Articles | Volume 17, issue 9
https://doi.org/10.5194/essd-17-4881-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-4881-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrodynamic and atmospheric conditions in a volcanic caldera: a comprehensive dataset at Deception Island, Antarctica
Francesco Ferrari
Department of Civil, Chemical and Environmental Engineering. University of Genoa, Via Montallegro 1, 16145 Genoa, Italy
Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Via Dodecaneso 33, 16146 Genoa, Italy
Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Seville, Spain
Alejandro López-Ruiz
Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Seville, Spain
Andrea Lira-Loarca
Department of Civil, Chemical and Environmental Engineering. University of Genoa, Via Montallegro 1, 16145 Genoa, Italy
Related authors
Rodrigo Campos-Caba, Jacopo Alessandri, Paula Camus, Andrea Mazzino, Francesco Ferrari, Ivan Federico, Michalis Vousdoukas, Massimo Tondello, and Lorenzo Mentaschi
Ocean Sci., 20, 1513–1526, https://doi.org/10.5194/os-20-1513-2024, https://doi.org/10.5194/os-20-1513-2024, 2024
Short summary
Short summary
Here we show the development of high-resolution simulations of storm surge in the northern Adriatic Sea employing different atmospheric forcing data and physical configurations. Traditional metrics favor a simulation forced by a coarser database and employing a less sophisticated setup. Closer examination allows us to identify a baroclinic model forced by a high-resolution dataset as being better able to capture the variability and peak values of the storm surge.
Andrea Lira Loarca and Giovanni Besio
Ocean Sci., 21, 767–785, https://doi.org/10.5194/os-21-767-2025, https://doi.org/10.5194/os-21-767-2025, 2025
Short summary
Short summary
A new method improves the accuracy of climate models by adjusting wave spectrum simulations in the Mediterranean Sea. It corrects biases and accounts for changes in wave patterns due to climate change, such as shifts in direction and frequency. This technique was applied to multiple climate models, assessing future wave conditions for mid-century and end-of-century scenarios. The results underline the importance of precise corrections for better predicting how waves may evolve as the climate changes.
Rodrigo Campos-Caba, Jacopo Alessandri, Paula Camus, Andrea Mazzino, Francesco Ferrari, Ivan Federico, Michalis Vousdoukas, Massimo Tondello, and Lorenzo Mentaschi
Ocean Sci., 20, 1513–1526, https://doi.org/10.5194/os-20-1513-2024, https://doi.org/10.5194/os-20-1513-2024, 2024
Short summary
Short summary
Here we show the development of high-resolution simulations of storm surge in the northern Adriatic Sea employing different atmospheric forcing data and physical configurations. Traditional metrics favor a simulation forced by a coarser database and employing a less sophisticated setup. Closer examination allows us to identify a baroclinic model forced by a high-resolution dataset as being better able to capture the variability and peak values of the storm surge.
Carmen Zarzuelo, Alejandro López-Ruiz, María Bermúdez, and Miguel Ortega-Sánchez
Earth Syst. Sci. Data, 15, 3095–3110, https://doi.org/10.5194/essd-15-3095-2023, https://doi.org/10.5194/essd-15-3095-2023, 2023
Short summary
Short summary
This paper presents a hydrodynamic dataset for the Bay of Cádiz in southern Spain, a paradigmatic example of a tidal bay of complex geometry under high anthropogenic pressure. The dataset brings together measured and modeled data on water levels, currents, density, and waves for the period 2012–2015. It allows the characterization of the bay dynamics from intratidal to seasonal scales. Potential applications include the study of ocean–bay interactions, wave propagation, or energy assessments.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Cited articles
Angulo-Preckler, C., Pernet, P., García-Hernández, C., Kereszturi, G., Álvarez-Valero, A. M., Hopfenblatt, J., Gómez-Ballesteros, M., Otero, X. L., Caza, J., Ruiz-Fernández, J., and Geyer, A.: Volcanism and rapid sedimentation affect the benthic communities of Deception Island, Antarctica, Cont. Shelf Res., 220, 104404, https://doi.org/10.1016/j.csr.2021.104404, 2021. a
Antelo, B. J., Vidal, J., and Berrocoso, M.: Determination of the tide constituents at Livingston and Deception Islands (South Shetland Islands, Antarctica), using annual time series, Dyna, 82, 191, 209–218, 2015.
Baker, P. E., McReath, I., Harvey, M., Roobol, M., and Davies, T.: The geology of the South Shetland Islands: BAS Scientific Report 78, 1975, https://nora.nerc.ac.uk/id/eprint/509208/1/The geology of the South Shetland Islands (last access: 25 September 2025), 1975. a
Baldwin, R. and Smith Jr, K.: Temporal dynamics of particulate matter fluxes and sediment community response in Port Foster, Deception Island, Antarctica, Deep-Sea Res. Pt. II, 50, 1707–1725, 2003. a
Birkenmajer, K.: Volcanic succession at Deception Island, West Antarctica: a revised lithostratigraphic standard, Studia Geologica Polonica, 101, 27–82, 1992. a
Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal regions: 1. Model description and validation, J. Geophys. Res.-Oceans, 104, 7649–7666, 1999. a
Cassola, F., Ferrari, F., and Mazzino, A.: Numerical simulations of Mediterranean heavy precipitation events with the WRF model: A verification exercise using different approaches, Atmos. Res., 164–165, 3–18, 2015. a
Clough, S., Shephard, M., Mlawer, E., Delamere, J., Iacono, M., Cady-Pereira, K., Boukabara, S., and Brown, P.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005. a
Convey, P. and Peck, L. S.: Antarctic environmental change and biological responses, Sci. Adv., 5, eaaz0888, https://doi.org/10.1126/sciadv.aaz0888, 2019. a
ESR – Earth & Space Research: Earth & Space Research Website, http://www.esr.org (last access: February 2024), 2024. a
EU CMEMS – Copernicus Marine Service Information: GLOBAL_REANALYSIS_WAV_001_032, Marine Data Store (MDS), https://doi.org/10.48670/moi-00022, 2024. a
Ferrari, F. and Lira-Loarca, A.: High-resolution atmospheric dataset at Deception Island, Antarctica, Zenodo [data set], https://doi.org/10.5281/zenodo.14845212, 2025. a, b, c
Figueiredo, D., Dos Santos, A., Mateus, M., and Pinto, L.: Hydrodynamic modelling of Port Foster, Deception Island, Antarctica, Antarct. Sci., 30, 115–124, 2018. a
Geyer, A., Pedrazzi, D., Almendros, J., Berrocoso, M., López-Martínez, J., Maestro, A., Carmona, E., Álvarez-Valero, A., and De Gil, A.: Deception Island, Geological Society, London, Memoirs, 55, 667–693, https://doi.org/10.1144/M55-2018-56, 2021. a
Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233–5250, https://doi.org/10.5194/acp-14-5233-2014, 2014. a
Herbold, C. W., Lee, C. K., McDonald, I. R., and Cary, S. C.: Evidence of global-scale aeolian dispersal and endemism in isolated geothermal microbial communities of Antarctica, Nat. Commun., 5, 3875, https://doi.org/10.1038/ncomms4875, 2014. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Holthuijsen, L. H.: Waves in oceanic and coastal waters, Cambridge University Press, ISBN 100511270216, 2010. a
Machado, J. T., Baleanu, D., and Luo, A. CJ. and, Vidal, J., and Berrocoso, M., and Jigena, B.: Hydrodynamic modeling of port foster, Deception Island (Antarctica), Nonlinear and complex dynamics: applications in physical, biological, and financial systems, Springer, 193–203, 2011.
Marshall, G. J.: Trends in the Southern Annular Mode from observations and reanalyses, J. Climate, 16, 4134–4143, 2003. a
Nakanishi, M. and Niino, H.: An Improved Mellor–Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog, Bound.-Lay. Meteorol., 150, 1003–1021, 2006. a
Olson, J. B., Smirnova, T., Kenyon, J. S., Turner, D. D., Brown, J. M., Zheng, W., , and Green, B. W.: A Description of the MYNN Surface-Layer Scheme, Tech. rep., National Oceanic and Atmospheric Administration, https://doi.org/10.25923/f6a8-bc75, 2021. a
Orheim, O.: Deception Island: A potential geothermal resource in Antarctica, Polar Rec., 21, 119–129, 1982. a
Rodi, W.: Turbulence models and their application in hydraulics, Routledge, https://doi.org/10.1201/9780203734896, 2017. a
Skamarock, W. C.: A description of the advanced research WRF version 3, Tech. Note, U.S. National Center for Atmospheric Research, https://doi.org/10.5065/D68S4MVH, 1–96, 2008. a
Smellie, J., López-Martínez, J., Headland, R., Hernández-Cifuentes, F., Maestro, A., Millar, I., Rey, J., Serrano, E., Somoza, L., and Thomson, J.: Geology and geomorphology of Deception Island, British Antarctic Survey, vol. 36, 2002, ISBN 9780856651762, https://nora.nerc.ac.uk/id/eprint/17439 (last access: 25 September 2025), 2002. a, b
Thompson, G., Rasmussen, R. M., and Manning, K.: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis, Mon. Weather Rev., 132, 519–542, 2004. a
Torrecillas, C., Zarzuelo, C., de la Fuente, J., Jigena-Antelo, B., and Prates, G.: Evaluation and Modelling of the Coastal Geomorphological Changes of Deception Island since the 1970 Eruption and Its Involvement in Research Activity, Remote Sens., 16, 512, https://doi.org/10.3390/rs16030512, 2024. a, b
Xue, J., Xiao, Z., Bromwich, D. H., and Bai, L.: Polar WRF V4.1.1 simulation and evaluation for the Antarctic and Southern Ocean, Front. Earth Sci, 16, 1005–1024, https://doi.org/10.1007/s11707-022-0971-8, 2022. a
Zarzuelo, C., López-Ruiz, A., and Ortega-Sánchez, M.: The Role of Waves and Heat Exchange in the Hydrodynamics of Multi-Basin Bays: The Example of Cádiz Bay (Southern Spain), J. Geophys. Res.-Oceans, 126, e2020JC016346, https://doi.org/10.1029/2020JC016346, 2021. a
Zarzuelo, C., Lira-Loarca, A., Ferrari, F., and López-Ruiz, A.: Hydrodynamic numerical model data at Deception Island, Antartica, Zenodo [data set], https://doi.org/10.5281/zenodo.14870881, 2025. a, b, c
Short summary
A high-resolution, freely available dataset is provided for Deception Island, Antarctica, covering the years 2005 to 2020. It is based on the Weather Research and Forecasting (WRF) atmospheric model and the Delft3D hydrodynamic model. The dataset includes detailed information on weather and ocean conditions, helping to improve understanding of Antarctic coastal changes and their links to climate change.
A high-resolution, freely available dataset is provided for Deception Island, Antarctica,...
Altmetrics
Final-revised paper
Preprint