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Abstract. Tide gauges record sea level changes along coastlines. They are widely used to determine the twen-
tieth century global mean sea level (GMSL) rise. However, a major issue in tide gauge data is the presence
of various, substantial, and sometimes persistent data gaps, which hinder our understanding of sea level rise,
especially at regional and local scales. Whilst the GMSL reconstructions have been provided by several influ-
ential studies, reconstructions at the exact sites of tide gauges are rarely available. Here, we present sea level
reconstructions at global 945 tide gauges, covering the period from 1900 to 2022. Our approach relies on a data
assimilation technique that integrates various physical sea level observations and predictions, including sea level
simulations from 35 climate models. A prominent feature in our reconstruction is that it provides an ensemble
of 35 reconstructions at each site of tide gauge, providing continuous and refined sea level time series. This
ensemble reconstruction allows for direct statistical assessments, e.g., average, median, spread, and percentile.
The average of reconstructed sea level across 945 tide gauges reveals a GMSL rate of 1.75± 0.05 mm yr−1 over
1900–2020, and shows strong agreement with other GMSL reconstructions for both the curves of time series and
overall trends. At local scale, our reconstructions are comparable to an independent reconstruction. Despite some
rate differences at certain locations, the reconstructed sea level trends closely follow the raw records when they
are available, emphasizing the importance of the observations at tide gauges. Our sea level reconstructions offer a
valuable resource for improving global and regional sea level projections, validating climate model performance,
and informing coastal adaptation strategies through understanding the sea level rise over the past century. The
reconstructed sea level is available at https://doi.org/10.5281/zenodo.15385035 (Mu, 2025).

1 Introduction

Tide gauges sample relative sea level changes along coasts.
The longest records date back to the early nineteenth cen-
tury (Fig. 1a), according to the data collected by the Perma-
nent Service for Mean Sea Level (PSMSL) website (https:
//psmsl.org/, last access: 21 December 2024; Holgate et al.,
2013). Records of tide gauges are widely applied to geosci-
entific investigations. Extensive applications include estimat-
ing long-term sea level rise and acceleration (Douglas, 1991;

Holgate, 2007; Woodworth et al., 2009); determining verti-
cal land motion in combination with satellite altimetry (Wop-
pelmann and Marcos, 2016; Zhou et al., 2022; Oelsmann
et al., 2024); investigating the oceanic response to atmo-
spheric loading (Ponte, 2006; Piecuch and Ponte, 2015; Zhu
et al., 2024); assessing wind-driven variability along coasts
(Thompson et al., 2014; Little, 2023); evaluating extreme sea
level events across various time scales (Calafat et al., 2022a;
Moftakhari et al., 2024); examining interaction with climate
variability (Kenigson et al., 2018; Royston et al., 2022); and
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Figure 1. Examples of tide gauges from PSMSL; (a) Brest, ID 1,
France; (b) St Paul’s Harbor, Kodiak, ID 1179, USA; blue lines are
monthly records and the light green lines are annual records.

identifying the contributing sources to sea level rise (Fred-
erikse et al., 2016; Wang et al., 2021; Calafat et al., 2022b;
Mu et al., 2024a; Li et al., 2025). These studies highlight the
essential role of tide gauges in advancing our understanding
sea level changes in response to climate change.

However, a notorious issue in the records of tide gauges is
the data gaps (Piecuch et al., 2017). Typical gaps are charac-
terized by substantial discontinuity, e.g., a blank over more
than decades, or only a few years, (see Fig. 1b). These data
gaps may result from the site maintenance issues, instrument
destruction, and complete submergence by high sea level ow-
ing to strong climate variability, such as the 1997/1998 El
Niño event. Regardless of their causes, such data gaps im-
pede applications of tide gauges in long-term sea level re-
lated studies. To address this challenge, various sea level re-
construction approaches are proposed to fill the data gaps
in the tide gauge records. Classic reconstruction approaches
involve empirical orthogonal function (EOF) reconstruction
(Chambers et al., 2000; Church et al., 2004), and data as-
similation technique (Hay et al., 2013; Calafat et al., 2022b;
Mu et al., 2024b). Other strategies include station stacking
(Jevrejeva et al., 2014), spatial and temporal interpolation or
extrapolation using neural networks (Wenzel and Schröter,
2010) and Bayesian inference (Choblet et al., 2014; Piecuch
et al., 2017).

The EOF reconstruction has been widely applied to sea
level reconstruction. This approach extracts basic functions
from satellite altimetry (Church et al., 2004; Church and
White, 2011) or model simulations (Berge-Nguyen et al.,

2008). The dominant modes (i.e., basic functions) are then
combined with tide gauges to determine the amplitudes of
those modes in least-square manners (Ray and Douglas,
2011). The prominent advantage of EOF reconstruction is
that it produces sea level reconstruction fields with near-
global coverage (matching satellite altimetry or model do-
mains) with extension to the whole period of tide gauge
records. Since the observational fields from satellite altimetry
are usually removed with trends and seasonal cycles, tradi-
tional EOF reconstruction is only able to resolve the variabil-
ity in sea level (Chambers et al., 2000), but not to capture the
long-term trends. To address this issue, Church et al. (2004)
proposed the EOF0 mode (i.e., values of ones are filled in
this mode) and added it to the basic functions extracted from
satellite altimetry. The resulting reconstruction retrieves the
long-term trends in global sea level rise. A theoretical explo-
ration on EOF reconstruction, especially the EOF0 compo-
nent, was presented by Calafat et al. (2014). They found that,
by nature, the EOF reconstruction is a weighting scheme for
tide gauges. It is also should be noted that the EOF recon-
struction recovers sea level changes at the predefined grids
(e.g., the satellite altimetry product grids or an ocean model
grid), it does not produce direct estimates at the sites of tide
gauges.

A variant approach of EOF reconstruction is the cyclo-
stationary EOF (CSEOF) reconstruction, which was devel-
oped by Hamlington et al. (2011). In contrast to the sta-
tionary basic functions from EOF, CSEOF acquires non-
stationary basic functions that better describe annual cycles
and some major climate variability such as the El Niño–
Southern Oscillation (ENSO) (Hamlington et al., 2015).
Therefore, the CSEOF reconstruction is capable of recover-
ing non-stationary spatial variability due to ENSO, in addi-
tion to sea level rise.

Data assimilation provides another powerful framework
for sea level reconstruction (Hay et al., 2013, 2015). In con-
trast to EOF or CSEOF methods, which are mathematically
driven, data assimilation relies on physically oriented basic
functions, filling the data gaps with physically meaningful
interpolation/extrapolation (Mu et al., 2024a). These basic
functions either describe redistributions of water mass ex-
change between land and oceans (Tamisiea, 2011) or repre-
sent changes in sea level due to steric effect and circulations
(Gregory et al., 2019; Huang et al., 2025). The data assim-
ilation technique was first proposed by Hay et al. (2013)
in a simulation study and later applied to reconstruct the
twentieth century sea level rise with 622 tide gauges. Mu et
al. (2024b) modified this approach with a focus on a regional
case (China coast). Their GMSL reconstruction aligns with
other GMSL reconstructions. Calafat et al. (2022b) devel-
oped a different type of data assimilation to reconstruct sea
level rise in the Mediterranean Sea since 1960, along with
its contributing sources. Beyond reconstruction, data assim-
ilation technique also permits for inferring ocean mass in-
crease (Mu et al., 2024a) and sterodynamic sea level changes
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(Calafat et al., 2022b). The data assimilation approach can be
applied to either tide gauges, emphasizing individual, local
changes, or to a two-dimension field, such as satellite altime-
try, resolving spatial variability (Dangendorf et al., 2024).

The spatial or temporal interpolation/extrapolation ap-
proach is implemented through several techniques. Wenzel
and Schröter (2010, 2014) presented sea level reconstruction
with neural networks. Their method was constructed through
training neural networks with data from satellite altimetry or
a reconstructed field by EOF reconstruction. A notable fea-
ture of their approach is that it is applied to monthly records
rather than annual records, which thus allows the recovery of
high-frequency variability. Piecuch et al. (2017) introduced a
Bayesian algorithm for sea level reconstruction, and its fully
Bayesian version accounts for uncertainty in model param-
eters. Both these studies focus on temporal interpolation/ex-
trapolation, highlighting sea level changes at tide gauges. A
distinct version of the Bayesian inference for sea level re-
construction is the trans-dimensional regression (Hawkins
et al., 2019), which performs spatial interpolation/extrapo-
lation of rates of sea level rise, rather than sea level time se-
ries. This method parameterizes Earth’s surface using vari-
ous structures associated with prescribed probability density
functions, and generates either spatially continuous grids or
specific coastal grids covering global coast (e.g., Oelsmann
et al., 2024).

A conceptually straight method for sea level reconstruc-
tion is virtual station stacking (Jevrejeva et al., 2014), which
merges the two closest tide gauges into a single “virtual”
station and iterates this process until the virtual station con-
verges to a final, unique station over the globe or for a given
region (e.g., Pacific). Readers can see the Fig. 5 from Grin-
sted et al. (2007) for a direct illustration. This method cre-
ates the longest records for sea level reconstruction that dates
back to 1807, and also allows for examination for regional
sea level rise and acceleration (Jevrejeva et al., 2014). How-
ever, the station stacking method only permits regional or
global sea level reconstruction, it does not reconstruct sea
level time series at sites of tide gauges, because this method
does not create interpolations or extrapolations.

To date, several notable publications (e.g., Church and
White 2011; Ray and Douglas, 2011; Jevrejeva et al., 2014;
Hay et al., 2015; Dangendorf et al., 2019; Frederikse et al.,
2020) have already released their GMSL reconstructions to
the community. These GMSL curves have been extensively
applied to a range of sea level and climate studies, generating
profound influence. Treu et al. (2024) released a regional sea
level reconstruction whose grid covers global coast. How-
ever, this reconstruction was not performed at the exact sites
of tide gauge. It involves projection from tide gauges onto
satellite altimetry grids (Dangendorf et al., 2019), and spa-
tial interpolations/extrapolations. In this study, we improve
the data assimilation method (Hay et al., 2015; Mu et al.,
2024a), and use it to reconstruct annual sea level changes at
the exact sites of global 945 tide gauge from 1900 to 2022.

Furthermore, instead of a single reconstruction time series,
we offer an ensemble of reconstructions that include 35 com-
plete time series for each tide gauges. The resulting complete
records will provide valuable inputs for regional assessments
of the twentieth century sea level rise, especially at regional
and local scales.

2 Methods and data

2.1 Sea level reconstruction using data assimilation

In this subsection, we outline the implementation of the data
assimilation approach. We begin by introducing the basic
concept to facilitate understanding, followed by a detailed
description of the computational procedures. The data as-
similation approach consists of two fundamental stages. In
the first stage, observation equations are constructed using
raw records of tide gauge. In the second stage, physically
oriented processes are prescribed to represent the relative
sea level rise at tide gauges (Frederikse et al., 2020; Calafat
et al., 2022b). These processes involve three major mech-
anisms. The first one is the sea level changes resulting from
the ocean circulations and steric effect, which is also referred
to as sterodynamic sea level (SDSL) changes (Gregory et al.,
2019). We utilize outputs from the Coupled Model Intercom-
parison Project Phase 6 (CMIP6) climate models to represent
SDSL changes at tide gauges (see Sect. 2.4). However, due
to model configurations, SDSL does not account for global
mean ocean mass changes (Griffies et al., 2016). To account
for changes in ocean mass, we further introduce the second
process that depicts the water mass exchange between oceans
and land, including mass loss from the Greenland, Antarc-
tica, and global mountain glacier, and changes in terrestrial
water storage (Gregory et al., 2013). These contributions re-
distribute over oceans and form unique geometries under the
gravity, rotation, and deformation (GRD) effect (Mitrovica
et al., 2011; Coulson et al., 2022). Those oceanic geometries
are termed sea level fingerprint (SLF; Coulson et al., 2022).
We also introduce a random process to account for model de-
ficiencies at local scale, because climate models tend to un-
derestimate the sea level changes (Meyssicnac et al., 2017).
The final mechanism reflects the ongoing effect from glacial
isostatic adjustment (GIA) (Peltier et al., 2015), which in-
fluences the relative sea level measured by tide gauges. The
three processes constitute the relative sea level rise along
coast, and they have global physical origins. We therefore
express the increment in sea level at tide gauges (1SL) in
mathematical form:

1SL=
q

SL(t)SLF1t +
q

SL(t)SDSL1t +
q

SL(t)GIA1t (1)

where
q

SLGIA is the rate of GIA relative sea level;q
SL(t)SDSLis the rate of SDSL;

q
SL(t)SLF is the rate of SLF,

representing ocean mass increase.
Although the CMIP6 climate models provide SDSL esti-

mates, they may not accurately capture local variations at tide
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gauge sites. To better address these local changes, we intro-

duce a random process. Therefore, the
q

SL(t)SDSL includes
two parts:q
SL(t)SDSL =

q
SL(t)Random+

q
SL(t)Model (2)

Where
q

SL(t)Model is the SDSL output simulated by CMIP6

climate models, while
q

SL(t)Random is unknown variable, and
will be estimated by our data assimilation framework.

Combining Eqs. (1) and (2), at a given tide gauge, its sea
level at time t + 1 (SLt+1) can be evolved from sea level at
timet(SLt ):

SLt+1
= SLt +

q
SL(t)SLF1t +

q
SL(t)Random1t

+

q
SL(t)Model1t +

q
SL(t)GIA1t (3)

Equation (3) essentially describes how sea level rise evolves
over time, or defines how sea level rise transitions from time
t into time t + 1. This equation contains two roles: the first

one involves known variables, i.e.,
q

SL(t)GIA and
q

SL(t)Model,
which act as the “model driven” role; the second one in-
volves variables to be estimated through data assimilation,

i.e., SL(t),
q

SL(t)Random, and the amplitude of
q

SL(t)SLF. We

stress that
q

SLSLFis the overall trend of sea level fingerprint

since 1900, and it is different from
q

SL(t)SLF, which repre-
sents the rate of sea level fingerprint at time step t , their math-
ematical relation is:q
SL(t)SLF = α(t)×

q
SLSLF (4)

where αis the amplitude of
q

SLSLF at time step t . This equa-
tion implies that that their amplitudes is time variable, but the
spatial pattern is fixed.

We use Xt to represent the state vector. At every time step
t , the observation equation is defined as:

Zt =HtXt
+ ε (5)

where Zt is the observational vector containing sea level
records from the selected tide gauges (Sect. 2.3) at time t .
Its dimension is time variable, and equals to the available
number (m) of tide gauges (Fig. 2). ε denotes observational
noise, and Ht is the mapping matrix, consisting of two parts:

Ht
=
[

Ht
TG H t

other
]

(6)

whereH t
other = 0m×(n+1), n is the total number of tide gauges

selected (for example, 945 tide gauges selected by this pa-
per, see Sect. 2.3); Ht

TG is sparse matrix, for each row, the
ith element is one if the ith tide gauge record is available,
otherwise, it is zero; the dimension of Ht

TG is m× n.

In our data assimilation, the state vector Xt contains:

Xt
=



SLt1
...

SLtnq
SL

t

Random,1
...q

SL
t

Random,n
αt


(7)

where SLti represents sea level at ith tide gauge at time t ;q
SL

t

Random,irepresents rate of random sea level processes at
ith tide gauge; αt is the amplitude of sea level fingerprint at
time t . In the filter, the state transition matrix 8 transforms
the state vector into next time step:

Xt+1
f =8Xta+

q
SL(t)Model1t +

q
SL(t)GIA1t +w (8)

where w represents the model noise, subscript f denotes the
“forecast” state, while subscript a denotes “analysis” solu-

tion. The computation of
q

SL(t)Model is detailed in the next

subsection.
q

SL(t)Model and
q

SL(t)GIA serve as a driven role
in our data assimilation framework and are not part of the
state vector. The state transition matrix 8 is constructed as
follows:

8=

 In×n In×n ySLF
0n×n In×n 0n×1
01×n 01×n 1

 (9)

where ySLFcontains
q

SLSLF at tide gauges, and its dimension
is n× 1.

Equations (5) and (8) constitute the primary formulism of
our data assimilation scheme:

Zt =HtXt
+ ε,ε ∼N (0,R)

Xt+1
f =8Xta+

q
SL(t)Model1t

+

q
SL(t)GIA1t +w,w ∼N (0,Q)

(10)

where R denotes observation noise, and Q represents the co-
variance matrix of the state vector variables. The covariance
structure is given by:

Q=

[
VTG 0

0 σ 2I(n+1)×(n+1)

]
(11)

where I(n+1)×(n+1) is the identity matrix, implying that there
are no correlations among random processes at tide gauges,
because we assume random processes sea level and the sea
level fingerprint are independent. σ 2 is a parameter that de-

fines how much
q

SL
t

Random,i and α(t) can vary over time, in
our practice, we set their value to be 1 mm yr−1; VTG defines
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correlation between tide gauges, and it is computed using the
distance between tide gauges:

VTG = σ
2
TG

(
e

(
−
D
τ

)
− 0.4

)
(12)

where σ 2
TGis the variance of detrended tide gauges; τ is the

decorrelation length scale, which is assumed to be 500 km;
and D is the distance between tide gauges. Correlation is
only considered for pairs with D ≤ 300 km, otherwise, tide
gauges are treated as uncorrelated.

The data assimilation can be solved recursively using fol-
lowing equations:

vt = Zt −HtXt ,Ft =HtPtHt ′
+R

Xta =Xt
+PtHt ′F−1

t vt ,P taa = P
t
f −P

t
f Ht ′F−1

t HtP tf
Xt+1

f =8Xtf +Ktvt ,P
t+1
f =8P tf (8−KtHt )′+Q

(13)

where Kt =8P tf Ht ′F−1
t is the Kalman gain matrix, and vt

is the innovation with variance Ft (Didova et al., 2016).
In the smoother (i.e., the backward loop) process, the

Kalman smoother comprises the equations:

rt−1 =Ht ′F−1
t vt +Lt ′rt ,Nt−1 =Ht ′F−1

t Ht
+Lt ′NtLt

_

X
t

=Xt
+Pt rt−1,Vt = Pt −PtNt−1Pt

(14)

where Lt =8−KtHt , and
_

X
t

represents the smoothed state
vector.

2.2 Instantaneous rate of SDSL changes

The instantaneous rate of SDSL changes
q

SL(t)Model acts as
drivers in our data assimilation framework. Two essential
computational steps are employed to determine

q
SL(t)Model.

First, we extract the low-frequency variations x (t) from a
given SDSL time series simulated by CMIP6 climate mod-
els. Second, we estimate the instantaneous rate by computing
the first-order temporal derivative of x (t).

Given a raw time series y (t) with unit of millimetre, we
apply Hodrick-Prescott (HP) filtering (Kim et al., 2009) to
extract its low-frequency variation:

xHP
=
(
I + 2λT ′T

)−1
y (15)

where T is Toeplitz matrix:

T=


1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2 1

 (16)

Based on the xHP, we estimate the instantaneous rateq
SL(t)Model by taking the first-order temporal derivative.
Since climate model historical outputs cover the period

Figure 2. The effect of lambda on the smoothed time series by
HP filter. Gray lines are raw SDSL time series from ACCESS-CM2
model (see Table 1) at tide gauges (a) Den Helder (PSMSL ID 23)
and (b) Buenos Aires (PSMSL ID 157).

1900–2014, the instantaneous rate is only available for this
period. For the extension period of 2015–2022, we assume
that the instantaneous rates remain the same rate as the year
of 2014, and construct a complete time series for 1900–2022.

In HP filtering, the smoothed time series are affected by
the parameter lambda. To illustrate this effect, we select the
SDSL time series from the ACCESS-CM2 model interpo-
lated at tide gauge Den Helder (PSMSL ID 23) and Buenos
Aires (PSMSL ID 157), then perform the HP filter with
lambda = 1, 10, 100, and 1000, respectively (Fig. 2). We
can observe that a large lambda produces a refined curve that
suffers from less high-frequency variability or better repre-
sents the low-frequency variability. In our practice, we adopt
the value of 10, as it shows smaller peak-to-peak variations.
This choice is empirically determined. This smooth curve is
then used to compute the instantaneous SDSL rates that drive
the data assimilation.

2.3 Tide gauges

We consider annual records of tide gauges collected by the
PSMSL website (https://psmsl.org/, last access: 21 Decem-
ber 2024; Holgate et al., 2013). The PSMSL database stored
more than 1500 tide gauges that are distributed along the
global coastline (Fig. 3; data access on 26 November 2024).
However, many tide gauge records exhibit substantial data
gaps, suspicious anomalies, or abrupt jumps (e.g., Piecuch et
al., 2017; Oelsmann et al., 2024). Previous studies (Church
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Figure 3. Tide gauges from the PSMSL (access on 25 January
2025). (a) Distribution of all tide gauges, and those marked with
orange circles are selected in this study. (b) The available numbers
of tide gauges: the blue line represents all available tide gauges,
while the orange line includes only the selected subset. The appar-
ent decline toward the end of the record is primarily due to delays
in data updates.

and White, 2011; Ray and Douglas, 2011; Jevrejeva et al.,
2014; Hay et al., 2015; Wang et al., 2024; Mu et al., 2024a)
have applied various selection criteria to identify reliable tide
gauges based on specific research objectives.

In this study, we adopt a single primary criterion: tide
gauges must have at least 20 years of data within the pe-
riod 1900–2022. We do not exclude records with large jumps
or high rates, as their impact on global sea level recon-
struction is negligible. After applying this criterion, 945 tide
gauges are retained. Figure 3b shows the number of available
records for every year over 1900–2022. The orange line rep-
resents the records selected by this study. Notably, most pre-
1950 records are included, although their number is relatively
small – fewer than 300 in total and fewer than 100 during
1900–1910. Over 1900–2022, these 945 tide gauges could
potentially provide 116 235 (945× 123) data records. How-
ever, due to data gaps, only 45 682 records are available, in-
cluding anomalous records, accounting for only 39.3 % com-
pleteness over all. Note that the completeness is time variable
(see Fig. 3b), it is even worse before 1950.

2.4 Climate models

In our assimilation framework, we have adopted the SDSL
changes estimated by the CMIP6 climate models (Griffies et
al., 2016). The SDSL changes describe fluctuations that are
attributable to ocean dynamics. This diagnostic field is ex-

Figure 4. Global mean thermosteric sea level rise from CMIP6 cli-
mate models. Gray lines indicate individual results from 35 climate
models, and orange line indicates their ensemble mean.

pected to have a zero global mean (Gregory et al., 2019).
Therefore, it does not capture the component of GMSL
changes contributed by the ocean mass increase due to po-
lar ice melting and terrestrial water storage variations. To-
tally, we include 35 CMIP6 climate models that provide
both monthly gridded SDSL fields and the global mean ther-
mosteric sea level changes (Table 1 and Fig. 4). We first re-
move the global mean of original gridded fields, if they are
not zero, and then add the global mean thermosteric sea level
time series back to the gridded fields. Most of the global
mean thermosteric sea level time series from CMIP6 climate
models appear to have positive trends. However, there are
two of them showing negative trends, contradicting the ob-
servations (e.g., Frederikse et al., 2020). Despite this incon-
sistency with observations, we retain these two models, be-
cause they contribute to the diversity in CMIP6 models.

2.5 Sea level fingerprints

Water mass exchanges between land and oceans involve four
major processes: (1) the mass loss or gain in global glaciers;
(2) the mass loss from the Greenland Ice Sheet; (3) the mass
loss from the Antarctica Ice Sheet; and (4) variations in ter-
restrial water storage, driven by both internal nature variabil-
ity and external anthropogenic forcing. When additional wa-
ters from these sources enters the ocean, it inevitably con-
tributes to global sea level rise. However, this rise is not spa-
tially uniform. Instead, it exhibits a distinct spatial pattern
due to the combined effects of GRD (Farrell and Clark, 1976;
Mitrovica et al., 2011; Adhikari et al., 2016). The result-
ing spatial pattern is known as the SLF, which characterizes
the Earth’s response to surface mass loading redistribution.
Given the centennial timescale considered in this study, we
focus solely on the Earth’s elastic response. We adopt the to-
tal SLF provided by Frederikse et al. (2020), which represent
the integrated contributions from the four global land-based
mass redistribution processes (Fig. 5). These individual SLF
processes are gridded into 0.5° grid, covering the period from
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Table 1. 35 CMIP6 models.

Index Model Experiment Index Model Experiment

1 ACCESS-CM2 r1i1p1f1 19 GISS-E2-2-G r1i1p1f1
2 ACCESS-ESM1-5 r1i1p1f1 20 GISS-E2-2-H r1i1p1f1
3 BCC-ESM1 r1i1p1f1 21 HadGEM3-GC31-MM r1i1p1f3
4 CanESM5 r1i1p1f1 22 HadGEM3-GC31-LL r1i1p1f3
5 CanESM5-1 r1i1p1f1 23 INM-CM4-8 r1i1p1f1
6 CanESM5-CanOE r1i1p2f1 24 INM-CM5-0 r1i1p1f1
7 CMCC-CM2-HR4 r1i1p1f1 25 IPSL-CM6A-LR r1i1p1f1
8 CMCC-CM2-SR5 r1i1p1f1 26 IPSL-CM6A-LR-INCA r1i1p1f1
9 CMCC-ESM2 r1i1p1f1 27 MIROC6 r1i1p1f1
10 CNRM-CM6-1 r1i1p1f2 28 MPI-ESM-1-2-HR r1i1p1f1
11 CNRM-ESM2-1 r1i1p1f2 29 MPI-ESM-1-2-LR r1i1p1f1
12 EC-Earth3 r1i1p1f1 30 MPI-ESM-1-2-HAM r1i1p1f1
13 EC-Earth3-AerChem r1i1p1f1 31 MRI-ESM2-0 r1i1p1f1
14 EC-Earth3-CC r1i1p1f1 32 NorESM2-LM r1i1p1f1
15 EC-Earth3-Veg r1i1p1f1 33 NorESM2-MM r1i1p1f1
16 EC-Earth3-Veg-LR r1i1p1f1 34 UKESM1-0-LL r1i1p1f2
17 GISS-E2-1-G r1i1p1f1 35 UKESM1-1-LL r1i1p1f2
18 GISS-E2-1-G-CC r1i1p1f1

1900 to 2018. We use this dataset to estimate the overall long-
term SLF trend.

2.6 Glacial isostatic adjustment

The data assimilation technique in this study also requires
relative sea level rise contributed from GIA effect. We use
model outputs from ICE-6G-C model (Peltier et al., 2015).
Figure 6 shows the spatial pattern of the relative sea level
rise from the ICE-6G-C model. The GIA-induced relative sea
level is assumed to be purely linear changes for the period
from 1900 to 2022, as the GIA-induced relative sea level is
mainly an ongoing response to the tremendous ice melting
since the Last Glacial Maximum (Calark et al., 2009). In ad-
dition, GIA effect also induces an uplift change, i.e., verti-
cal land motion (Hamlington et al., 2016; Woppelmann and
Marcos, 2016; Santamaría-Gómez et al., 2017). The GIA-
induced relative sea level rates at all 945 tide gauges are also
included in our data files (Mu, 2025).

2.7 Sea level reconstructions from previous studies

In this study, our sea level reconstructions are evaluated
against publicly available GMSL reconstructions that have
been widely used in sea level studies. These community-
accessible GMSL reconstructions are based on various ap-
proaches and incorporate different considerations of tide
gauges (Table 2). By comparing this study [M2025] to these
reconstructions, we show our major advantage, i.e., complete
and publicly available time series at the exact sites of tide
gauges, which motivates this paper.

Both Church and White (2011) [C2011] and Ray and Dou-
glas (2011) [R2011] employed the classic EOF reconstruc-

tion technique. R2011 considered the smallest number of
tide gauges with annual records and resolved the datums for
tide gauges. Jevrejeva et al. (2014) [J2014] reconstructed the
longest records for GMSL with the largest numbers of tide
gauges using the station stacking method. Hay et al. (2015)
[H2015] initiated the data assimilation approach by incorpo-
rating 622 tide gauges. Their work inspires this study. These
four reconstructions delivered fundamental time series for
GMSL, but not for local stations.

There are correlations among the reconstructions by Dan-
gendorf et al. (2019) [D2019], Frederikse et al. (2020)
[F2020], Dangendorf et al. (2024) [D2024], Treu et al. (2024)
[T2024], and M2025. Figure 7 illustrates their dependency
or genetic relation. The hybrid reconstruction by D2019
combined the data assimilation and EOF techniques to cap-
ture both long-term trends and interannual variability. Note
that D2019 inherited the outputs of the data assimilation
by H2015, and T2024 adopted low-frequency changes from
D2019. F2020 used the station stacking method to compute
the GMSL for 1900–2018, and more importantly, F2020 di-
agnosed the sea level budget for global mean and basin mean,
with consideration of SLF described in Sect. 2.5. The SLF
computed by F2020 is incorporated by D2024 and M2025.
Both D2024 and M2025 improved the data assimilation ap-
proach based on H2015. Specifically, [D2024] developed a
novel data assimilation approach that resolves spatial vari-
ability in sea level changes. This study introduces the ran-
dom process to improve the performance of CMIP6 models
at local scale (see Sect. 3.4).

A particular comparison should be highlighted between
T2024 and M2025. Table 3 summarizes main features (pros
and cons) in T2024 and M2025The key feature of T2024
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Figure 5. Sea level fingerprints caused by (a) global mountain glacier, (b) Greenland Ice Sheet, (c) terrestrial water storage variations,
(d) Antarctic Ice Sheet, (e) the total sea level fingerprints.

Table 2. Overview of sea level reconstruction studies.

Reconstruction Data access (last access: 9 March 2025) Reference Method Tide gauges Time span

C2011 https://www.cmar.csiro.au/sealevel/sl_data_cmar.html Church and White (2011) EOF 642 1880–2013
R2011 https://psmsl.org/products/reconstructions/ Ray and Douglas (2011) EOF 89 1900–2007
J2014 https://psmsl.org/products/reconstructions/ Jevrejeva et al. (2014) stacking 1277 1807–2009
H2015 https://doi.org/10.1038/nature14093 Hay et al. (2015) assimilation 622 1900–2010
D2019 https://doi.org/10.1038/s41558-019-0531-8 Dangendorf et al. (2019) hybrid 622 1900–2013
F2020 https://doi.org/10.5281/zenodo.3862995 Frederikse et al. (2020) stacking 559 1900–2018
D2024 https://doi.org/10.5281/zenodo.10621070 Dangendorf et al. (2024) assimilation 516 1900–2021
T2024 https://doi.org/10.48364/ISIMIP.749905 Treu et al. (2024) hybrid 622 1901–2015
M2025 https://doi.org/10.5281/zenodo.15385035 This study assimilation 945 1900–2022

is that they synthesized sea level rise at local scale by inte-
grating several different datasets. Their low-frequency rela-
tive sea level changes (mainly reflecting sea level trends) are
extracted from the combination of D2019 and Oelsmann et
al. (2024). The former provides the geocentric sea level, and
the latter releases the vertical land motion. The difference be-
tween those two variables defines the relative sea level, which
is also reconstructed by M2025.

T2024 adopted an irregular grid covering global coast. If
the sea level reconstruction by D2019 is not available at lo-
cations of this grid, T2024 interpolated or extrapolated the
sea level based on D2019 grid. In addition, the reconstruc-

tion by D2019 employed projection from the locations of tide
gauges onto the satellite altimetry grid, which means D2019
does not directly cover the sites of tide gauges. We therefore
must stress that the sea level reconstruction by T2024 is not
built on the exact sites of tide gauges, which is a major dif-
ference from M2025. An apparent advantage in T2024 is that
they include high frequency variability in the reconstructed
sea level time series. They released monthly reconstructions
for 1901–1978, and hourly reconstructions for 1979–2015.
However, our reconstructions do not contain high frequency
sea level variability, which is a major limitation (see Sect. 4).
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Table 3. Comparisons of sea level reconstruction by T2024 and M2025.

Reconstruction source M2025 T2024

Raw records 945 tide gauges 622 tide gauges

Reconstruction method Data assimilation Hybrid

Reconstructed trends (records available
at a tide gauge)

Follow closely raw records Differences are possible between
reconstructions and raw records

Reconstructed trends (records NOT
available at a tide gauge)

Physical interpolation and extrapolation Mathematical adjustment by EOF
reconstruction

Reconstructed variability No high frequency variability Monthly (1901–1978) and hourly
(1979–2015)

Reconstruction field The exact sites of tide gauges A coastal grid, with spatial projection
and interpolation

Reconstruction ensemble 35 reconstructions 1 reconstruction

Figure 6. Rate of relative sea level predicted by the model ICE-
6G_C (Peltier et al., 2015).

For application purpose, we further summarize their suit-
ability for the study of sea level rise. First, all the reconstruc-
tions shown in Table 2 allow for quantifying the GMSL rise
over the twentieth century. Both F2020 and D2024 enable
community to investigate sea level budget at global and basin
scale. D2024, T2024, and M2025 released sea levels along
coasts, but only M2025 builds reconstructions at the sites
of tide gauges. D2024 and T2024 involve either extrapola-
tions or locations merging; therefore, investigation of local
sea level rise should be interpreted with cautions.

2.8 Satellite altimetry

We use monthly sea level time series provided by Archiv-
ing, Validation and Interpretation of Satellite Oceano-
graphic (AVISO) service (https://www.aviso.altimetry.fr/en/
home.html, last access: 9 March 2025). This product is spa-
tially gridded into a 0.25°× 0.25° grid, which combines
measurements from TOPEX/Poseidon, Jason-1/2/3, HY-2,

Sentinel-3A, and Cryosat-2. Various geophysical correc-
tions (e.g., Yuan et al., 2021), e.g., wet troposphere cor-
rection, and atmospheric loading correction, have been ap-
plied to the AVISO grids. In addition to the gridded monthly
products, AVISO also releases weekly GMSL time series
that have been corrected for GIA effect. The time series
are available at https://data.aviso.altimetry.fr/aviso-gateway/
data/indicators/msl/ (last access: 9 March 2025). The weekly
data are averaged to annual time series. Both the AVISO grid-
ded product and its GMSL time series are compared to our
sea level reconstructions.

2.9 Ocean reanalysis

To quantify the performance of CMIP6 climate models at lo-
cal scale, we consider the SDSL time series from Ocean Re-
analysis System 5 (ORAS5; Zuo et al., 2019). The ORAS5
dataset is produced by European Centre for Medium-Range
Weather Forecasts and funded by the Copernicus Climate
Change Service. This reanalysis combines model data with
observations from across the world into a globally consistent
dataset with accounting for the laws of physics. The ORAS5
data is forced by either global atmospheric reanalysis (for the
consolidated product) or operational analysis (for the opera-
tional product) and is also constrained by observational data
of sea surface temperature, sea surface salinity, sea-ice con-
centration, global-mean-sea-level trends and climatological
variations of the ocean mass. We employ the consolidated
product spanning period 1958–2014.

2.10 Validation methodology

Our sea level reconstructions are validated through compar-
ing with sea level observations and other sea level recon-
structions. The validation process includes comparisons at
global and local scales. At global scale, sea level reconstruc-
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Figure 7. Relation among the reconstructions by D2019, F2020, D2024, T2024, and M2025. A (applications) and B (scales) indicate their
suitable investigations at various spatial scales, for example, A1 means the reconstruction can be used for the sea level rise, and B2 means it
can be suitable for basin scale. Colour red (e.g., A2 or B3) means there are limitations. SLR = sea level rise; SLB = sea level budget; ESL
= extreme sea level.

tions are commonly compared to the sea level rise observed
by satellite altimetry, because it provides robust evidence for
the GMSL rise. At selected locations, our reconstructions are
compared to AVISO sea level products. We use the AVISO
time series to implement the comparison over 1993–2022,
which means a limited period for comparison. To validate our
sea level reconstructions over the twentieth century, we com-
pare them with other sea level reconstructions. Several recon-
structed GMSL time series are publicly available (Table 2),
those sea level reconstructions are considered for the valida-
tion at global scale. Sea level reconstructions are valuable at
local scale, but they are less available. T2024 addressed this
issue, and their sea level reconstruction offers an indepen-
dent estimate for validating our sea level reconstruction. We
average their monthly and hourly reconstructions into yearly
time series, consistent with our reconstructions. However, as
mentioned in Sect. 2.7, T2024 reconstruction was performed
on a coastal grid by interpolating or extrapolating the recon-
struction by D2019, they do not directly provide time series
at the exact sites of tide gauges. To implement the compari-
son, we select the nearest grid point from T2024 for each tide
gauge site considered in this study.

3 Results

In this section, we present the main results, beginning with
several examples of sea level reconstruction at different tide
gauges that illustrate the diversity in reconstructions. They
are followed by comparisons between our reconstructions
and other estimates, including observations from satellite al-
timetry and other sea level reconstructions. Those compar-
isons serve to verify our reconstruction at global and local
scales, and elaborate the merits and limitations in our recon-

structions. The final subsection is dedicated to addressing the
statistical assessments, e.g., spread, median, or a particular
percentile.

3.1 Examples of sea level reconstruction

Figure 8 plots reconstructed sea level time series at four se-
lected tide gauges. These examples highlight the presence of
substantial data gaps over 1900–2022. For instance, Daugav-
griva, station ID 37, ceased to record sea level since 1940
(Fig. 8a). Dunkerque, station ID 468, started to observe sea
level since around 1950 (Fig. 8c), but it is also associated
with a data gap from 1980 to 2000. Sokcho, station ID 1365,
only covered a short time duration (Fig. 8d). Our sea level re-
constructions fill in those gaps, regardless of their duration.
More importantly, our reconstructions are physical interpo-
lations/extrapolations, because they accommodate simulated
sea level from climate models and predicted sea level owing
to water exchange between land and oceans (i.e., the GRD
effect).

Two notable features emerge from our sea level recon-
structions. First, the 35 reconstructed sea level time series
are characterized by smooth and refined curves with reduced
year-to-year fluctuations compared to the raw tide gauge
records (Fig. 8). Second, the 35 reconstructed time series
converge when raw records are available, underscoring the
strong influence of sea level observations on constraining the
reconstructions. In contrast, in the absence of observations
(i.e., during data gaps), the reconstructions exhibit a wider
range of behaviours, reflecting the inherent spread among cli-
mate model simulations at local scales. In some cases, such
as Fig. 6a, the spread in the reconstructed sea level at the fi-
nal time step (year 2022) can approach 1 m. The average of
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Figure 8. Examples of sea level reconstructions at selected tide gauges. (a) Daugavgriva, PSMSL ID 37; (b) Durban, PSMSL ID 284;
(c) Dunkerque, PSMSL ID 468; (d) Sokcho, PSMSL ID 1365. Black lines are raw records from PSMSL; gray lines are individual recon-
structions derived with 35 climate models using our assimilation framework at the same locations of tide gauges; red lines represent the
ensemble mean.

all 35 reconstructed curves, i.e., the red lines shown in Fig. 8,
suggests smoother and more refined sea level changes at tide
gauges. This feature is expected, because the average tends
to reduce variations across the ensemble.

3.2 Comparison with other estimates

3.2.1 Comparison with satellite altimetry

We first compare our reconstructions with observations from
satellite altimetry (Fig. 9a). The average of the 35 GMSL
reconstructions based on all 945 tide gauges yields a long-
term trend of 3.52 mm yr−1 over 1993–2022, highly consis-
tent with the trend (3.56 mm yr−1) of the GMSL observed by
satellite altimetry. However, this apparent consistency should
be interpreted with caution, as it may involve differences in
definitions of GMSL, inherent uncertainties, and coinciden-
tal agreement. First, although both our sea level reconstruc-
tions and satellite observations are corrected for GIA effect,
they represent fundamentally different quantities: our recon-
struction reflects relative sea level at tide gauge locations,
while satellite altimetry measures absolute sea level over the
global oceans. Secondly, our reconstructions represent very
limited samples of changes in sea level along coastal zone, it
does not include any changes in the ocean interior, although
it does cover high latitudes, where are not observed by satel-
lite altimetry.

The samples (numbers and distributions) of tide gauges
indeed affect the average sea level rates. To evaluate this ef-
fect, we extract a subset from the reconstructed sea level at
total tide gauges. The ensemble of subsets ranges from 400

Figure 9. Global mean sea level (GMSL) and its rate over 1993–
2022. (a) Blue line is the average of 945 tide gauges, and orange
line is provided by AVISO (section 2.8); (b) boxplots show ensem-
ble mean rates using different numbers of tide gauges, gray line
indicates the GMSL trend from AVISO.
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to 900 with a 100 interval. For each subset, we randomly
repeat the spatial resample for 1000 times, then compute the
median (50th percentile), maximum (100th percentile), mini-
mum (0th percentile), and quartiles (25th percentile and 75th
percentile). The resulting statistics (Fig. 9b) indicate that a
small subset has a wide range between the maximum and
minimum. For example, for the subset of 400, the maximum
rate is 3.96 mm yr−1, and the minimum rate is 3.06 mm yr−1,
yielding a 0.9 mm yr−1 total range. This range is reduced to
0.23 mm yr−1 for the subset of 900. We also note that the me-
dian is very close to the GMSL rate from satellite altimetry,
regardless the number of subsets.

Our sea level reconstructions are also compared against
observations from satellite altimetry at some locations. Fig-
ure 10 shows the comparisons at four selected tide gauges.
The blue lines in Fig. 8 are the average of 35 sea level re-
constructions. Since satellite altimetry products usually do
not provide direct estimates at the sites of tide gauges, we
consider the nearest grid point from AVISO grids within
50 km. At some locations (e.g., Fig. 10a and b), tide gauges
exhibit very similar variability to the satellite altimetry, al-
though their trends might be apparently different. The dif-
ference in sea level trends could be attributed to several fac-
tors. For instance, a major reason is related to the local ver-
tical land motion (Woppelmann and Marcos, 2016), because
tide gauges observe relative sea level changes, but the satel-
lite altimetry monitors the absolute sea level changes, vari-
ations in local vertical land motion would cause difference
in those two observations. Other factors could be related to
errors in observations, and local forcing (e.g., Woodworth et
al., 2019; Piecuch et al., 2019). We note that, at some sites
of tide gauges, our sea level reconstructions agree with the
observations from satellite altimetry, even if the records of
tide gauges are not available (Fig. 10a and d). However, this
agreement is built on the average of reconstructions, there
could be larger discrepancies in individual reconstruction
(for instance, see Fig. 8).

3.2.2 Comparison with other sea level reconstructions

We compare our reconstructions to other sea level recon-
structions for the GMSL curves (Fig. 11). When determin-
ing the GMSL rate, we consider the period 1900–2007, be-
cause this period is commonly covered by all reconstruc-
tions. Overall, our reconstructed GMSL curve aligns with
other reconstructed GMSL curves, representing a new, in-
dependent estimate of GMSL rise. Those curves generate
GMSL rates ranging from 1.31 to 1.98 mm yr−1. The highest
rate is determined by J2014 who employed a station stack-
ing method. The lowest rate is identified by H2015 who pro-
posed the data assimilation approach. Our curve yields a rate
of 1.60 mm yr−1, very close to the rate of 1.62 mm yr−1 by
C2011.

The discrepancies among these reconstructions can be
largely attributed to the methodology, but the selection and

distribution of tide gauges also plays an important role.
For instance, while both C2011 and R2011 employed the
classic EOF reconstruction method, they yielded substan-
tially different estimates of GMSL rise (Fig. 11a). This dis-
crepancy primarily stems from the fact that R2011 incor-
porated only 89 tide gauges, whereas C2011 utilized more
than 500 tide gauges (Table 2). The spatial coverage of tide
gauges strongly influences the resulting reconstruction, as
also demonstrated by our resampling experiment (Fig. 11b)
and Hamlington and Thompson (2015). In addition, there is a
subtle difference in the GMSL curves shown in Fig. 11b, and
this difference concerns the definitions of relative or abso-
lute GMSL (Dangendorf et al., 2017). Some GMSL curves,
e.g., C2011 and J2014 represent absolute GMSL rise, at least
in theory, because they corrected the tide gauges for vertical
land motion, but only accounting for the changes induced by
GIA, not the total changes. Other GMSL curves, e.g., H2015
and M2025, reflect relative GMSL rise, as they accounted for
the relative sea level rise associated with GIA (see Eq. 1). We
can assess the difference between relative GMSL and abso-
lute GMSL using our reconstructed sea levels, or by an alter-
native approach. To obtain the absolute GMSL, we should
account for the vertical land motion associated with GIA,
which means absolute GMSL = tide gauges + vertical land
motion (GIA); on the other hand, the relative GMSL is de-
rived by “tide gauges – relative sea level (GIA)”. Hence,
we only need to compare the vertical land motion (GIA)
to −1× relative sea level (GIA). These two components are
computed using the ICE-6G_C model (Peltier et al., 2015),
their average at 945 tide gauges are estimated to be 0.23 and
−0.38 mm yr−1, yielding a 0.15 mm yr−1 rate difference be-
tween our relative GMSL and absolute GMSL.

It is noteworthy that the reconstruction by J2014 shows the
largest interannual variability (Fig. 11). We suspect that these
fluctuations are caused by direct average from raw records.
To test this hypothesis, we construct two additional GMSL
time series: one based on the raw tide gauge records, and an-
other based on our reconstruction, restricted to periods when
raw records are available (Fig. 11b). The resulting GMSL
curves with raw records exhibit large interannual variabil-
ity, similar to the result of J2014, confirming our conjecture.
Interestingly, Fig. 9b also suggests a lower GMSL rise dur-
ing the early twentieth century (1900–1930) compared to our
full reconstruction and that of J2014. This discrepancy may
be linked to data gaps (when comparing raw records with our
reconstruction) and the smaller number of tide gauges used
(when comparing with J2014).

Our sea level reconstructions at tide gauges are compared
to the time series reconstructed by T2024. Figure 12 shows
the comparisons at four selected tide gauges. It is clearly
noted that the sea level reconstructions by T2024 are asso-
ciated with high-frequency variations (year-to-year fluctua-
tions), which are also suggested by the raw records, those
fluctuations are even highly consistent at some tide gauges,
e.g., ID 376 (Fig. 12b). However, there are also apparent dis-
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Figure 10. Sea level time series at selected tide gauges. (a) Swinoujscie, PSMSL ID 2; (b) Ratan, PSMSL ID 88; (c) Port Lyttelton, PSMSL
ID 247; (d) Garden Reach, PSMSL ID 369. Black lines are raw records from PSMSL, green lines are observed by satellite altimetry, and the
blue lines are the average time series reconstructed by this study.

Figure 11. Global mean sea level rise since 1900. (a) compares
different sea level reconstructions from this study [M2025], Church
and White (2011) [C2011], Ray and Douglas (2011) [R2011],
Jevrejeva et al. (2014) [J2014], Dangendorf et al. (2019) [D2019],
and Frederikse et al. (2020) [F2020], the rates are estimated for
1900–2007, as this period is covered by all reconstructions. (b) “raw
records” is the GMSL that is recomputed with raw records from the
tide gauges selected by this paper, “sparse reconstruction” is the
GMSL that uses the reconstructed sea level when raw records are
available (i.e., with data gaps).

crepancies in low frequency changes, e.g., tide gauges ID 9
and ID 701. Those discrepancies probably originate from the
covariance difference between tide gauges and satellite al-
timetry, as the latter’s covariance is used to determine the sea
level reconstruction. On the other hand, our sea level recon-
structions closely align with the raw records, because in our
data assimilation, those raw records are employed to con-
strain the sea level reconstructions, or in other words, our sea
level reconstructions always follow the raw records, under-
scoring the importance of the observed evidence for sea level
rise. From Fig. 12, we observe evident difference between the
sea level reconstruction by T2024 and our sea level recon-
structions, especially when the raw tide gauges are not avail-
able, e.g., Fig. 12c. In those situations, the sea level recon-
structions are essentially extrapolated given the reconstruc-
tion methods or information, our extrapolations are mainly
based on the sea level physics (model simulations and pre-
dictions, see Sect. 2 and Table 3), while T2024 relies on the
covariance from satellite altimetry.

Different reconstructions may indicate diverse sea level
trends. We compute the sea level rates at all tide gauges for
1901–2015 (Fig. 13), and evaluate the rate difference be-
tween our sea level reconstruction and the reconstruction by
T2024. Note that our sea level rates are computed from the
average of the ensemble of sea level reconstructions. The rate
comparison suggests that our sea level reconstruction is as-
sociated with high spatial variability, for instance, along the
Arctic coast, South America coast, and around the Pacific
Oceans, on the other hand, the sea level reconstruction by
T2024 is characterized with a rather smoothed pattern, es-
pecially around the Europe coast (excluding the Baltic Sea),
Asia east coast and Australia coast. Indeed, the rate differ-
ences are evident along the Arctic coast, the South America
coast. We identity a rate of 9.25 mm yr−1 for the maximum
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Figure 12. Comparisons of sea level reconstruction at selected tide gauges. (a) Maassluis, PSMSL ID 9; (b) Rauma, PSMSL ID 376; (c) Apra
Harbor, PSMSL ID 540; (d) Kainan, PSMSL ID 701. Black lines are raw records from PSMSL, orange lines are reconstructed by Treu et
al. (2024) [T2024], blue lines are the medians reconstructed by this study [M2025], and the light blue shading indicates the uncertainty
bounded by 10th percentile and 90th percentile.

Figure 13. Sea level rate at tide gauges for 1901–2015. (a) This study, average rate of 35 sea level reconstruction; (b) T2024; (c) difference
between this study and T2024; (d) 95th percentile rate of 35 sea level reconstruction; (e) 5th percentile rate of 35 sea level reconstruction;
(f) difference between 95th percentile rate and 5th percentile rate.
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difference, and a rate of −7.78 mm yr−1 for the minimum
difference. Despite the spatial difference, on average, our sea
level rates are surprisingly consistent with the sea level rates
by T2024, two datasets generate average rates of 1.22 and
1.20 mm yr−1, respectively, associated with standard devia-
tions of 2.42 and 2.08 mm yr−1, respectively.

Another advantage in our sea level reconstructions is that,
unlike the reconstruction by T2024 who provided only a
single time series, we provide an ensemble of sea level re-
constructions that include 35 time series at each tide gauge
(see Fig. 8). We can compute either the average (red lines in
Fig. 8) or the median (blue lines in Fig. 12) using those 35
complete time series, and use the average or median to rep-
resent the robust sea level reconstruction at tide gauges. We
find that at most tide gauges, the average and the median are
almost identical (Fig. 13a and e). In addition, the ensemble
of our sea level reconstructions permits for the computation
of a particular percentile, for example, the 90th and 10th per-
centiles, and those two percentiles can form boundaries for
uncertainties (see the light blue shading in Fig. 12). In the
following subsection, we illustrate how to assess the sea level
rate using the ensemble of our sea level reconstructions.

3.3 Statistical assessments

In this subsection, we present statistical assessments for sea
level rise using our reconstructed time series. Given the en-
semble of 35 sea level reconstructions (see Fig. 8 for exam-
ples), we can compute average, spread, median, or a partic-
ular percentile for both sea level rates and sea level curves.
For instance, Fig. 8c shows 35 sea level reconstructions at
tide gauge Durban, PSMSL ID 284. For each sea level recon-
struction (or curve), we can compute a linear rate (or accel-
eration) over a period of interest. Figure 14 plots 35 sea level
rate over 1900–2022 at tide gauge Durban for all sea level
reconstructions. Those 35 rates range from 0.70 mm yr−1

(minimum, or 0th percentile) to 1.38 mm yr−1 (maximum, or
100th percentile), with a median rate of 0.95 mm yr−1, which
is very close to the average rate of 0.97 mm yr−1, as shown
in Fig. 14. There are two ways to estimate the uncertainty
for the rate. We can compute the spread (i.e., standard devi-
ation) using those 35 rates, or alternatively, we can compute
percentiles (e.g., 10th and 90th) to form boundaries for the
rate uncertainty (see Fig. 14). At most tide gauges, we report
that the rate differences are generally small (< 0.1 mm yr−1,
see Fig. 13) between the median and the average, although
several tide gauges are identified to have high value of rate
differences (> 5 mm yr−1), because they have large abrupt
jumps (see Sect. 4) that affects the sea level reconstructions.

The rate spreads at tide gauges are demonstrated to be
time-variable. We explore the rate spreads for two periods,
1900–2020 and 1900–1950 (Fig. 15). Over these two peri-
ods, large spreads (> 0.8 mm yr−1) are mainly shown along
Arctic coast, which are primarily attributed to the diversity
in the SDSL changes. We also note that the spreads over

Figure 14. Sea level rate over 1900–2022 at tide gauge Durban,
PSMSL ID 284. The 35 thin rectangles represent sea level rates
estimated from our 35 sea level reconstructions with climate models
(see model index in Table 1), the 35 curves are shown in Fig. 6b;
the boxplot on the right side indicates the 0th, 25th, 50th (median),
75th, and 100th percentiles, the diamond on the right side indicates
the average rate and the error bar indicates the spread (i.e., standard
deviation), the median rate is almost identical to the average rate.

1900–1950 are larger than the spreads over 1900–2020, a
major reason is that sea level rate estimates are more variable
over short periods, resulting in large spreads. Small spreads
(< 0.4 mm yr−1) are observed along the coast of India, North
America, and Europe. Those small spreads are either caused
by similar sea level reconstructions or small trends in sea
level rise. In the former cases, raw records are available at
most time points, leading to very similar reconstructions (see
Fig. 12a), as our sea level reconstructions closely follow raw
records.

We stress that the spread shown in Figs. 14 and 15 only
reflect the degree of inherent consistency among the re-
constructed sea levels, or model/reconstruction diversity. It
is very likely that the spread underestimates the true un-
certainty, because it does not include uncertainties due to,
e.g., measurements error, GIA modelling error. For example,
Church et al. (2004) assumed a 4 mm measurements error
for monthly records of tide gauges. They consistently ap-
plied this 4 mm error to all tide gauges, hence, resulting in
a homogeneous spatial pattern, despite the fact that errors in
tide gauges vary sites by sites. Users can further account for
this error when they determine the sea level trends from our
sea level reconstruction. Studies have shown that the choices
of mantle viscosity and lithosphere thickness affect the out-
puts of GIA models, even under the same ice history (Hay et
al., 2013, 2015). However, at the moment, only limited GIA
models are available to us, we therefore omit the evaluation
of GIA uncertainty.

3.4 Assessments of the random process

To assess the improvement by the random process, we com-
pare the original SDSL from CMIP6 climate models and the
SDSL estimated by our data assimilation to ocean reanalysis
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Figure 15. Spread in sea level rate at tide gauges. (a) 1900–2020;
(b) 1900–1950.

ORAS5. The estimated SDSL consists of the original SDSL
plus the random process. Note that original global mean of
ORAS5 should be removed, as it does not properly represent
the real global mean of SDSL. After this removal, we add the
CMIP6 global mean (shown in Fig. 3) to ORAS5; this means
we have 35 ORAS5 SDSL, which are compared to either 35
original SDSL from CMIP6 climate model or 35 estimated
SDSL. The comparison is implemented using pair-to-pair sea
level rates at tide gauges. On average (Fig. 16), the correla-
tions among the SDSL rates are very low. It is−0.05 between
original CMIP6 SDSL and ORAS5 SDSL, and it is improved
to be 0.14 between the estimated SDSL and ORAS5 SDSL.
Despite this weak correlation, it should prove the useful help
from the introduction of the random process.

We assess the agreements for individual CMIP6 model.
We find that some CMIP6 models show correlations
with larger values if we use their original SDSL. The
strongest correlation (0.51) is produced by model NorESM2-
MM (No. 33 shown in Table 1), followed by BCC-
ESM1 (0.31), CanESM5-1 (0.43), CMCC-CM2-HR4 (0.34),
CMCC-ESM2 (0.39), EC-Earth3-Veg (0.35), HadGEM3-
GC31-LL (0.39). However, introducing the random process
reduces the correlations. In the meanwhile, we find that 21
CMIP6 climate models have correlations weaker than the av-
erage if their original SDSL changes are used. This analysis
suggest that the random process can improve the SDSL es-

timates for the majority of CMIP6 models, but also compro-
mise the SDSL behaviour for some models.

We observe that our estimated SDSL have very large rates
at many tide gauges. Our explanation is that these tide gauges
are associated with data gaps, even substantial ones in some
sites. Over the period with gaps, the random process tends
to spread, as there are no constraints from observations. The
spreads in the random process and the original CMIP6 SDSL
essentially form the uncertainty range. We should point out
that there are also spreads in the estimated SLFs, but these
spreads are relatively smaller. Hence, the total spreads are
mainly caused by the spreads in the random process and the
original CMIP6 SDSL.

We note that, at many tide gauges, our estimated SDSL
have very large rates, larger than ORAS5 and CMIP6. We
suspect that both ORAS5 and CMIP6 (tend to) underesti-
mate the sea level rise at tide gauges. To prove this con-
jecture, we compare two reconstructions to tide gauges, see
Fig. 17. The first reconstruction is the average of our sea
level reconstruction (by data assimilation), and the second
reconstruction is computed using the sea level fingerprints +
ORAS5 SDSL + GIA (relative sea level). To estimate robust
trends for tide gauges, we only consider tide gauges have
valid records > 40 years over 1958–2014, this gives us 350
tide gauges. We can see that our reconstruction closely aligns
with the tide gauges, their standard deviations are consistent
(3.4 mm yr−1 VS 3.3 mm yr−1); but the reconstruction with
ORAS5 underestimates the sea level rise (with a standard de-
viation of 2.4 mm yr−1), confirming our conjecture.

4 Caveats

Our sea level reconstructions offer complete sea level time
series, however, it should be used with caution. They do not
purely reflect sea level signals associated with the mecha-
nisms defined in Sect. 2.1, but also possibly contain some
changes due to other geophysical processes or anthropogenic
activities. It is well known that earthquakes cause abrupt
jumps in the records of tide gauges (e.g., Oelsmann et al.,
2024). For instance, the tide gauge Ofunato II (PSMSL ID
1364, located in Japan), recorded an abrupt uplift in sea level
since 2011, amounting to about 680 mm (Fig. 18). This sud-
den jump was clearly not caused by SDSL or SLF changes,
but actually triggered by the Tohoku-Oki 2011 earthquake
(Ozawa et al., 2011; Simons et al., 2011), which resulted
in dramatic co-seismic displacement (downward) that con-
sequentially elevated the relative sea level. We also discover
an evident decrease in sea level after that jump, which is also
not directly attributable to SDSL or SLF mechanisms, but
mostly induced by post-seismic uplift, or viscoelastic relax-
ation (Han et al., 2019) that could persist for years or even
decades. There are some similar cases at other tide gauges
that experienced uplift or subsidence due to earthquakes.
During the process of tide gauges selection, we retain all
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Figure 16. Sterodynamic sea level (SDSL) rates at 945 tide gauges. Blue line is the raw SDSL from CMIP6 (mean of 35 models), orange
line is from ORAS5, and gray line is estimated by our data assimilation (i.e., raw CMIP6 SDSL + random process).

Figure 17. Sea level rates at selected tide gauges. We select tide gauges that have valid records > 40 years over 1958–2014, so their linear
trends can be robustly estimated. Orange line is our sea level reconstruction by the data assimilation, and blue line is reconstructed with the
combination of ORAS5 SDSL and our estimated SLFs. The 350 tide gauges yield a standard deviation of 3.4 mm yr−1, our reconstruction
shows a standard deviation of 3.3 mm yr−1, and the reconstruction with ORAS5 shows a standard deviation of 2.4 mm yr−1.

gauges to maximize spatial coverage. Moreover, the impact
of anomalous records is localized and does not significantly
affect other stations, although those abnormal records do af-
fect our reconstruction at their tide gauges before and after
the sudden jumps. Users should particularly pay attention to
those jumps, and inspect the raw records before employing
our reconstructions.

A simple approach to identifying the anomalous records is
to differentiate the time series from tide gauges. For instance,
if the difference between two consecutive time points are
larger than 250 mm (Church et al., 2004), then, the records
can be treated as anomalies. A more reliable way is to vi-
sually inspect the records for all tide gauges. The judg-
ment costs experiences. Among the 945 tide gauges, 13 of
them are flagged with issues, based on our own experiences.
There PSMSL IDs are: [131; 331; 409; 610; 617; 635; 662;
686; 752; 1061; 1345; 1346; 1364]. We find that exclud-

ing these time gauges reduces the GMSL rate from 1.60 to
1.52 mm yr−1 over 1900–2007, indicating a minor effect.

Our sea level reconstructions are focused on the refined
sea level trends, because the data assimilation approach is in-
formed with yearly rates only. The refined trends indeed ben-
efit the study of low-frequency sea level rise, unfortunately,
they do not reflect any year-to-year variability as shown in the
reconstructions by T2024 (see Fig. 12), and they are proba-
bly not suitable for determining trends over a short period.
Although the long-term trend and short-term trend may not
have an exact diacritical point, we recommend that sea level
rates should be estimated over a period larger than 30 years
(e.g., Frederikse et al., 2020; Wang et al., 2024). Sea level
rates estimated over periods shorter than 30 years should be
interpreted cautiously, and their uncertainty might be greatly
larger than the spread advised by our sea level reconstruc-
tions.
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Figure 18. Sea level at tide gauge Ofunato II, PSMSL ID 1364,
Japan. Green line is the raw records, which were broken by the
2011 Tohoku-Oki earthquake (Ozawa et al., 2011). This earthquake
caused a sudden jump of 680 mm sea level, followed by a rapid de-
cline, which is probably not a sea level signal, but could be mostly
attributed to Earth viscoelastic relaxation (e.g., Han et al., 2019).
Blue lines are the ensemble of sea level reconstructions, and the or-
ange line is their average. Since the jump is not removed, anomalous
jumps are also manifest in our sea level reconstructions.

Figure 19 plots the GMSL rate using a 30-year running
window. The curve of our GMSL rates fall between other
curves, except for the beginning period (1915–1928) and
the ending period (1980–1993); over these two periods, our
curve lies at the upper bound. The curve of J2014 is appar-
ently distinct from other curves, especially since 1930, this
distinction is directly connected with the selection of tide
gauges, which is an important factor that affects reconstruc-
tion. This can be further confirmed by the difference between
C2011 and R2011, especially over 1950–1980; both studies
employed the EOF reconstruction, but they used very dif-
ferent distributions of tide gauges, R2011 used only 89 tide
gauges, the lowest number for sea level reconstruction con-
sidered in this study. We stress that the reconstruction meth-
ods also matter, which is demonstrated by the difference be-
tween C2015 and D2019, as they considered very similar
distribution of tide gauges, D2019 adopted the trends from
C2015, but D2019 reconstructed interannual variability with
the EOF reconstruction. This difference also implies that the
interannual variability has some noticeable effect on the 30-
year running rates. A very similar comparison is suggested
by Wang et al. (2024), see their Fig. 6.

5 Code and data availability

The released data “SLRv2.nc” from our assimila-
tion framework in this study can be accessed at:
https://doi.org/10.5281/zenodo.15385035 (Mu, 2025).
It contains the following variables:

– ID: it is a variable with dimension 945× 1, which con-
tains the ID assigned by PSMSL.

– lon: it is a variable with dimension 945× 1, which con-
tains the longitude of each tide gauge.

Figure 19. Global mean sea level rate computed with a 30-year
running window.

– lat: it is a variable with dimension 945× 1, which con-
tains the latitude of each tide gauge.

– -year: it is a variable with dimension 123× 1, the year
from 1900 to 2022.

– sea_level: it is a variable with dimension
945× 123× 35, which contains the sea level re-
constructions at all tide gauges over 1900–2022 for all
35 CMIP6 models.

– RSL: it is a variable with dimension 945× 1, which
contains the GIA relative sea level rates at all tide
gauges.

– raw_records: it is a variable with dimension 945× 123,
which contains the annual records from PSMSL. Note
that the missing values are denoted by “NaN”.

– average: it is a variable with dimension 945× 123,
which contains the average of sea level reconstructions
at all tide gauges over 1900–2022.

– spread: it is a variable with dimension 945× 123,
which contains the ensemble spread (standard devia-
tion) across models at all tide gauges over 1900–2022.

– GMSL: it is variable with dimension 123× 1, which
contains the global average time series of our sea level
reconstructions at 945 tide gauges. Note that GIA RSL
effect is removed.

– GMSL_spread: it is variable with dimension 123× 1,
which contains the spread of GMSL.

Our data assimilation was run with an open soft-
ware SSpace (Villegas and Pedregal, 2018), which can
be downloaded from: https://doi.org/10.18637/jss.v087.i05.
The scripts are only available upon request to Dapeng Mu
(mdp321@126.com).

6 Conclusions

In this paper, we reconstructed sea level rise at global 945
tide gauges for 1900–2022 with a data assimilation approach
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(Hay et al., 2013; Mu et al., 2024a). This approach accommo-
dates sea level simulations from climate models and sea level
predictions with the GRD effects (Frederikse et al., 2016),
therefore, the resulting sea level reconstructions are physical
interpolations and extrapolations. More importantly, by in-
corporating outputs from 35 climate models, the sea level re-
constructions provide refined, continuous time series at tide
gauges, and allow for direct uncertainty assessments that re-
flect reconstruction diversity or probability.

Global comparisons suggest that our sea level recon-
structions align with observations and other reconstructions,
demonstrating that our sea level reconstructions contribute to
the ensemble of reconstructed GMSL curves that are avail-
able to the community. In addition to exploring GMSL rise
and acceleration, our GMSL time series can serve to vali-
date other reconstructions, and estimate uncertainties. Local
comparison with an independent reconstruction by T2024 in-
dicates that our sea level reconstructions closely follow the
raw records of tide gauges, signifying that our reconstruc-
tions emphasize the importance of the observed evidence.
Despite some trend differences from the reconstruction by
T2024, our reconstructions are expected to support efforts to
understand global sea level rise and its interplay with climate
change.
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