Articles | Volume 17, issue 11
https://doi.org/10.5194/essd-17-5745-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-5745-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CAMELS-NZ: hydrometeorological time series and landscape attributes for New Zealand
Sameen Bushra
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, University of Canterbury, Christchurch, New Zealand
Jeniya Shakya
Department of Civil and Environmental Engineering, University of Canterbury, Christchurch, New Zealand
Céline Cattoën
CORRESPONDING AUTHOR
Earth Sciences New Zealand, Christchurch, New Zealand
Te Pūnaha Matatini, University of Auckland, Auckland, New Zealand
Svenja Fischer
Hydrology and Environmental Hydraulics, Wageningen University & Research, Wageningen, the Netherlands
Markus Pahlow
Department of Civil and Environmental Engineering, University of Canterbury, Christchurch, New Zealand
Related authors
No articles found.
Christophe Cudennec, Ernest Amoussou, Yonca Cavus, Pedro L. B. Chaffe, Svenja Fischer, Salvatore Grimaldi, Jean-Marie Kileshye Onema, Mohammad Merheb, Maria-Jose Polo, Eric Servat, and Elena Volpi
Proc. IAHS, 385, 501–511, https://doi.org/10.5194/piahs-385-501-2025, https://doi.org/10.5194/piahs-385-501-2025, 2025
Toshio Koike, Shinji Egashira, Miho Ohara, Abdul Wahid Mohamed Rasmy, Tomoki Ushiyama, Mamoru Miyamoto, Daisuke Harada, Kensuke Naito, Christophe Cudennec, and Svenja Fischer
Proc. IAHS, 386, 353–354, https://doi.org/10.5194/piahs-386-353-2025, https://doi.org/10.5194/piahs-386-353-2025, 2025
Leigh Richard MacPherson, Arne Arns, Svenja Fischer, Fernando Javier Méndez, and Jürgen Jensen
Nat. Hazards Earth Syst. Sci., 23, 3685–3701, https://doi.org/10.5194/nhess-23-3685-2023, https://doi.org/10.5194/nhess-23-3685-2023, 2023
Short summary
Short summary
Efficient adaptation planning for coastal flooding caused by extreme sea levels requires accurate assessments of the underlying hazard. Tide-gauge data alone are often insufficient for providing the desired accuracy but may be supplemented with historical information. We estimate extreme sea levels along the German Baltic coast and show that relying solely on tide-gauge data leads to underestimations. Incorporating historical information leads to improved estimates with reduced uncertainties.
Leigh R. MacPherson, Arne Arns, Svenja Fischer, Fernando J. Méndez, and Jürgen Jensen
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-406, https://doi.org/10.5194/nhess-2021-406, 2022
Preprint withdrawn
Short summary
Short summary
Extreme sea levels represent one of the most damaging natural hazards due to their potential to cause flooding. We developed a new method which incorporates historical information with systematically recorded sea levels, leading to improved estimates of extreme sea levels with reduced uncertainties. Such information helps to improve coastal flood risk analyses, which in turn allows for more efficient planning of coastal protection measures.
Cited articles
Adams, C. J. and Ramsay, W. R. H.: Archean and Paleoproterozoic zircons in Paleozoic sandstones in southern New Zealand: evidence for remnant Nuna supercontinent and Ur continent rocks within Zealandia, Australian Journal of Earth Sciences, 69, 1061–1081, https://doi.org/10.1080/08120099.2022.2091039, 2022.
Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F.: GloFAS – global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci., 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013, 2013. a
Almagro, A., Oliveira, P. T. S., Meira Neto, A. A., Roy, T., and Troch, P.: CABra: a novel large-sample dataset for Brazilian catchments, Hydrol. Earth Syst. Sci., 25, 3105–3135, https://doi.org/10.5194/hess-25-3105-2021, 2021. a
Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G., Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset, Hydrol. Earth Syst. Sci., 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018. a, b, c
Andréassian, V., Hall, A., Chahinian, N., and Schaake, J.: Introduction and synthesis: Why should hydrologists work on a large number of basin data sets?, Large sample basin experiments for hydrological parametrization: results of the models parameter experiment-MOPEX, IAHS Red Books Series no. 307, 1–5, ISBN: 978-1-901502-73-2, 2006. a
Arsenault, R., Bazile, R., Ouellet Dallaire, C., and Brissette, F.: CANOPEX: A Canadian hydrometeorological watershed database, Hydrological Processes, 30, 2734–2736, https://doi.org/10.1002/hyp.10880, 2016. a
Ayzel, G. and Heistermann, M.: The effect of calibration data length on the performance of a conceptual hydrological model versus LSTM and GRU: A case study for six basins from the CAMELS dataset, Computers & Geosciences, 149, https://doi.org/10.1016/j.cageo.2021.104708, 2021. a
Bathelemy, R., Brigode, P., Andréassian, V., Perrin, C., Moron, V., Gaucherel, C., Tric, E., and Boisson, D.: Simbi: historical hydro-meteorological time series and signatures for 24 catchments in Haiti, Earth Syst. Sci. Data, 16, 2073–2098, https://doi.org/10.5194/essd-16-2073-2024, 2024. a
Bushra, S., Shakya, J., Cattoën, C., Fischer, S., and Pahlow, M.: CAMELS-NZ: Hydrometeorological time series and landscape attributes for Aotearoa New Zealand, University of Canterbury Data Repository [data set], https://doi.org/10.26021/canterburynz.28827644, 2025. a, b, c
Caloiero, T.: Analysis of daily rainfall concentration in New Zealand, Natural hazards, 72, 389–404, https://doi.org/10.1007/s11069-013-1015-1, 2014. a
Cattoën, C., Robertson, D. E., Bennett, J. C., Wang, Q. J., and Carey-Smith, T. K.: Calibrating Hourly Precipitation Forecasts with Daily Observations, Journal of Hydrometeorology, 21, 1655–1673, https://doi.org/10.1175/JHM-D-19-0246.1, 2020. a
Cattoën, C., Conway, J., Fedaeff, N., Lagrava, D., Blackett, P., Montgomery, K., Shankar, U., Carey-Smith, T., Moore, S., Mari, A. and Steinmetz, T.: A national flood awareness system for ungauged catchments in complex topography: The case of development, communication and evaluation in New Zealand, Journal of Flood Risk Management, 18, e12864, https://doi.org/10.1111/jfr3.12864, 2025. a, b, c, d, e, f, g, h
Chagas, V. B. P., Chaffe, P. L. B., Addor, N., Fan, F. M., Fleischmann, A. S., Paiva, R. C. D., and Siqueira, V. A.: CAMELS-BR: hydrometeorological time series and landscape attributes for 897 catchments in Brazil, Earth Syst. Sci. Data, 12, 2075–2096, https://doi.org/10.5194/essd-12-2075-2020, 2020. a
Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., Schmidt, J., and Uddstrom, M. J.: Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model, Advances in Water Resources, 31, 1309–1324, https://doi.org/10.1016/j.advwatres.2008.06.005, 2008. a, b, c
Collins, D.: New Zealand river hydrology under late 21st century climate change, Water, 12, 2175, https://doi.org/10.3390/w12082175, 2020a. a
Collins, D. B.: New Zealand river hydrology under late 21st century climate change, Water, 12, 2175, https://doi.org/10.3390/w12082175, 2020b. a
Coxon, G., Freer, J., Lane, R., Dunne, T., Knoben, W. J. M., Howden, N. J. K., Quinn, N., Wagener, T., and Woods, R.: DECIPHeR v1: Dynamic fluxEs and ConnectIvity for Predictions of HydRology, Geosci. Model Dev., 12, 2285–2306, https://doi.org/10.5194/gmd-12-2285-2019, 2019. a
Coxon, G., Addor, N., Bloomfield, J. P., Freer, J., Fry, M., Hannaford, J., Howden, N. J. K., Lane, R., Lewis, M., Robinson, E. L., Wagener, T., and Woods, R.: CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain, Earth Syst. Sci. Data, 12, 2459–2483, https://doi.org/10.5194/essd-12-2459-2020, 2020. a, b, c, d
Crochemore, L., Isberg, K., Pimentel, R., Pineda, L., Hasan, A., and Arheimer, B.: Lessons learnt from checking the quality of openly accessible river flow data worldwide, Hydrological Sciences Journal, 65, 699–711, https://doi.org/10.1080/02626667.2019.1659509, 2020. a, b
Delaigue, O., Guimarães, G. M., Brigode, P., Génot, B., Perrin, C., Soubeyroux, J.-M., Janet, B., Addor, N., and Andréassian, V.: CAMELS-FR dataset: a large-sample hydroclimatic dataset for France to explore hydrological diversity and support model benchmarking, Earth Syst. Sci. Data, 17, 1461–1479, https://doi.org/10.5194/essd-17-1461-2025, 2025. a, b, c
EHINZ: Social Vulnerability to the Impacts of Climate-Related Hazards in Aotearoa New Zealand, Tech. rep., Environmental Health Intelligence New Zealand, Wellington, https://www.climatecommission.govt.nz/public/Monitoring-and -reporting/NAPPA-2024/3.a-EHINZ_Social-vulnerability-to-the-impacts-of-climate-related-hazards.pdf (last access: 14 October 2025), 2024. a
Falkenmark, M. and Chapman, T. G.: Comparative hydrology: An ecological approach to land and water resources, UNESCO, Paris, ISBN 92-3-102571-6, 1989. a
Fowler, K. J., Peel, M. C., Western, A. W., Zhang, L., and Peterson, T. J.: Simulating runoff under changing climatic conditions: Revisiting an apparent deficiency of conceptual rainfall-runoff models, Water Resources Research, 52, 1820–1846, https://doi.org/10.1002/2015WR018068, 2016. a
Fowler, K. J. A., Acharya, S. C., Addor, N., Chou, C., and Peel, M. C.: CAMELS-AUS: hydrometeorological time series and landscape attributes for 222 catchments in Australia, Earth Syst. Sci. Data, 13, 3847–3867, https://doi.org/10.5194/essd-13-3847-2021, 2021. a, b, c
Fowler, K. J. A., Zhang, Z., and Hou, X.: CAMELS-AUS v2: updated hydrometeorological time series and landscape attributes for an enlarged set of catchments in Australia, Earth Syst. Sci. Data, 17, 4079–4095, https://doi.org/10.5194/essd-17-4079-2025, 2025. a, b
Gauch, M., Mai, J., and Lin, J.: The proper care and feeding of CAMELS: How limited training data affects streamflow prediction, Environmental Modelling & Software, 135, https://doi.org/10.1016/j.envsoft.2020.104926, 2021. a
Gibson, P. B., Rampal, N., Dean, S. M., and Morgenstern, O.: Storylines for future projections of precipitation over New Zealand in CMIP6 models, Journal of Geophysical Research: Atmospheres, 129, e2023JD039664, https://doi.org/10.1029/2023JD039664, 2024. a
Gibson, P. B., Broadbent, A. M., Stuart, S. J., Lewis, H., Campbell, I., Rampal, N., Harrington, L. J., and Williams, J.: Downscaled CMIP6 future climate projections for New Zealand: climatology and extremes, Weather and Climate Extremes, 49, 100784, https://doi.org/10.1016/j.wace.2025.100784, 2025. a, b, c, d, e, f
GNS-Science: Geological Map of New Zealand, GNS Science [data set], https://doi.org/10.21420/QF82-7D42, 2012. a
Griffiths, G. and McSaveney, M.: Distribution of mean annual precipitation across some steepland regions of New Zealand, New Zealand journal of science, 26, 197–209, 1983. a
Hao, Z., Jin, J., Xia, R., Tian, S., Yang, W., Liu, Q., Zhu, M., Ma, T., Jing, C., and Zhang, Y.: CCAM: China Catchment Attributes and Meteorology dataset, Earth Syst. Sci. Data, 13, 5591–5616, https://doi.org/10.5194/essd-13-5591-2021, 2021. a
Harrington, L. J., Dean, S. M., Awatere, S., Rosier, S., Queen, L., Gibson, P. B., Barnes, C., Zachariah, M., Philip, S., Kew, S., Koren, G., Pinto, I., Grieco, M., Vahlberg, M., Snigh, R., Heinrich, D., Thalheimer, L., Li, S., Stone, D., Yang, W., Vecchi, G. A., Frame, D. J., and Otto, F.: The role of climate change in extreme rainfall associated with Cyclone Gabrielle over Aotearoa New Zealand's East Coast, https://doi.org/10.25561/102624, 2023. a, b
Hauffe, C., Brandes, C., Lei, K., Pahner, S., Körner, P., Kronenberg, R., and Schuetze, N.: CAMELS-SAX: A meteorological and hydrological dataset for spatially distributed modeling of catchments in Saxony, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-14357, https://doi.org/10.5194/egusphere-egu23-14357, 2023. a
Helgason, H. B. and Nijssen, B.: LamaH-Ice: LArge-SaMple DAta for Hydrology and Environmental Sciences for Iceland, Earth Syst. Sci. Data, 16, 2741–2771, https://doi.org/10.5194/essd-16-2741-2024, 2024. a
Hendrikx, J. and Hreinsson, E.: The potential impact of climate change on seasonal snow in New Zealand: Part II-industry vulnerability and future snowmaking potential, Theoretical and Applied Climatology, 110, 619–630, https://doi.org/10.1007/s00704-012-0713-z, 2012. a, b
Hicks, D. M., Shankar, U., McKerchar, A. I., Basher, L., Lynn, I., Page, M., and Jessen, M.: Suspended sediment yields from New Zealand rivers, Journal of Hydrology (New Zealand), 50, 81–142, http://www.jstor.com/stable/43945015 (last access: 14 October 2025), 2011. a
Höge, M., Kauzlaric, M., Siber, R., Schönenberger, U., Horton, P., Schwanbeck, J., Floriancic, M. G., Viviroli, D., Wilhelm, S., Sikorska-Senoner, A. E., Addor, N., Brunner, M., Pool, S., Zappa, M., and Fenicia, F.: CAMELS-CH: hydro-meteorological time series and landscape attributes for 331 catchments in hydrologic Switzerland, Earth Syst. Sci. Data, 15, 5755–5784, https://doi.org/10.5194/essd-15-5755-2023, 2023. a, b, c
Hopkins, D., Campbell-Hunt, C., Carter, L., Higham, J. E. S., and Rosin, C.: Climate change and Aotearoa New Zealand, WIREs Climate Change, 6, 559–583, https://doi.org/10.1002/wcc.355, 2015. a
Johnson, D., Harrison, S., Cattoën, C., Luttrell, J., and Blackett, P.: “That still haunts me a little bit”: Decision-makers and information providers' experiences of recurring flood events, International Journal of Disaster Risk Reduction, 105216, https://doi.org/10.1016/j.ijdrr.2025.105216, 2025. a
Jowett, I. G. and Duncan, M. J.: Flow variability in New Zealand rivers and its relationship to in‐stream habitat and biota, New Zealand Journal of Marine and Freshwater Research, 24, 305–317, https://doi.org/10.1080/00288330.1990.9516427, 1990. a
Kibler, K. M., Biswas, R. K., and Juarez Lucas, A. M.: Hydrologic data as a human right? Equitable access to information as a resource for disaster risk reduction in transboundary river basins, Water policy, 16, 36–58, https://doi.org/10.2166/wp.2014.307, 2014. a
Kingston, D. G., Lavers, D. A., and Hannah, D. M.: Floods in the Southern Alps of New Zealand: The importance of atmospheric rivers, Hydrological Processes, 30, 5063–5070, https://doi.org/10.1002/hyp.10982, 2016. a, b
Kollat, J., Reed, P., and Wagener, T.: When are multiobjective calibration trade-offs in hydrologic models meaningful?, Water Resources Research, 48, https://doi.org/10.1029/2011WR011534, 2012. a
Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G.: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets, Hydrol. Earth Syst. Sci., 23, 5089–5110, https://doi.org/10.5194/hess-23-5089-2019, 2019a. a
Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., and Nearing, G. S.: Towards improved predictions in ungauged basins: Exploiting the power of machine learning, Water Resources Research, 55, 11344–11354, https://doi.org/10.1029/2019WR026065, 2019b. a
Kuentz, A., Arheimer, B., Hundecha, Y., and Wagener, T.: Understanding hydrologic variability across Europe through catchment classification, Hydrol. Earth Syst. Sci., 21, 2863–2879, https://doi.org/10.5194/hess-21-2863-2017, 2017. a
Li, Q. and Zhao, T.: Role of the water balance constraint in the long short-term memory network: large-sample tests of rainfall-runoff prediction, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-2841, 2024. a
Liu, J., Koch, J., Stisen, S., Troldborg, L., Højberg, A. L., Thodsen, H., Hansen, M. F. T., and Schneider, R. J. M.: CAMELS-DK: hydrometeorological time series and landscape attributes for 3330 Danish catchments with streamflow observations from 304 gauged stations, Earth Syst. Sci. Data, 17, 1551–1572, https://doi.org/10.5194/essd-17-1551-2025, 2025. a, b
Loritz, R., Dolich, A., Acuña Espinoza, E., Ebeling, P., Guse, B., Götte, J., Hassler, S. K., Hauffe, C., Heidbüchel, I., Kiesel, J., Mälicke, M., Müller-Thomy, H., Stölzle, M., and Tarasova, L.: CAMELS-DE: hydro-meteorological time series and attributes for 1582 catchments in Germany, Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024, 2024. a
Mangukiya, N. K., Kumar, K. B., Dey, P., Sharma, S., Bejagam, V., Mujumdar, P. P., and Sharma, A.: CAMELS-IND: hydrometeorological time series and catchment attributes for 228 catchments in Peninsular India, Earth Syst. Sci. Data, 17, 461–491, https://doi.org/10.5194/essd-17-461-2025, 2025. a
McMahon, T. A. and Peel, M. C.: Uncertainty in stage–discharge rating curves: application to Australian Hydrologic Reference Stations data, Hydrological sciences journal, 64, 255–275, https://doi.org/10.1080/02626667.2019.1577555, 2019. a
Mullan, A. B., Stuart, S. J., Hadfield, M. G., and Smith, M. J.: Report on the Review of NIWA's “Seven-Station” Temperature Series, Technical Report NIWA Information Series No. 78, NIWA, nIWA Information Series No. 78, 2010. a
Mullan, B., Sood, A. C., and Stuart, S.: Climate change projections for New Zealand: atmospheric projections based on simulations undertaken from the IPCC 5th assessment/prepared for the Ministry for the Environment, edited by: Mullan, B., Sood, A., Stuart, S., and Carey-Smith, T., National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand, Ministry for the Environment Manatū Mō Te Taiao, 2018. a, b
Neall, V.: Volcanic landforms, Tech. rep., University of Canterbury, Canterbury, NZ, 2001. a
Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., Viger, R. J., Blodgett, D., Brekke, L., Arnold, J. R., Hopson, T., and Duan, Q.: Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance, Hydrol. Earth Syst. Sci., 19, 209–223, https://doi.org/10.5194/hess-19-209-2015, 2015. a, b, c
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, Journal of hydrology, 279, 275–289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003. a
Priestley, C. H. B. and Taylor, R. J.: On the assessment of surface heat flux and evaporation using large-scale parameters, Monthly weather review, 100, 81–92, 1972. a
Roddy Henderson, D. C.: Regional Flood Estimation Tool for New Zealand Part 1, Tech. rep., National Institute of Water & Atmospheric Research, 2016. a
Rupp, D., Keim, R., Ossiander, M., Brugnach, M., and Selker, J.: Time scale and intensity dependency in multiplicative cascades for temporal rainfall disaggregation, Water Resour. Res, 45, https://doi.org/10.1029/2008WR007321, 2009a. a
Rupp, D. E., Keim, R. F., Ossiander, M., Brugnach, M., and Selker, J. S.: Time scale and intensity dependency in multiplicative cascades for temporal rainfall disaggregation, Water resources research, 45, https://doi.org/10.1029/2008WR007321, 2009b. a
Slater, L. J., Blougouras, G., Deng, L., Deng, Q., Ford, E., van Dijke, A. H., Huang, F., Jiang, S., Liu, Y., Moulds, S., Schepen, A., Yin, J., and Zhang, B.: Challenges and opportunities of ML and explainable AI in large-sample hydrology, Philos. T. Roy. Soc. A, 383, 20240287, https://doi.org/10.1098/rsta.2024.0287, 2024. a
Spronken-Smith, R. and Sturman, A. P.: The physical environment: A New Zealand perspective, Oxford University Press, ISBN-9780195583953, 2001. a
Srinivasan, R., Carey-Smith, T., Wang, L., Harper, A., Dean, S., Macara, G., Wang, R., and Stuart, S.: Moving to a new normal: Analysis of shifting climate normals in New Zealand, International Journal of Climatology, 44, 3240–3263, 2024. a
Tait, A. and Macara, G.: Evaluation of interpolated daily temperature data for high elevation areas in New Zealand, Weather and Climate, 34, 36–49, 2014. a
Tait, A. and Woods, R.: Spatial interpolation of daily potential evapotranspiration for New Zealand using a spline model, Journal of Hydrometeorology, 8, 430–438, https://doi.org/10.1175/JHM572.1, 2007. a
Tait, A., Henderson, R., Turner, R., and Zheng, X.: Thin Plate Smoothing Spline Interpolation of Daily Rainfall for New Zealand Using a Climatological Rainfall Surface, International Journal of Climatology, 26, 2097–2115, https://doi.org/10.1002/joc.1350, 2006a. a, b
Tait, A., Henderson, R., Turner, R., and Zheng, X.: Thin plate smoothing spline interpolation of daily rainfall for New Zealand using a climatological rainfall surface, International Journal of Climatology: A Journal of the Royal Meteorological Society, 26, 2097–2115, https://doi.org/10.1002/joc.1350, 2006b. a, b, c, d
Teutschbein, C.: CAMELS-SE: Long-term hydroclimatic observations (1961–2020) across 50 catchments in Sweden as a resource for modelling, education, and collaboration, Geoscience Data Journal, https://doi.org/10.1002/gdj3.239, 2024. a
Toebes, C. and Palmer, B. R.: Hydrological regions of New Zealand, Water and Soil Division, Ministry of Works for the National Water and Soil Coservation Organisation, 1969. a
Tramblay, Y., Rouché, N., Paturel, J.-E., Mahé, G., Boyer, J.-F., Amoussou, E., Bodian, A., Dacosta, H., Dakhlaoui, H., Dezetter, A., Hughes, D., Hanich, L., Peugeot, C., Tshimanga, R., and Lachassagne, P.: ADHI: the African Database of Hydrometric Indices (1950–2018), Earth Syst. Sci. Data, 13, 1547–1560, https://doi.org/10.5194/essd-13-1547-2021, 2021. a
Turner, S., Hannaford, J., Barker, L. J., Suman, G., Killeen, A., Armitage, R., Chan, W., Davies, H., Griffin, A., Kumar, A., Dixon, H., Albuquerque, M. T. D., Ribeiro, N. A., Alvarez-Garreton, C., Amoussou, E., Arheimer, B., Asano, Y., Berezowski, T., Bodian, A., Boutaghane, H., Capell, R., Dakhaoui, H., Daňhelka, J., Do, H. X., Ekkawatpanit, C., El Khalki, E. M., Fleig, A. K., Fonseca, R., Giraldo-Osorio, J. D., Goula, A. B. T., Hanel, M., Horton, S., Kan, C., Kingston, D. G., Laaha, G., Laugesen, R., Lopes, W., Mager, S., Rachdane, M., Markonis, Y., Medeiro, L., Midgley, G., Murphy, C., O’Connor, P., Pedersen, A. I., Pham, H. T., Piniewski, M., Renard, B., Saidi, M. E., Schmocker-Fackel, P., Stahl, K., Thyer, M., Toucher, M., Tramblay, Y., Uusikivi, J., Venegas-Cordero, N., Visessri, S., Watson, A., Westra, S., and Whitfield, P. H.: ROBIN: Reference observatory of basins for international hydrological climate change detection, Sci. Data, 12, 654, https://doi.org/10.1038/s41597-025-04907-y, 2025. a
Yang, J., McMillan, H., and Zammit, C.: Modeling surface water–groundwater interaction in New Zealand: Model development and application, Hydrological Processes, 31, 925–934, https://doi.org/10.1002/hyp.11075, 2017. a
Short summary
To support comparative hydrology and climate impact research, we present a large-sample dataset with hourly and daily streamflow and hydrometeorological data from 369 catchments across Aotearoa New Zealand. It includes detailed catchment attributes and represents diverse hydrological regimes. This open-access resource enables model evaluation and international comparisons and helps fill a key regional gap in global hydrological data.
To support comparative hydrology and climate impact research, we present a large-sample dataset...
Altmetrics
Final-revised paper
Preprint