements (abundance of virus, bacteria and small protists (primarily <20 µm)) during Nansen Legacy cruises, https://doi.org/10.21335/NMDC-1588963816 [data set], 2023. a, b
Reigstad, M., Fer, I., Ingvaldsen, R., Nilsen, F., Renner, A., Ludvigsen, M., Franson, A., Husum, K., Sundfjord, A., Gerland, S., Jones, E., Baumann, T., Søreide, J., Lundesgaard, Ø., and Husson, B.: CTD data from Nansen Legacy Cruises 2018–2022, https://doi.org/10.21335/NMDC-1174375695 [data set], 2024. a
Research Council of Norway: Sharing Research Data, https://www.forskningsradet.no/en/research-policy-strategy/open-science/research-data/, last access: 8 September 2023. a
Robertson, T., Döring, M., Guralnick, R., Bloom, D., Wieczorek, J., Braak, K., Otegui, J., Russell, L., and Desmet, P.: The GBIF integrated publishing toolkit: facilitating the efficient publishing of biodiversity data on the internet, PLOS ONE, 9, e102623, https://doi.org/10.1371/journal.pone.0102623, 2014. a
Tenopir, C., Rice, N. M., Allard, S., Baird, L., Borycz, J., Christian, L., Grant, B., Olendorf, R., and Sandusky, R. J.: Data sharing, management, use, and reuse: Practices and perceptions of scientists worldwide, PLOS ONE, 15, e0229003, https://doi.org/10.1371/journal.pone.0229003, 2020. a, b
The Nansen Legacy: Sampling Protocols: Version 10, https://doi.org/10.7557/nlrs.6684, 2022. a
Vader, A.: Chlorophyll A and phaeopigments Nansen Legacy, https://doi.org/10.21335/NMDC-1371694848 [data set], 2022. a, b
Wassmann, P.: Chapter 3 – The Nansen Legacy: pioneering research beyond the present ice edge of the Arctic Ocean, in: Partnerships in Marine Research, edited by: Auad, G. and Wiese, F. K., Science of Sustainable Systems, Elsevier, 33–51, https://doi.org/10.1016/B978-0-323-90427-8.00009-5, 2022. a, b
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., et al.: The FAIR Guiding Principles for scientific data management and stewardship, Scientific Data, 3, 160018, https://doi.org/10.1038/sdata.2016.18, 2016. a, b, c
Wold, A., Søreide, J. E., Svensen, C., Halvorsen, E., Hop, H., Kwasniewski, S., and Ormańczyk, M.: Nansen Legacy JC1 mesozooplankton biodiversity, https://doi.org/10.21334/npolar.2022.f8d4a1cb [data set], sampling event dataset accessed via GBIF.org on 15 August 2024, 2023. a
Short summary
This article explains how the Nansen Legacy project managed data from over 300 researchers and 20 expeditions in the northern Barents Sea. Shared rules for collecting samples kept the data consistent, and a searchable catalogue was provided details of the data collected on each cruise. The project also required early sharing and publishing of data in formats that computers can read and use, helping to maximise their impact. These approaches can guide future large research projects.
This article explains how the Nansen Legacy project managed data from over 300 researchers and...
Altmetrics
Final-revised paper
Preprint