Articles | Volume 17, issue 10
https://doi.org/10.5194/essd-17-5507-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-5507-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Reconstructing sea level rise from global 945 tide gauges since 1900
Dapeng Mu
Institute of Space Sciences, Shandong University, Weihai, 264209, China
Ruhui Huang
State Key Laboratory of Marine Environmental Science, Center for Marine Meteorology and Climate Change, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
Peng Yin
Institute of Space Sciences, Shandong University, Weihai, 264209, China
Haoming Yan
Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan, 430077, China
Institute of Space Sciences, Shandong University, Weihai, 264209, China
Related authors
No articles found.
Yangzi Cong, Tianhe Xu, Chi Chen, Wenfeng Nie, and Bisheng Yang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-2024, 613–618, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-613-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-2024-613-2024, 2024
S. Zhang, T. Xu, and X. Qin
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-3-W1-2022, 279–286, https://doi.org/10.5194/isprs-archives-XLVI-3-W1-2022-279-2022, https://doi.org/10.5194/isprs-archives-XLVI-3-W1-2022-279-2022, 2022
Cited articles
Adhikari, S., Ivins, E. R., and Larour, E.: ISSM-SESAW v1.0: mesh-based computation of gravitationally consistent sea-level and geodetic signatures caused by cryosphere and climate driven mass change, Geosci. Model Dev., 9, 1087–1109, https://doi.org/10.5194/gmd-9-1087-2016, 2016.
Berge-Nguyen, M., Cazenave, A., Lombard, A., Llovel, W., Viarre, J., and Cretaux, J. F.: Reconstruction of past decades sea level using thermosteric sea level, tide gauge, satellite altimetry and ocean reanalysis data, Glob. Planet. Change, 62, 1–13, https://doi.org/10.1016/j.gloplacha.2007.11.007, 2008.
Calafat, F. M., Chambers, D. P., and Tsimplis, M. N.: On the ability of global sea level reconstructions to determine trends and variability, J. Geophys. Res.-Oceans, 119, 1572–1579, https://doi.org/10.1002/2013JC009298, 2014
Calafat, F. M., Wahl, T., Tadesse, M. G., and Sparrow, S. N.: Trends in Europe storm surge extremes match the rate of sea-level rise, Nature, 603, 841–845, https://doi.org/10.1038/s41586-022-04426-5, 2022a.
Calafat, F. M., Frederikse, T., and Horsburgh, K.: The sources of sea-level changes in the Mediterranean Sea since 1960, J. Geophys. Res.-Oceans, 127, e2022JC019061, https://doi.org/10.1029/2022JC019061, 2022b.
Calark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M.: The Last Glacial Maximum, Science, 325, 710–714, https://doi.org/10.1126/science.1172873, 2009.
Chambers, D. P., Chen, J., Nerem, R. S., and Tapley, B. D.: Interannual mean sea level change and the Earth's water mass budget, Geophys. Res. Lett., 27, 3073–3076, https://doi.org/10.1029/2000GL011595, 2000.
Choblet, G., Husson, L., and Bodin, T.: Probabilistic surface reconstruction of coastal sea level rise during the twentieth century, J. Geophys. Res.-Solid Earth, 119, 9206–9236, https://doi.org/10.1002/2014JB011639, 2014.
Church, J. A. and White N. J.: Sea-Level Rise from the Late 19th to the Early 21st century, Surv. Geophys., 32, 585–602, https://doi.org/10.1007/s10712-011-9119-1, 2011.
Church, J. A., White, N. J., Coleman, R., Lambeck, K., and Mitrovica, J. X.: Estimates of the regional distribution of sea level rise over the 1950–2000 period, Journal of Climate, 17, 2609–2625, https://doi.org/10.1175/1520-0442(2004)017<2609:EOTRDO>2.0.CO;2, 2004.
Coulson, S., Dangendorf, S., Mitrovica, J. X., Tasmisiea, M. E., Pan, L., and Sandwell, D. T.: A detection of the sea level fingerprint of Greenland Ice Sheet melt, Science, 377, 1550–1554, https://doi.org/10.1126/science.abo0926, 2022.
Dangendorf, S., Hay, C., Calafat, F. M., Marcos, M., Piecuch, C. G., Berk, K., and Jensen J.: Persistent acceleration in global sea-level rise since the 1960s, Nat. Clim. Chang., 9, 705–710, https://doi.org/10.1038/s41558-019-0531-8, 2019.
Dangendorf, S., Marcos, M., Woppelmann, G., and Riva, R.: Reassessment of 20th century global mean sea level rise, Proceedings of the National Academy of Sciences of the United States of America, 114, 5946–5951, https://doi.org/10.1073/pnas.1616007114, 2017.
Dangendorf, S., Sun, Q., Wahl, T., Thompson, P., Mitrovica, J. X., and Hamlington, B.: Probabilistic reconstruction of sea-level changes and their causes since 1900, Earth Syst. Sci. Data, 16, 3471–3494, https://doi.org/10.5194/essd-16-3471-2024, 2024.
Didova, O., Gunter, B., Riva, R., Klees, R., and Roese-Koerner L.: An approach for estimating time-variable rates from geodetic time series. J Geod., 90, 1207–1221, https://doi.org/10.1007/s00190-016-0918-5, 2016.
Douglas, B. C.: Global sea level rise, J. Geophys. Res., 96, 6981–6992, https://doi.org/10.1029/91JC00064, 1991.
Farrell, W. E. and Clark, J. A.: On postglacial sea level, Geophys. J. Int., 46, 647–667, https://doi.org/10.1111/j.1365-246X.1976.tb01252.x, 1976.
Frederikse, T., Landerer, F., Caron L., Adhikari, S., Parkes, D., Humphrey, V. W., Dangendorf, S., Hogarth, P., Zanna, L, Cheng, L., and Wu, Y.-H.: The causes of sea level rise since 1900, Nature, 584, 393–397, https://doi.org/10.1038/s41586-020-2591-3, 2020
Frederikse, T., Riva, R., Kleinherenbrink, M., Wada, Y., van den Broeke, M., and Marzeion, B.: Closing the sea level budget on a regional scale: Trends and variability on the Northwestern European continental shelf, Geophys. Res. Lett., 43, 10864–10872, https://doi.org/10.1002/2016GL070750, 2016.
Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A., Fukimori, I., Gomez, N., Kopp, R. E., Landerer, F., Cozannet, G. L., Ponte, R. M., Stammer, D., Tamisiea, M. E., and van de Wal, R. S. W.: Concepts and terminology for sea level mean, variability and change, both local and global. Surv. Geophys., 40, 1251–1289, https://doi.org/10.1007/s10712-019-09525-z, 2019.
Gregory, J. M., White, N., Church, J., Bierkens, M., Box, J., van den Broeke, M., Cogley, J., Fettweis, X., Hanna, E., Huybrechts, P., Konikow, L., Leclercq, P., Marzeion, B., Oerlemans, J., Tamisiea, M., Wada, Y., Wake, L. and van de Wal, R.: Twentieth-century global-mean sea level rise: Is the whole great than the sum of the parts?, J. Climate, 26, 4476–4499, https://doi.org/10.1175/JCLI-D-12-00319.1, 2013.
Griffies, S. M., Danabasoglu, G., Durack, P. J., Adcroft, A. J., Balaji, V., Böning, C. W., Chassignet, E. P., Curchitser, E., Deshayes, J., Drange, H., Fox-Kemper, B., Gleckler, P. J., Gregory, J. M., Haak, H., Hallberg, R. W., Heimbach, P., Hewitt, H. T., Holland, D. M., Ilyina, T., Jungclaus, J. H., Komuro, Y., Krasting, J. P., Large, W. G., Marsland, S. J., Masina, S., McDougall, T. J., Nurser, A. J. G., Orr, J. C., Pirani, A., Qiao, F., Stouffer, R. J., Taylor, K. E., Treguier, A. M., Tsujino, H., Uotila, P., Valdivieso, M., Wang, Q., Winton, M., and Yeager, S. G.: OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project, Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, 2016.
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Observational evidence for volcanic impact on sea level and global water cycle, Proc. Natl. Acad. Sci. U. S. A., 104, 19730–19734, https://doi.org/10.1073/pnas.0705825104, 2007.
Hamlington, B. D. and Thompson, P. R.: Considerations for estimating the 20th century trend in global mean sea level, Geophys. Res. Lett., 42, 4102–4109, https://doi.org/10.1002/2015GL064177, 2015.
Hamlington, B. D., Leben, R. R., Nerem, R. S., Han, W., and Kim, K.-Y.: Reconstructing sea level using cyclostationary empirical orthogonal functions, J. Geophys. Res., 116, C12015, https://doi.org/10.1029/2011JC007529, 2011.
Hamlington, B. D., Leben, R. R., Kim, K.-Y., Nerem, R. S., Atkinson, L. P., and Thompson, P. R.: The effect of the El Niño-Oscillation on U.S. regional and coastal sea level, J. Geophys. Res.-Oceans, 120, 3970–3986, https://doi.org/10.1002/2014JC010602, 2015.
Hamlington, B. D., Thompson, P., Hammond, W. C., Blewitt, G., and Ray, R. D.: Assessing the impact of vertical land motion on twentieth century global mean sea level estimates, Journal Of Geophysical Research-Oceans, 121, 4980–4993, https://doi.org/10.1002/2016JC011747, 2016.
Han, S.-C., Sauber, J., Pollitz, F., and Ray, R.: Sea level rise in the Samoan Islands escalated by viscoelastic relaxation after the 2009 Samoa-Tonga earthquake, J. Geophys. Res.-Solid Earth, 124, 4142–4156, https://doi.org/10.1029/2018JB017110, 2019.
Hawkins, R., Husson, L., Choblet, G., Bodin, T., and Pfeffer, J.: Virtual tide gauges for predicting relative sea level rise, J. Geophys. Res.-Solid Earth, 124, 13367–13391, https://doi.org/10.1029/2019JB017943, 2019.
Hay, C. C., Morrow, E., Kopp, R. E., and Mitrovica, J. X.: Estimating the sources of global sea level rise with data assimilation techniques, Proceedings of the National Academy of Sciences of the United States of America, 110, 3692–3699, https://doi.org/10.1073/pnas.1117683109, 2013.
Hay, C. C., Morrow, E., Kopp, R. E.,and Mitrovica, J. X.: Probabilistic reanalysis of twentieth-century sea-level rise, Nature 517, 481–484, https://doi.org/10.1038/nature14093, 2015.
Holgate, S. J., Matthews, A., Woodworth, P. L., Rickards, L. J., Tamisiea, M. E., Bradshaw, E., Foden, P. R., Gordon, K. M., Jevrejeva, S., and Pugh, J.: New Data Systems and Products at the Permanent Service for Mean Sea Level, J. Coast. Res., 29, 493–504, https://doi.org/10.2112/JCOASTRES-D-12-00175.1, 2013.
Holgate, S. J.: On the decadal rates of sea level change during the twentieth century, Geophys. Res. Lett., 34, L01602, https://doi.org/10.1029/2006GL028492, 2007.
Huang, R., Zhang, X., Church, J. A., and Hu, J.: Asymmetric Changes of the Subtropical Gyre Circulation and Associated Sea Level over 1960–2018 in the Pacific Ocean, J. Geophys. Res.-Oceans, 130, e2024JC021785, https://doi.org/10.1029/2024JC021785, 2025.
Jevrejeva, S., Moore, J.C., Grinsted, A., Matthews, A. P., and Spada, G.: Trends and acceleration in global and regional sea levels since 1807, Glob. Planet. Change, 113, 11–22, https://doi.org/10.1016/j.gloplacha.2013.12.004, 2014.
Kenigson, J. S., Han, W., Rajagopalan, B., Yanto, and Jasinski, M.: Decadal Shift of NAO-Linked Interannual Sea Level Variability along the U.S. Northeast Coast, J. Climate, 31, 4981–4989, https://doi.org/10.1175/JCLI-D-17-0403.1, 2018.
Kim, S-J., Koh, K., Boyd S., and Gorinevsky, D.: L1 trend filtering, SIAM Rev., 51, 339–360, https://doi.org/10.1137/070690274, 2009.
Li, Y., Guo, J., Sun, Y., Zhou, J., and Sun, H.: Investigating the closures of sea level budgets in China's adjacent seas, Scientific Reports, 15, 23224, https://doi.org/10.1038/s41598-025-06214-3, 2025.
Little, C. M.: Coastal Sea Level Observations Record the Twentieth-Century Enhancement of Decadal Climate Variability, J. Climate, 36, 243–260, https://doi.org/10.1175/JCLI-D-22-0451.1, 2023.
Meyssicnac, B., Slangen, A., Melet, A., Church, J., Fettweis, X., Marzeion, B., Agosta, C., Ligtenberg, S., Spada, G., Richter, K., Palmer, M., Roberts, C., and Champollion, N.: Evaluating model simulations of twentieth-century sea-level rise. Part ?: Regional sea-level change, J. Climate, 30, 8565–8593, https://doi.org/10.1175/JCLI-D-17-0112.1, 2017.
Mitrovica, J. X., Gomez, N., Morrow, E., Hay, C., Latychev, K., and Tamisiea, M. E.: On the robustness of predictions of sea level fingerprints. Geophys. J. Int., 187, 729–742, https://doi.org/10.1111/j.1365-246X.2011.05090.x, 2011.
Moftakhari, H., Muñoz, D. F., Akbari Asanjan, A., AghaKouchak, A., Moradkhani, H., and Jay, D. A.: Nonlinear Interactions of Sea-Level Rise and Storm Tide Alter Extreme Coastal Water Levels: How and Why?, AGU Adv., 5, e2023AV000996, https://doi.org/10.1029/2023AV000996, 2024.
Mu, D.: Sea level reconstruction at global 945 tide gauges (version 2), Zenodo [data set], https://doi.org/10.5281/zenodo.15385035, 2025.
Mu, D., Huang, R., Yan, H., and Xu, T.: Inferring global ocean mass increase from tide gauges network with climate models, Geophys. Res. Lett., 51, e2023GL108056, https://doi.org/10.1029/2023GL108056, 2024a.
Mu, D., Xu, T., and Yan, H.: Sea level rise along China coast from 1950 to 2020, Sci. China-Earth Sci., 67, 802–810, https://doi.org/10.1007/s11430-023-1240-x, 2024b.
Oelsmann, J., Marcos, M., Passaro, M., Sanchez, L., Dettmering, D., Dangendorf, S. and Seitz F.: Regional variations in relative sea-level changes influenced by nonlinear vertical land motion. Nat. Geosci., 17, 137–144, https://doi.org/10.1038/s41561-023-01357-2, 2024.
Ozawa, S., Nishimura, T., Suito, H., Kobayashi, T., Tobita, M., and Imakiire, T.: Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake, Nature, 475, 373–376, https://doi.org/10.1038/nature10227, 2011.
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice-age terminal deglaciation: The global ICE-6G_C (VM5a) model, J. Geophys. Res.-Solid Earth, 120, 450–487, https://doi.org/10.1002/2014JB011176, 2015.
Piecuch, C. G. and Ponte, R. M.: Inverted barometer contributions to recent sea level changes along the northeast coast of North America, Geophys. Res. Lett., 42, 5918–5925, https://doi.org/10.1002/2015GL064580, 2015.
Piecuch, C. G., Huybers, P., and Tingley, M. P.: Comparison of full and empirical Bayes approaches for inferring sea-level changes from tide-gauge data. J. Geophys. Res.-Oceans, 122, 2243–2258, https://doi.org/10.1002/2016JC012506, 2017.
Piecuch, C. G., Calafat, F. M., Dangendorf, S., and Jorda, G.: The Ability of Barotropic Models to Simulate Historical Mean Sea Level Changes from Coastal Tide Gauge Data, Surveys in Geophysics, 40, 1399–1435, https://doi.org/10.1007/s10712-019-09537-9, 2019.
Ponte, R. M.: Low-frequency sea level variability and the inverted barometer effect, J. Atmos. Oceanic Technol., 23, 619–629, https://doi.org/10.1175/JTECH1864.1, 2006.
Ray, R. D. and Douglas, B. C.: Experiments in reconstructing twentieth-century sea levels, Prog. Oceanogr., 91, 496–515, https://doi.org/10.1016/j.pocean.2011.07.021, 2011.
Royston, S., Bingham, R. J., and Bamber, J. L.: Attributing decadal climate variability in coastal sea-level trends, Ocean Sci., 18, 1093–1107, https://doi.org/10.5194/os-18-1093-2022, 2022.
Santamaría-Gómez, A., Gravelle, M., Dangendorf, S., Marcos, M., Spada, G., and Woppelmann, G.: Uncertainty of the 20th century sea-level rise due to vertical land motion errors, Earth And Planetary Science Letters, 473, 24–32, https://doi.org/10.1016/j.epsl.2017.05.038, 2017.
Simons, M., Minson, S. E., Sladen, A., Ortega, F., Jiang J., Owen, S. E., Meng, L., Ampuero, J.-P., Wei, S., Chu, R., Helmberger, D. V., Kanamori, H., Hetland, E., Moore, A. W., and Webb, F. H.: The 2011 Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the megathrust from seconds to centuries, Science, 332, 1421–1425, https://doi.org/10.1126/science.1206731, 2011.
Tamisiea, M. E.: Ongoing glacial isostatic contributions to observations of sea level change, Geophys. J. Int., 186, 1036–1044, https://doi.org/10.1111/j.1365-246X.2011.05116.x, 2011.
Thompson, P. R., Merrifield, M. A., Wells, J. R., and Chang, C. M.: Wind-Driven Coastal Sea Level Variability in the Northeast Pacific, J. Climate, 27, 4733–4751, https://doi.org/10.1175/JCLI-D-13-00225.1, 2014.
Treu, S., Muis, S., Dangendorf, S., Wahl, T., Oelsmann, J., Heinicke, S., Frieler, K., and Mengel, M.: Reconstruction of hourly coastal water levels and counterfactuals without sea level rise for impact attribution, Earth Syst. Sci. Data, 16, 1121–1136, https://doi.org/10.5194/essd-16-1121-2024, 2024.
Villegas, M. A. and Pedregal, D. J.: SSpace: A Toolbox for State Space Modeling, Journal of Statistical Software, 87, 1–26, https://doi.org/10.18637/jss.v087.i05, 2018.
Wang, J., Church, J. A., Zhang, X., and Chen, X.: Improved sea-level reconstruction from 1900 to 2019, J. Climate, 37, 6453–6474, https://doi.org/10.1175/JCLI-D-23-0410.1, 2024.
Wang, J., Church, J. A., Zhang, X., Gregory, J. M., Zanna, L., and Chen, X.: Evaluation of the local sea-level budget at tide gauges since 1958, Geophys. Res. Lett., 48, e2021GL094502, https://doi.org/10.1029/2021GL094502, 2021
Wenzel, M. and Schröter, J.: Reconstruction of regional mean sea level anomalies from tide gauges using neural networks, J. Geophys. Res., 115, C08013, https://doi.org/10.1029/2009JC005630, 2010.
Wenzel, M. and Schröter, J.: Global and regional sea level change during the 20th century, J. Geophys. Res.-Oceans, 119, 7493–7508, https://doi.org/10.1002/2014JC009900, 2014.
Woodworth, P. L., White, N. J., Jevrejeva, S., Holgate, S. J., Church, J. A., and Gehrels, W. R.: Evidence for the accelerations of sea level on multi-decade and century timescales, Int. J. Climatol., 29, 777–789, https://doi.org/10.1002/joc.1771, 2009.
Woodworth, P. L., Melet, A., Marcos, M., Ray, R. D., Wöppelmann, G., Sasaki, Y. N., Cirano, M., Hibbert, A., Huthnance, J. M., Montserrat, S., and Merrifield, M. A.: Forcing Factors Affecting Sea Level Changes at the Coast, Surveys in Geophysics, 40, 1351–1397, https://doi.org/10.1007/s10712-019-09531-1, 2019.
Woppelmann, G. and Marcos, M.: Vertical land motion as a key to understanding sea level change and variability, Rev. Geophys., 54, 64–92, https://doi.org/10.1002/2015RG000502, 2016.
Yuan, J., Guo, J., Zhu, C., Hwang, C., Yu, D., Sun, M., and Mu, D.: High-resolution sea level change around China seas revealed through multi-satellite altimeter data, Int. J. Appl. Earth Obs. Geoinf., 102, 102433, https://doi.org/10.1016/j.jag.2021.102433, 2021.
Zhou, D., Liu, Y., Feng, Y., Zhang, H., Fu, Y., Liu, Y., and Tang, Q.: Absolute sea level changes along the coast of China from tide gauges, GNSS, and satellite altimetry, J. Geophys. Res.-Oceans, 127, e2022JC018994, https://doi.org/10.1029/2022JC018994, 2022.
Zhu, Y., Han, W., Alexander, M. A., and Shin, S.-I.: Interannual Sea Level Variability along the U.S. East Coast during the Satellite Altimetry Era: Local versus Remote Forcing, J. Climate, 37, 21–39, https://doi.org/10.1175/JCLI-D-23-0065.1, 2024.
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M.: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment, Ocean Sci., 15, 779–808, https://doi.org/10.5194/os-15-779-2019, 2019.
Short summary
We present sea level reconstructions from global 945 tide gauges since 1900. Our approach relies on a data assimilation technique that integrates various physical sea level observations and predictions. A prominent feature in our reconstruction is that it provides an ensemble of 35 complete time series at sites of tide gauge, which allows for direct statistical assessment. The average of our reconstructed global mean sea level shows strong agreements with other reconstructions.
We present sea level reconstructions from global 945 tide gauges since 1900. Our approach relies...
Altmetrics
Final-revised paper
Preprint