Articles | Volume 17, issue 11
https://doi.org/10.5194/essd-17-5841-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-5841-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
China coastal GNSS network: advancing precipitable water vapor monitoring and applications in climate analysis
College of Surveying and Geo-Informatics, Tongji University, 200092, Shanghai, China
Bofeng Li
College of Surveying and Geo-Informatics, Tongji University, 200092, Shanghai, China
Qingyuan Liu
College of Surveying and Geo-Informatics, Tongji University, 200092, Shanghai, China
Yanxiong Liu
First Institute of Oceanography, Ministry of Natural Resources, 266061, Qingdao, China
Huayi Zhang
First Institute of Oceanography, Ministry of Natural Resources, 266061, Qingdao, China
Dongxu Zhou
First Institute of Oceanography, Ministry of Natural Resources, 266061, Qingdao, China
Yang Liu
CORRESPONDING AUTHOR
First Institute of Oceanography, Ministry of Natural Resources, 266061, Qingdao, China
Related authors
No articles found.
Rongxing Li, Hongwei Li, Tong Hao, Gang Qiao, Haotian Cui, Youquan He, Gang Hai, Huan Xie, Yuan Cheng, and Bofeng Li
The Cryosphere, 15, 3083–3099, https://doi.org/10.5194/tc-15-3083-2021, https://doi.org/10.5194/tc-15-3083-2021, 2021
Short summary
Short summary
We present the results of an assessment of ICESat-2 surface elevations along the 520 km CHINARE route in East Antarctica. The assessment was performed based on coordinated multi-sensor observations from a global navigation satellite system, corner cube retroreflectors, retroreflective target sheets, and UAVs. The validation results demonstrate that ICESat-2 elevations are accurate to 1.5–2.5 cm and can potentially overcome the uncertainties in the estimation of mass balance in East Antarctica.
H. Cui, R. Li, H. Li, T. Hao, G. Qiao, Y. He, G. Hai, H. Xie, Y. Cheng, and B. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2021, 443–448, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-443-2021, https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-443-2021, 2021
Yanguang Fu, Dongxu Zhou, Yikai Feng, and Xinghua Zhou
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-3, https://doi.org/10.5194/os-2021-3, 2021
Preprint withdrawn
Short summary
Short summary
In this study, long-term tide gauge observations and multi-mission satellite altimetry data were used to investigate the spatial distribution of the long-period tidal contribution in Chinese seas and analyze the relative long-period tidal contribution rate into four regions. The result indicate that the long-period tidal constituent cannot be neglected in the establishment of the LNLW datum to improve tidal datum precision.
Cited articles
Alshawaf, F., Balidakis, K., Dick, G., Heise, S., and Wickert, J.: Estimating trends in atmospheric water vapor and temperature time series over Germany, Atmos. Meas. Tech., 10, 3117–3132, https://doi.org/10.5194/amt-10-3117-2017, 2017.
Bai, J., Lou, Y., Zhang, W., Zhou, Y., Zhang, Z., and Shi, C.: Assessment and calibration of MODIS precipitable water vapor products based on GPS network over China, Atmospheric Research, 254, 105504, https://doi.org/10.1016/j.atmosres.2021.105504, 2021.
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R. H.: GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System, Journal of Geophysical Research: Atmospheres, 97, 15787–15801, https://doi.org/10.1029/92JD01517, 1992.
Bevis, M., Businger, S., Chiswell, S., Herring, T. A., Anthes, R. A., Rocken, C., and Ware, R. H.: GPS meteorology: Mapping zenith wet delays onto precipitable water, Journal of Applied Meteorology, 33, 379–386, 1994.
Böhm, J., Niell, A., Tregoning, P., and Schuh, H.: Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data, Geophysical Research Letters, 33, L07304, https://doi.org/10.1029/2005GL025546, 2006.
Böhm, J., Heinkelmann, R., and Schuh, H.: Short note: a global model of pressure and temperature for geodetic applications, Journal of Geodesy, 81, 679–683, 2007.
Bonafoni, S. and Biondi, R.: The usefulness of the Global Navigation Satellite Systems (GNSS) in the analysis of precipitation events, Atmospheric Research, 167, 15–23, 2016.
Bosser, P., Bock, O., Flamant, C., Bony, S., and Speich, S.: Integrated water vapour content retrievals from ship-borne GNSS receivers during EUREC4A, Earth Syst. Sci. Data, 13, 1499–1517, https://doi.org/10.5194/essd-13-1499-2021, 2021.
Chen, B., Dai, W., Liu, Z., Wu, L., and Xia, P.: Assessments of GMI-derived precipitable water vapor products over the south and east China seas using radiosonde and GNSS, Advances in Meteorology, 2018, 7161328, https://doi.org/10.1155/2018/7161328, 2018.
Chen, G. and Herring, T.: Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data, Journal of Geophysical Research: Solid Earth, 102, 20489–20502, 1997.
Dirmeyer, P. A. and Brubaker, K. L.: Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor, Journal of Hydrometeorology, 8, 20–37, 2007.
Durre, I., Yin, X., Vose, R. S., Applequist, S., and Arnfield, J.: Enhancing the data coverage in the integrated global radiosonde archive, Journal of Atmospheric and Oceanic Technology, 35, 1753–1770, 2018.
Elgered, G. and Jarlemark, P. O.: Ground-based microwave radiometry and long-term observations of atmospheric water vapor, Radio Science, 33, 707–717, 1998.
Galewsky, J., Steen-Larsen, H. C., Field, R. D., Worden, J., Risi, C., and Schneider, M.: Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle, Reviews of Geophysics, 54, 809–865, https://doi.org/10.1002/2015RG000512, 2016.
Gao, B. C. and Kaufman, Y. J.: Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels, Journal of Geophysical Research: Atmospheres, 108, https://doi.org/10.1029/2002JD003023, 2003.
Gendt, G., Dick, G., Reigber, C., Tomassini, M., Liu, Y., and Ramatschi, M.: Near real time GPS water vapor monitoring for numerical weather prediction in Germany, Journal of the Meteorological Society of Japan. Ser. II, 82, 361–370, https://doi.org/10.2151/jmsj.2004.361, 2004.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., and Schepers, D.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Jones, J., Vedel, H., de Haan, S., and Lewis, O.: E-GVAP: The EIG EUMETNET GNSS Water Vapour Programme, AGU Fall Meeting Abstracts, A13I-2268, https://ui.adsabs.harvard.edu/abs/2023AGUFM.A13I2268J/abstract (last access: 6 June 2025), 2023.
Karl, T. R. and Trenberth, K. E.: Modern global climate change, Science, 302, 1719–1723, 2003.
Liu, J. and Ge, M.: PANDA software and its preliminary result of positioning and orbit determination, Wuhan University Journal of Natural Sciences, 8, 603, https://doi.org/10.1007/BF02899825, 2003.
Petit, G. and Luzum, B.: IERS Conventions (2010) IERS Tech Note 36, Verlag des Bundesamtes für Geodäsie und Kartographie, Frankfurt am Main, https://apps.dtic.mil/sti/html/tr/ADA535671/ (last access: 6 June 2025), 2010.
Ross, R. J. and Elliott, W. P.: Radiosonde-based Northern Hemisphere tropospheric water vapor trends, Journal of Climate, 14, 1602–1612, 2001.
Saastamoinen, J.: Atmospheric correction for the troposphere and stratosphere in radio ranging satellites, The Use of Artificial Satellites for Geodesy, 15, 247–251, https://doi.org/10.1029/GM015p0247, 1972.
Sato, K., Realini, E., Tsuda, T., Oigawa, M., Iwaki, Y., Shoji, Y., and Seko, H.: A high-resolution, precipitable water vapor monitoring system using a dense network of GNSS receivers, Journal of Disaster Research, 8, 37–47, 2013.
Schmid, R., Dach, R., Collilieux, X., Jäggi, A., Schmitz, M., and Dilssner, F.: Absolute IGS antenna phase center model igs08. atx: status and potential improvements, Journal of Geodesy, 90, 343–364, 2016.
Schönemann, E., Gini, F., Enderle, W., Dilßner, F., Mayer, V., van Kints, M., Romero, I., Springer, T., and Traiser, B.: ESA/ESOC IGS Analysis Centre Technical Report 2023, IGS Central Bureau and University of Bern, 67, Bern Open Publishing, https://doi.org/10.48350/191991, 2024.
Schuler, T.: On ground-based GPS tropospheric delay estimation, Ph.D. Thesis, Studiengang Geodsie und Geoinformation, Universitt der Buundeswehr Munchen, https://athene-forschung.unibw.de/doc/85240/document.pdf, (last access: 5 October 2025), 2001.
Shi, Z., Q., Geng, J., Lou, Y., Ge, M., and Liu, J.: Recent development of PANDA software in GNSS data processing, International Conference on Earth Observation Data Processing and Analysis (ICEODPA), Wuhan, China, 72851S, https://doi.org/10.1117/12.816261,, 2008.
Solheim, F. S., Vivekanandan, J., Ware, R. H., and Rocken, C.: Propagation delays induced in GPS signals by dry air, water vapor, hydrometeors, and other particulates, Journal of Geophysical Research: Atmospheres, 104, 9663–9670, 1999.
Springer, T., Flohrer, C., Otten, M., and Enderle, W.: ESA reprocessing: advances in GNSS analysis, IGS workshop, Pasadena, USA, https://files.igs.org/pub/resource/pubs/workshop/2014/ (last access: 5 October 2025), 2014.
Tsushima, H. and Ohta, Y.: Review on near-field tsunami forecasting from offshore tsunami data and onshore GNSS data for tsunami early warning, Journal of Disaster Research, 9, 339–357, 2014.
Wang, J., Dai, A., and Mears, C.: Global water vapor trend from 1988 to 2011 and its diurnal asymmetry based on GPS, radiosonde, and microwave satellite measurements, Journal of Climate, 29, 5205–5222, 2016a.
Wang, X., Zhang, K., Wu, S., Fan, S., and Cheng, Y.: Water vapor-weighted mean temperature and its impact on the determination of precipitable water vapor and its linear trend, Journal of Geophysical Research: Atmospheres, 121, 833–852, 2016b.
Wang, X., Zhang, K., Wu, S., Li, Z., Cheng, Y., Li, L., and Yuan, H.: The correlation between GNSS-derived precipitable water vapor and sea surface temperature and its responses to El Niño–Southern Oscillation, Remote Sensing of Environment, 216, 1–12, 2018.
Wang, Z., Zhou, X., Liu, Y., Zhou, D., Zhang, H., and Sun, W.: Precipitable water vapor characterization in the coastal regions of China based on ground-based GPS, Advances in Space Research, 60, 2368–2378, 2017.
Ware, R. H., Fulker, D. W., Stein, S. A., Anderson, D. N., Avery, S. K., Clark, R. D., Droegemeier, K. K., Kuettner, J. P., Minster, J. B., and Sorooshian, S.: SuomiNet: A real-time national GPS network for atmospheric research and education, Bulletin of the American Meteorological Society, 81, 677–694, 2000.
Wu, J.-T., Wu, S. C., Hajj, G. A., Bertiger, W. I., and Lichten, S. M.: Effects of antenna orientation on GPS carrier phase, Manuscripta Geodaetica, 18, 91–98, 1993.
Wu, Z., Liu, Y., Liu, Y., Lu, C., He, X., Jin, K., and Xu, W.: Rapid calibration of HY-2A satellite-borne microwave radiometer using coastal GNSS observations, Journal of Geodesy, 96, 1–13, https://doi.org/10.1007/s00190-022-01617-w, 2022a.
Wu, Z., Lu, C., Zheng, Y., Liu, Y., Liu, Y., Xu, W., Jin, K., and Tang, Q.: Evaluation of Shipborne GNSS Precipitable Water Vapor Over Global Oceans From 2014 to 2018, IEEE Transactions on Geoscience Remote Sensing, 60, 1–15, https://doi.org/10.1109/TGRS.2022.3142745, 2022b.
Wu, Z., Li, B., Ge, H., Yuan, L., and Liu, Y.: Satellite-based remote sensing of atmospheric water vapor over oceans: an inter-comparison against shipborne GNSS observations, IEEE Transactions on Geoscience and Remote Sensing, https://doi.org/10.1109/TGRS.2024.3432774, 2024.
Wu, Z., Li, B., and Liu, Y.: China Coastal GNSS Network: Advancing Precipitable Water Vapor Monitoring and Applications in Climate Analysis, Tongji University [data set], https://doi.org/10.5281/zenodo.17012498, 2025.
Yang, F., Gong, X., Li, Z., Wang, Y., Song, S., Wang, H., and Chen, R.: Spatiotemporal distribution and impact factors of GNSS-PWV in China based on climate region, Advances in Space Research, 73, 4187–4201, 2024.
Yuan, P., Blewitt, G., Kreemer, C., Hammond, W. C., Argus, D., Yin, X., Van Malderen, R., Mayer, M., Jiang, W., and Awange, J.: An enhanced integrated water vapour dataset from more than 10 000 global ground-based GPS stations in 2020, Earth Syst. Sci. Data, 15, 723–743, https://doi.org/10.5194/essd-15-723-2023, 2023.
Zhang, W., Zhang, H., Liang, H., Lou, Y., Cai, Y., Cao, Y., Zhou, Y., and Liu, W.: On the suitability of ERA5 in hourly GPS precipitable water vapor retrieval over China, Journal of Geodesy, 93, 1897–1909, 2019.
Zhao, Q., Yao, Y., and Yao, W.: GPS-based PWV for precipitation forecasting and its application to a typhoon event, Journal of Atmospheric Solar-Terrestrial Physics, 167, 124–133, 2018.
Zheng, Y., Lu, C., Wu, Z., Liao, J., Zhang, Y., and Wang, Q.: Machine Learning-Based Model for Real-Time GNSS Precipitable Water Vapor Sensing, Geophysical Research Letters, 49, e2021GL096408, https://doi.org/10.1029/2021GL096408, 2022.
Zhou, D., Zhou, X., Zhang, H., Wang, Z., and Tang, Q.: Analysis of the Vertical Deformation of China Coastal Tide Stations Using GPS Continuous Observations, Geomatics and Information Science of Wuhan University, 41, 516–522, 2016.
Zhou, D., Liu, Y., Feng, Y., Zhang, H., Fu, Y., Liu, Y., and Tang, Q.: Absolute sea level changes along the coast of China from tide gauges, GNSS and satellite altimetry, Journal of Geophysical Research: Oceans, e2022JC018994, https://doi.org/10.1029/2022JC018994, 2022.
Zhu, L., Yang, L., Xu, Y., Zhang, H., Wu, Z., and Wang, Z.: Independent Validation of Jason-2/3 and HY-2B Microwave Radiometers Using Chinese Coastal GNSS, IEEE Transactions on Geoscience Remote Sensing, https://doi.org/10.1109/TGRS.2021.3106650, 2021.
Zumberge, J., Heflin, M., Jefferson, D., Watkins, M., and Webb, F. H.: Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research: Solid Earth, 102, 5005–5017, https://doi.org/10.1029/96JB03860, 1997.
Short summary
We created a reliable dataset of atmospheric water vapor from China's coastal stations (2009–2019), validated against global models and radiosonde data. The study highlights strong links between water vapor and sea surface temperature, aiding understanding of weather, extreme events, and climate change. This dataset supports improved forecasting and climate research.
We created a reliable dataset of atmospheric water vapor from China's coastal stations...
Altmetrics
Final-revised paper
Preprint