Articles | Volume 17, issue 9
https://doi.org/10.5194/essd-17-4715-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-4715-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Dutch real-time gauge-adjusted radar precipitation product
R&D Observations and Data Technology, Royal Netherlands Meteorological Institute, Utrechtseweg 297, 3731 GA De Bilt, the Netherlands
Hidde Leijnse
R&D Observations and Data Technology, Royal Netherlands Meteorological Institute, Utrechtseweg 297, 3731 GA De Bilt, the Netherlands
Mats Veldhuizen
R&D Observations and Data Technology, Royal Netherlands Meteorological Institute, Utrechtseweg 297, 3731 GA De Bilt, the Netherlands
Bastiaan Anker
R&D Observations and Data Technology, Royal Netherlands Meteorological Institute, Utrechtseweg 297, 3731 GA De Bilt, the Netherlands
Related authors
Abbas El Hachem, Jochen Seidel, Tess O'Hara, Roberto Villalobos Herrera, Aart Overeem, Remko Uijlenhoet, András Bárdossy, and Lotte de Vos
Hydrol. Earth Syst. Sci., 28, 4715–4731, https://doi.org/10.5194/hess-28-4715-2024, https://doi.org/10.5194/hess-28-4715-2024, 2024
Short summary
Short summary
This study presents an overview of open-source quality control (QC) algorithms for rainfall data from personal weather stations (PWSs). The methodology and usability along technical and operational guidelines for using every QC algorithm are presented. All three QC algorithms are available for users to explore in the OpenSense sandbox. They were applied in a case study using PWS data from the Amsterdam region in the Netherlands. The results highlight the necessity for data quality control.
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 2811–2832, https://doi.org/10.5194/amt-17-2811-2024, https://doi.org/10.5194/amt-17-2811-2024, 2024
Short summary
Short summary
Microwave links, often part of mobile phone networks, can be used to measure rainfall along the link path by determining the signal loss caused by rainfall. We use high-frequency data of multiple microwave links to recreate commonly used sampling strategies. For time intervals up to 1 min, the influence of sampling strategies on estimated rainfall intensities is relatively little, while for intervals longer than 5–15 min, the sampling strategy can have significant influences on the estimates.
Aart Overeem, Hidde Leijnse, Gerard van der Schrier, Else van den Besselaar, Irene Garcia-Marti, and Lotte Wilhelmina de Vos
Hydrol. Earth Syst. Sci., 28, 649–668, https://doi.org/10.5194/hess-28-649-2024, https://doi.org/10.5194/hess-28-649-2024, 2024
Short summary
Short summary
Ground-based radar precipitation products typically need adjustment with rain gauge accumulations to achieve a reasonable accuracy. Crowdsourced rain gauge networks have a much higher density than conventional ones. Here, a 1-year personal weather station (PWS) gauge dataset is obtained. After quality control, the 1 h PWS gauge accumulations are merged with pan-European radar accumulations. The potential of crowdsourcing to improve radar precipitation products in (near) real time is confirmed.
Linda Bogerd, Hidde Leijnse, Aart Overeem, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 247–259, https://doi.org/10.5194/amt-17-247-2024, https://doi.org/10.5194/amt-17-247-2024, 2024
Short summary
Short summary
Algorithms merge satellite radiometer data from various frequency channels, each tied to a different footprint size. We studied the uncertainty associated with sampling (over the Netherlands using 4 years of data) as precipitation is highly variable in space and time by simulating ground-based data as satellite footprints. Though sampling affects precipitation estimates, it doesn’t explain all discrepancies. Overall, uncertainties in the algorithm seem more influential than how data is sampled.
Aart Overeem, Else van den Besselaar, Gerard van der Schrier, Jan Fokke Meirink, Emiel van der Plas, and Hidde Leijnse
Earth Syst. Sci. Data, 15, 1441–1464, https://doi.org/10.5194/essd-15-1441-2023, https://doi.org/10.5194/essd-15-1441-2023, 2023
Short summary
Short summary
EURADCLIM is a new precipitation dataset covering a large part of Europe. It is based on weather radar data to provide local precipitation information every hour and combined with rain gauge data to obtain good precipitation estimates. EURADCLIM provides a much better reference for validation of weather model output and satellite precipitation datasets. It also allows for climate monitoring and better evaluation of extreme precipitation events and their impact (landslides, flooding).
Wagner Wolff, Aart Overeem, Hidde Leijnse, and Remko Uijlenhoet
Atmos. Meas. Tech., 15, 485–502, https://doi.org/10.5194/amt-15-485-2022, https://doi.org/10.5194/amt-15-485-2022, 2022
Short summary
Short summary
The existing infrastructure for cellular communication is promising for ground-based rainfall remote sensing. Rain-induced signal attenuation is used in dedicated algorithms for retrieving rainfall depth along commercial microwave links (CMLs) between cell phone towers. This processing is a source of many uncertainties about input data, algorithm structures, parameters, CML network, and local climate. Application of a stochastic optimization method leads to improved CML rainfall estimates.
Ruben Imhoff, Claudia Brauer, Klaas-Jan van Heeringen, Hidde Leijnse, Aart Overeem, Albrecht Weerts, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 25, 4061–4080, https://doi.org/10.5194/hess-25-4061-2021, https://doi.org/10.5194/hess-25-4061-2021, 2021
Short summary
Short summary
Significant biases in real-time radar rainfall products limit the use for hydrometeorological forecasting. We introduce CARROTS (Climatology-based Adjustments for Radar Rainfall in an OperaTional Setting), a set of fixed bias reduction factors to correct radar rainfall products and to benchmark other correction algorithms. When tested for 12 Dutch basins, estimated rainfall and simulated discharges with CARROTS generally outperform those using the operational mean field bias adjustments.
Abbas El Hachem, Jochen Seidel, Tess O'Hara, Roberto Villalobos Herrera, Aart Overeem, Remko Uijlenhoet, András Bárdossy, and Lotte de Vos
Hydrol. Earth Syst. Sci., 28, 4715–4731, https://doi.org/10.5194/hess-28-4715-2024, https://doi.org/10.5194/hess-28-4715-2024, 2024
Short summary
Short summary
This study presents an overview of open-source quality control (QC) algorithms for rainfall data from personal weather stations (PWSs). The methodology and usability along technical and operational guidelines for using every QC algorithm are presented. All three QC algorithms are available for users to explore in the OpenSense sandbox. They were applied in a case study using PWS data from the Amsterdam region in the Netherlands. The results highlight the necessity for data quality control.
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 2811–2832, https://doi.org/10.5194/amt-17-2811-2024, https://doi.org/10.5194/amt-17-2811-2024, 2024
Short summary
Short summary
Microwave links, often part of mobile phone networks, can be used to measure rainfall along the link path by determining the signal loss caused by rainfall. We use high-frequency data of multiple microwave links to recreate commonly used sampling strategies. For time intervals up to 1 min, the influence of sampling strategies on estimated rainfall intensities is relatively little, while for intervals longer than 5–15 min, the sampling strategy can have significant influences on the estimates.
Aart Overeem, Hidde Leijnse, Gerard van der Schrier, Else van den Besselaar, Irene Garcia-Marti, and Lotte Wilhelmina de Vos
Hydrol. Earth Syst. Sci., 28, 649–668, https://doi.org/10.5194/hess-28-649-2024, https://doi.org/10.5194/hess-28-649-2024, 2024
Short summary
Short summary
Ground-based radar precipitation products typically need adjustment with rain gauge accumulations to achieve a reasonable accuracy. Crowdsourced rain gauge networks have a much higher density than conventional ones. Here, a 1-year personal weather station (PWS) gauge dataset is obtained. After quality control, the 1 h PWS gauge accumulations are merged with pan-European radar accumulations. The potential of crowdsourcing to improve radar precipitation products in (near) real time is confirmed.
Linda Bogerd, Hidde Leijnse, Aart Overeem, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 247–259, https://doi.org/10.5194/amt-17-247-2024, https://doi.org/10.5194/amt-17-247-2024, 2024
Short summary
Short summary
Algorithms merge satellite radiometer data from various frequency channels, each tied to a different footprint size. We studied the uncertainty associated with sampling (over the Netherlands using 4 years of data) as precipitation is highly variable in space and time by simulating ground-based data as satellite footprints. Though sampling affects precipitation estimates, it doesn’t explain all discrepancies. Overall, uncertainties in the algorithm seem more influential than how data is sampled.
Aart Overeem, Else van den Besselaar, Gerard van der Schrier, Jan Fokke Meirink, Emiel van der Plas, and Hidde Leijnse
Earth Syst. Sci. Data, 15, 1441–1464, https://doi.org/10.5194/essd-15-1441-2023, https://doi.org/10.5194/essd-15-1441-2023, 2023
Short summary
Short summary
EURADCLIM is a new precipitation dataset covering a large part of Europe. It is based on weather radar data to provide local precipitation information every hour and combined with rain gauge data to obtain good precipitation estimates. EURADCLIM provides a much better reference for validation of weather model output and satellite precipitation datasets. It also allows for climate monitoring and better evaluation of extreme precipitation events and their impact (landslides, flooding).
Wagner Wolff, Aart Overeem, Hidde Leijnse, and Remko Uijlenhoet
Atmos. Meas. Tech., 15, 485–502, https://doi.org/10.5194/amt-15-485-2022, https://doi.org/10.5194/amt-15-485-2022, 2022
Short summary
Short summary
The existing infrastructure for cellular communication is promising for ground-based rainfall remote sensing. Rain-induced signal attenuation is used in dedicated algorithms for retrieving rainfall depth along commercial microwave links (CMLs) between cell phone towers. This processing is a source of many uncertainties about input data, algorithm structures, parameters, CML network, and local climate. Application of a stochastic optimization method leads to improved CML rainfall estimates.
Ruben Imhoff, Claudia Brauer, Klaas-Jan van Heeringen, Hidde Leijnse, Aart Overeem, Albrecht Weerts, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 25, 4061–4080, https://doi.org/10.5194/hess-25-4061-2021, https://doi.org/10.5194/hess-25-4061-2021, 2021
Short summary
Short summary
Significant biases in real-time radar rainfall products limit the use for hydrometeorological forecasting. We introduce CARROTS (Climatology-based Adjustments for Radar Rainfall in an OperaTional Setting), a set of fixed bias reduction factors to correct radar rainfall products and to benchmark other correction algorithms. When tested for 12 Dutch basins, estimated rainfall and simulated discharges with CARROTS generally outperform those using the operational mean field bias adjustments.
Cited articles
Agile Alliance: What is Agile? | Agile 101 | Agile Alliance, https://www.agilealliance.org/agile101/, last access: May 2025. a
Al-Sakka, H., Boumahmoud, A.-A., Fradon, B., Frasier, S. J., and Tabary, P.: A new fuzzy logic hydrometeor classification scheme applied to the French X-, C-, and S-band polarimetric radars, J. Appl. Meteorol. Clim., 52, 2328–2344, https://doi.org/10.1175/JAMC-D-12-0236.1, 2013. a
Barnes, S. L.: A technique for maximizing details in numerical weather map analysis, J. Appl. Meteorol., 3, 396–409, 1964. a
Barton, Y., Sideris, I., Germann, U., and Martius, O.: A method for real-time temporal disaggregation of blended radar–rain gauge precipitation fields, Meteorol. Appl., 27, e1843, https://doi.org/10.1002/met.1843, 2019. a
Bech, J., Codina, B., Lorente, J., and Bebbington, D.: The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient, J. Atmos. Ocean. Tech., 20, 845–855, https://doi.org/10.1175/1520-0426(2003)020<0845:TSOSPW>2.0.CO;2, 2003. a
Beekhuis, H. and Mathijssen, T.: From pulse to product, Highlights of the upgrade project of the Dutch national weather radar network, in: 10th European Conference on Radar in Meteorology and Hydrology (ERAD 2018): 1–6 July 2018, Ede-Wageningen, the Netherlands, edited by: de Vos, L., Leijnse, H., and Uijlenhoet, R., Wageningen University & Research, Wageningen, the Netherlands, 960–965, https://doi.org/10.18174/454537, 2018. a, b
Boodoo, S., Hudak, D., Donaldson, N., and Leduc, M.: Application of dual-polarization radar melting-layer detection algorithm, J. Appl. Meteorol. Clim., 49, 1779–1793, https://doi.org/10.1175/2010JAMC2421.1, 2010. a
Brandsma, T.: Comparison of automatic and manual precipitation networks in the Netherlands, Technical report TR-347, KNMI, De Bilt, https://cdn.knmi.nl/knmi/pdf/bibliotheek/knmipubTR/TR347.pdf (last access: 17 September 2025), 2014. a
Bringi, V. N., Chandrasekar, V., Balakrishnan, N., and Zrnić, D. S.: An examination of propagation effects in rainfall on radar measurements at microwave frequencies, J. Atmos. Ocean. Tech., 7, 829–840, https://doi.org/10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2, 1990. a
Bukovčić, P., Ryzhkov, A., Zrnić, D., and Zhang, G.: Polarimetric radar relations for quantification of snow based on disdrometer data, J. Appl. Meteorol. Clim., 57, 103–120, https://doi.org/10.1175/JAMC-D-17-0090.1, 2018. a
Copernicus Climate Change Service: E-OBS data access, https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php#datafiles, last access: December 2024. a
Cornes, R. C., Van der Schrier, G., Van den Besselaar, E. J. M., and Jones, P. D.: An ensemble version of the E-OBS temperature and precipitation data sets, J. Geophys. Res.-Atmos., 123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018. a, b
Cremonini, R., Moisseev, D., and Chandrasekar, V.: Airborne laser scan data: a valuable tool with which to infer weather radar partial beam blockage in urban environments, Atmos. Meas. Tech., 9, 5063–5075, https://doi.org/10.5194/amt-9-5063-2016, 2016. a
Crisologo, I., Vulpiani, G., Abon, C. C., David, C. P. C., Bronstert, A., and Heistermann, M.: Polarimetric rainfall retrieval from a C-band weather radar in a tropical environment (the Philippines), Asia-Pac. J. Atmos. Sci., 50(S), 43–55, https://doi.org/10.1007/s13143-014-0049-y, 2014. a
de Baar, J. H. S., Garcia-Marti, I., and van der Schrier, G.: Spatial regression of multi-fidelity meteorological observations using a proxy-based measurement error model, Adv. Sci. Res., 20, 49–53, https://doi.org/10.5194/asr-20-49-2023, 2023. a
Doviak, R. J. and Zrnić, D. S.: Doppler Radar and Weather Observations, 2nd edn., Dover Publications, Inc., Mineola, New York, ISBN 0-486-45060-0, 1993. a
DWD: Index of /climate_environment/CDC/observations_germany/
climate/daily/more_precip/, https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/more_precip/ (last access: 17 September 2025), 2024. a
climate/daily/more_precip/, https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/more_precip/ (last access: 17 September 2025), 2024. a
DWD: Historische stündliche RADOLAN-Raster der Niederschlagshöhe (binär), version V001, https://opendata.dwd.de/climate_environment/CDC/grids_germany/hourly/radolan/historical/bin/ (last access: 17 September 2025), 2025. a
Fabry, F.: Radar Meteorology: Principles and Practice, Cambridge University Press, Cambridge, U. K., https://doi.org/10.1017/CBO9781107707405, 2015. a, b, c
Farnebäck, G.: Two-frame motion estimation based on polynomial expansion, in: Image Analysis, edited by: Bigun, J. and Gustavsson, T., Springer Berlin Heidelberg, Berlin, Heidelberg, 363–370, https://doi.org/10.1007/3-540-45103-X_50, 2003. a
Figueras i Ventura, J. and Tabary, P.: The new French operational polarimetric radar rainfall rate product, J. Appl. Meteorol. Clim., 52, 1817–1835, https://doi.org/10.1175/JAMC-D-12-0179.1, 2013. a
Frech, M., Hagen, M., and Mammen, T.: Monitoring the absolute calibration of a polarimetric weather radar, J. Atmos. Ocean. Tech., 34, 599–615, https://doi.org/10.1175/JTECH-D-16-0076.1, 2017. a, b
Gabella, M. and Notarpietro, R.: Ground clutter characterization and elimination in mountainous terrain, in: Proceedings of the 2nd European conference on radar meteorology ERAD and the COST 717 mid-term seminar, Katlenburg-Lindau, Copernicus, 305–311, https://www.copernicus.org/erad/online/erad-305.pdf (last access: 17 September 2025), 2002. a, b
Germann, U.: Radome attenuation – a serious limiting factor for quantitative radar measurements?, Meteorol. Z., 8, 85–90, https://doi.org/10.1127/metz/8/1999/85, 1999. a
Germann, U., Galli, G., Boscacci, M., and Bolliger, M.: Radar precipitation measurement in a mountainous region, Q. J. Roy. Meteor. Soc., 132, 1669–1692, https://doi.org/10.1256/qj.05.190, 2006. a
Goudenhoofdt, E. and Delobbe, L.: Evaluation of radar-gauge merging methods for quantitative precipitation estimates, Hydrol. Earth Syst. Sci., 13, 195–203, https://doi.org/10.5194/hess-13-195-2009, 2009. a
Goudenhoofdt, E. and Delobbe, L.: Generation and verification of rainfall estimates from 10-yr volumetric weather radar measurements, J. Hydrometeorol., 17, 1223–1242, https://doi.org/10.1175/JHM-D-15-0166.1, 2016. a, b
Gourley, J. J., Tabary, P., and Parent du Chatelet, J.: A fuzzy logic algorithm for the separation of precipitating from nonprecipitating echoes using polarimetric radar observations, J. Atmos. Ocean. Tech., 24, 1439–1451, https://doi.org/10.1175/JTECH2035.1, 2007. a
Hazenberg, P., Torfs, P. J. J. F., Leijnse, H., Delrieu, G., and Uijlenhoet, R.: Identification and uncertainty estimation of vertical reflectivity profiles using a Lagrangian approach to support quantitative precipitation measurements by weather radar, J. Geophys. Res.-Atmos., 118, 10243–10261, https://doi.org/10.1002/jgrd.50726, 2013. a, b, c
Hazenberg, P., Leijnse, H., and Uijlenhoet, R.: The impact of reflectivity correction and accounting for raindrop size distribution variability to improve precipitation estimation by weather radar for an extreme low-land mesoscale convective system, J. Hydrol., 519, 3410–3425, https://doi.org/10.1016/j.jhydrol.2014.09.057, 2014. a
Heistermann, M., Jacobi, S., and Pfaff, T.: Technical Note: An open source library for processing weather radar data (wradlib), Hydrol. Earth Syst. Sci., 17, 863–871, https://doi.org/10.5194/hess-17-863-2013, 2013. a, b, c
Hitschfeld, W. and Bordan, J.: Errors inherent in the radar measurement of rainfall at attenuating wavelengths, J. Meteorol., 11, 58–67, https://doi.org/10.1175/1520-0469(1954)011<0058:EIITRM>2.0.CO;2, 1954. a, b
Holleman, I.: Bias adjustment and long-term verification of radar-based precipitation estimates, Meteorol. Appl., 14, 195–203, https://doi.org/10.1002/met.22, 2007. a, b
Hubbert, J. C., Dixon, M., Ellis, S. M., and Meymaris, G.: Weather radar ground clutter. Part I: Identification, modeling, and simulation, J. Atmos. Ocean. Tech., 26, 1165–1180, https://doi.org/10.1175/2009JTECHA1159.1, 2009a. a
Hubbert, J. C., Dixon, M., and Ellis, S. M.: Weather radar ground clutter. Part II: Real-time identification and filtering, J. Atmos. Ocean. Tech., 26, 1181–1197, https://doi.org/10.1175/2009JTECHA1160.1, 2009b. a
Huuskonen, A., Kurri, M., and Holleman, I.: Improved analysis of solar signals for differential reflectivity monitoring, Atmos. Meas. Tech., 9, 3183–3192, https://doi.org/10.5194/amt-9-3183-2016, 2016. a
Imhoff, R., Brauer, C., van Heeringen, K.-J., Leijnse, H., Overeem, A., Weerts, A., and Uijlenhoet, R.: A climatological benchmark for operational radar rainfall bias reduction, Hydrol. Earth Syst. Sci., 25, 4061–4080, https://doi.org/10.5194/hess-25-4061-2021, 2021. a
Jacobi, S. and Heistermann, M.: Benchmarking attenuation correction procedures for six years of single-polarized C-band weather radar observations in South-West Germany, Geomat. Nat. Haz. Risk, 7, 1785–1799, https://doi.org/10.1080/19475705.2016.1155080, 2016. a, b
Kitchen, M. and Blackall, R. M.: Representativeness errors in comparisons between radar and gauge measurements of rainfall, J. Hydrol., 134, 13–33, 1992. a
Klein Tank, A. M. G., Wijngaard, J. B., Können, G. P., Böhm, R., Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C., Heino, R., Bessemoulin, P., Müller-Westermeier, G., Tzanakou, M., Szalai S., Pálsdóttir, T., Fitzgerald, D., Rubin, S., Capaldo, M., Maugeri, M., Leitass, A., Bukantis, A., Aberfeld, R., van Engelen, A. F. V., Forland, E., Mietus, M., Coelho, F., Mares, C., Razuvaev, V., Nieplova, E., Cegnar, T., Antonio López, J., Dahlström, B., Moberg, A., Kirchhofer, W., Ceylan, A., Pachaliuk, O., Alexander, L. V., and Petrovic, P.: Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment, Int. J. Climatol., 22, 1441–1453, https://doi.org/10.1002/joc.773, 2002. a
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios, J. Hydrol., 424–425, 264–277, 2012. a
Klok, E. and Klein Tank, A.: Updated and extended European dataset of daily climate observation, Int. J. Climatol., 29, 1182–1191, https://doi.org/doi:10.1002/joc.1779, 2008. a
KNMI Radar Team: Precipitation – radar/gauge 5 minute real-time accumulations over the Netherlands, KNMI Data Platform [data set], https://doi.org/10.21944/5c23-p429, 2018a. a, b, c
KNMI Radar Team: Precipitation – radar/gauge 5 minute real-time accumulations over the Netherlands – archive, KNMI Data Platform [data set], https://doi.org/10.21944/e7zx-8a17, 2018b. a, b, c
KNMI Radar Team: Precipitation – 5 minute nowcast over The Netherlands up to 2 hours ahead, KNMI Data Platform [data set], https://dataplatform.knmi.nl/dataset/radar-forecast-2-0 (last access: 17 September 2025), 2024. a
Krajewski, W., Ntelekos, A., and Goska, R.: A GIS-based methodology for the assessment of weather radar beam blockage in mountainous regions: Two examples from the US NEXRAD network, Comput. Geosci., 32, 283–302, https://doi.org/10.1016/j.cageo.2005.06.024, 2006. a
Kurri, M. and Huuskonen, A.: Measurements of the transmission loss of a radome at different rain intensities, J. Atmos. Ocean. Tech., 25, 1590–1599, https://doi.org/10.1175/2008JTECHA1056.1, 2008. a
Lang, T., Nesbitt, S., and Carey, L.: On the correction of partial beam blockage in polarimetric radar data, J. Atmos. Ocean. Tech., 26, 943–957, https://doi.org/10.1175/2008JTECHA1133.1, 2009. a
Lengfeld, K., Winterrath, T., Junghänel, T., Hafer, M., and Becker, A.: Characteristic spatial extent of hourly and daily precipitation events in Germany derived from 16 years of radar data, Meteorol. Z., 28, 363–378, https://doi.org/10.1127/metz/2019/0964, 2019. a
Li, W., Chen, H., and Han, L.: Improving explainability of deep learning for polarimetric radar rainfall estimation, Geophys. Res. Lett., 51, https://doi.org/10.1029/2023GL107898, 2024. a
Marshall, J. S., Hitschfeld, W., and Gunn, K. L. S.: Advances in radar weather, in: Advances in Geophysics, vol. 2, Academic Press, New York, 1–56, https://doi.org/10.1016/S0065-2687(08)60310-6, 1955. a, b, c, d
Mathijssen, T., Beekhuis, H., Holleman, I., and Roozekrans, H.: Update of KNMI HDF5 Data Format Specification, v3.8, Internal report, KNMI, De Bilt, https://www.knmi.nl/research/publications/update-of-knmi-hdf5-data-format-specification-v3-8 (last access: 17 September 2025), 2019. a
McKee, J. and Binns, A.: A review of gauge–radar merging methods for quantitative precipitation estimation in hydrology, Can. Water Resour. J., 41, 186–203, https://doi.org/10.1080/07011784.2015.1064786, 2015. a
Met Office: Cartopy: a cartographic python library with a Matplotlib interface, https://scitools.org.uk/cartopy/docs/latest/ (last access: 17 September 2025), 2022. a
Mühlbauer, K., Heistermann, M., and Goudenhoofdt, E.: wradlib/wradlib: wradlib release v1.9.0 (1.9.0), Zenodo, https://doi.org/10.5281/zenodo.4290240, 2020. a, b, c
Nelson, B. R., Prat, O. P., Seo, D.-J., and Habib, E.: Assessment and implications of NCEP Stage IV quantitative precipitation estimates for product intercomparisons, Weather Forecast., 31, 371–394, https://doi.org/10.1175/WAF-D-14-00112.1, 2016. a
Nielsen, J., van de Beek, C., Thorndahl, S., Olsson, J., Andersen, C., Andersson, J., Rasmussen, M., and Nielsen, J.: Merging weather radar data and opportunistic rainfall sensor data to enhance rainfall estimates, Atmos. Res., 300, 107228, https://doi.org/10.1016/j.atmosres.2024.107228, 2024. a
Overeem, A., van den Besselaar, E., van der Schrier, G., Meirink, J. F., van der Plas, E., and Leijnse, H.: EURADCLIM: the European climatological high-resolution gauge-adjusted radar precipitation dataset, Earth Syst. Sci. Data, 15, 1441–1464, https://doi.org/10.5194/essd-15-1441-2023, 2023a. a, b, c
Overeem, A., Vlemmix, T., van Wijngaarden, F., Mathijssen, T., Veldhuizen, M., Lankamp, B., de Jong, M., and Leijnse, H.: D.T1.1.3 Improvement in Radar Precipitation, Interreg report EMFloodResilience project, KNMI, De Bilt, https://emfloodresilience.eu/publish/pages/7424/interregradar20231031_d-t1-1-3_v2.pdf (last access: 17 September 2025), 2023b. a
Overeem, A., Leijnse, H., van der Schrier, G., van den Besselaar, E., Garcia-Marti, I., and de Vos, L. W.: Merging with crowdsourced rain gauge data improves pan-European radar precipitation estimates, Hydrol. Earth Syst. Sci., 28, 649–668, https://doi.org/10.5194/hess-28-649-2024, 2024a. a
Overeem, A., Uijlenhoet, R., and Leijnse, H.: Quantitative precipitation estimation from weather radars, personal weather stations and commercial microwave links, in: Advances in Weather Radar. Volume 3: Emerging applications, edited by: Bringi, V. N. and Kumar Vijay Mishra, M. T., Institution of Engineering and Technology, 27–68, https://doi.org/10.1049/SBRA557H_ch2, 2024b. a
Park, S., Berenguer, M., and Sempere-Torres, D.: Long-term analysis of gauge-adjusted radar rainfall accumulations at European scale, J. Hydrol., 573, 768–777, https://doi.org/10.1016/j.jhydrol.2019.03.093, 2019. a, b
Prat, O. P. and Nelson, B. R.: Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge data sets at daily to annual scales (2002–2012), Hydrol. Earth Syst. Sci., 19, 2037–2056, https://doi.org/10.5194/hess-19-2037-2015, 2015. a
Project team ECA&D, Royal Netherlands Meteorological Institute KNMI: European Climate Assessment & Dataset (ECA&D), Algorithm Theoretical Basis Document (ATBD), Version 11, https://knmi-ecad-assets-prd.s3.amazonaws.com/documents/atbd.pdf, last access: 17 September 2025. a
Rauber, R. M. and Nesbitt, S. L.: Radar Meteorology: A First Course, John Wiley & Sons, Hoboken, NJ, USA, https://doi.org/10.1002/9781118432662, 2018. a
Ryzhkov, A., Diederich, M., Zhang, P., and Simmer, C.: Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking, J. Atmos. Ocean. Tech., 31, 599–619, https://doi.org/10.1175/JTECH-D-13-00038.1, 2014. a
Ryzhkov, A., Matrosov, S. Y., Melnikov, V., Zrnic, D., Zhang, P., Cao, Q., Knight, M., Simmer, C., and Troemel, S.: Estimation of depolarization ratio using weather radars with simultaneous transmission/reception, J. Appl. Meteorol. Clim., 56, 1797–1816, https://doi.org/10.1175/JAMC-D-16-0098.1, 2017. a
Ryzhkov, A. V. and Zrnic, D. S.: Radar Polarimetry for Weather Observations, Springer Nature Switzerland AG, Cham, Switzerland, https://doi.org/10.1007/978-3-030-05093-1, 2019. a
Saltikoff, E., Cho, J. Y. N., Tristant, P., Huuskonen, A., Allmon, L., Cook, R., Becker, E., and Joe, P.: The threat to weather radars by wireless technology, B. Am. Meteorol. Soc., 97, 1159–1167, https://doi.org/10.1175/BAMS-D-15-00048.1, 2016. a
Saltikoff, E., Haase, G., Delobbe, L., Gaussiat, N., Martet, M., Idziorek, D., Leijnse, H., Novák, P., Lukach, M., and Stephan, K.: OPERA the radar project, Atmosphere, 10, 310, https://doi.org/10.3390/atmos10060320, 2019. a
Siegmund, P.: Precipitation – gridded daily precipitation sum in the Netherlands, https://dataplatform.knmi.nl/dataset/rd1-5 (last access: 17 September 2025), 2014. a
Smith, P.: Equivalent radar reflectivity factors for snow and ice particles, J. Appl. Meteorol. Clim., 23, 1258–1260, https://doi.org/10.1175/1520-0450(1984)023<1258:ERRFFS>2.0.CO;2, 1984. a
Soenario, I., Plieger, M., and Sluiter, R.: Optimization of rainfall interpolation, Internal report 2010-01, KNMI, De Bilt, https://cdn.knmi.nl/knmi/pdf/bibliotheek/knmipubIR/IR2010-01.pdf (last access: 17 September 2025), 2010. a
Svatoš, J.: Value of using personal weather stations in radar precipitation merging, MSc thesis, Wageningen University & Research, Wageningen, the Netherlands, https://library.wur.nl/WebQuery/theses/2347899 (last access: 17 September 2025), 2025. a
Tabary, P., Vulpiani, G., Gourley, J. J., Illingworth, A. J., Thompson, R. J., and Bousquet, O.: Unusually high differential attenuation at C Band: results from a two-year analysis of the French Trappes polarimetric radar data, J. Appl. Meteorol. Clim., 48, 2037–2053, https://doi.org/10.1175/2009JAMC2039.1, 2009. a
Tang, L., Zhang, J., Simpson, M., Arthur, A., Grams, H., Wang, Y., and Langston, C.: Updates on the radar data quality control in the MRMS quantitative precipitation estimation system, J. Atmos. Ocean. Tech., 37, 1521–1537, https://doi.org/10.1175/JTECH-D-19-0165.1, 2020. a
Testud, J., Le Bouar, E., Obligis, E., and Ali-Mehenni, M.: The rain profiling algorithm applied to polarimetric weather radar, J. Atmos. Ocean. Tech., 17, 332–356, https://doi.org/10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2, 2000. a
Uijlenhoet, R.: Raindrop size distributions and radar reflectivity–rain rate relationships for radar hydrology, Hydrol. Earth Syst. Sci., 5, 615–628, https://doi.org/10.5194/hess-5-615-2001, 2001. a
Uijlenhoet, R.: Precipitation physics and rainfall observation, in: Climate and the Hydrological Cycle, edited by: Bierkens, M. F. P., Dolman, A. J., and Troch, P. A., IAHS Special Publication 8, International Association of Hydrological Sciences Press, Wallingford, 59–97, ISBN 9781901502541, 2008. a
Van Andel, N.: Quality control development for near real-time rain gauge networks for operational rainfall monitoring, MSc thesis, Utrecht University, Utrecht, https://studenttheses.uu.nl/handle/20.500.12932/40939 (last access: 17 September 2025), 2021. a
Van de Beek, C. Z., Leijnse, H., Torfs, P. J. J. F., and Uijlenhoet, R.: Seasonal semi-variance of Dutch rainfall at hourly to daily scales, Adv. Water Resour., 45, 76–85, https://doi.org/10.1016/j.advwatres.2012.03.023, 2012. a
Vulpiani, G., Montopoli, M., Passeri, L. D., Gioia, A. G., Giordano, P., and Marzano, F. S.: On the use of dual-polarized C-band radar for operational rainfall retrieval in mountainous areas, J. Appl. Meteorol. Clim., 51, 405–425, https://doi.org/10.1175/JAMC-D-10-05024.1, 2012. a
Werner, M.: A new radar data post-processing quality control workflow for the DWD weather radar network, in: Proc. 8th European Conference on Radar in Meteorology and Hydrology (ERAD 2014), 1–5 September 2014, Garmisch-Partenkirchen, Germany, DWD, http://www.pa.op.dlr.de/erad2014/programme/ExtendedAbstracts/079_Werner.pdf (last access: 17 September 2025), 2014. a, b
Winterrath, T., Rosenow, W., and Weigl, E.: On the DWD quantitative precipitation analysis and nowcasting system for real-time application in German flood risk management, in: Weather Radar and Hydrology, Proceedings of a symposium held in Exeter, UK, April 2011, edited by: Moore, R. J., Cole, S. J., and Illingworth, A. J., IAHS Publ. 351, IAHS Press, Wallingford, Oxfordshire, UK, 323–329, ISBN 9781907161261, 2012. a
WMO: Guide to Instruments and Methods of Observation. Volume I – Measurement of Meteorological Variables, WMO-No. 8, Chap. 6, Vol. 1, ISBN 978-92-63-10008-5, 2023. a
Wolfensberger, D., Gabella, M., Boscacci, M., Germann, U., and Berne, A.: RainForest: a random forest algorithm for quantitative precipitation estimation over Switzerland, Atmos. Meas. Tech., 14, 3169–3193, https://doi.org/10.5194/amt-14-3169-2021, 2021. a
Wradlib: wradlib.atten.correct_attenuation_constrained – wradlib, https://docs.wradlib.org/projects/old-docs/en/1.9.0/generated/wradlib.atten.correct_attenuation_constrained.html#wradlib.atten.correct_attenuation_constrained (last access: February 2025), 2020a. a
Wradlib: wradlib.atten.pia_from_kdp – wradlib, https://docs.wradlib.org/projects/old-docs/en/1.9.0/generated/wradlib.atten.pia_from_kdp.html (last access: February 2025), 2020b. a
Wradlib: wradlib.clutter.filter_gabella – wradlib, https://docs.wradlib.org/projects/old-docs/en/1.9.0/generated/wradlib.clutter.filter_gabella.html (last access: February 2025), 2020c. a
Zhang, J., Howard, K., Langston, C., Kaney, B., Qi, Y., Tang, L., Grams, H., Wang, Y., Cocks, S., Martinaitis, S., Arthur, A., Cooper, K., Brogden, J., and Kitzmiller, D.: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities, B. Am. Meteorol. Soc., 97, 621–638, https://doi.org/10.1175/BAMS-D-14-00174.1, 2016. a
Zhang, P., Zrnić, D., and Ryzhkov, A.: Partial beam blockage correction using polarimetric radar measurements, J. Atmos. Ocean. Tech., 30, 861–872, https://doi.org/10.1175/JTECH-D-12-00075.1, 2013. a
Short summary
The Dutch real-time gauge-adjusted radar product provides 5 min precipitation accumulations every 5 min covering the Netherlands and the area around it. It plays a key role in hydrological decision-support systems and as input for short-term weather forecasts. Major changes were implemented on 31 January 2023, and the associated quality improvement is presented. Moreover, the employed radar and rain gauge datasets and the algorithms needed to produce this real-time radar product are described.
The Dutch real-time gauge-adjusted radar product provides 5 min precipitation accumulations...
Altmetrics
Final-revised paper
Preprint