Articles | Volume 17, issue 9
https://doi.org/10.5194/essd-17-4671-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-4671-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
KarstConduitCatalogue: a dataset of LiDAR derived point clouds for the analysis of karstic conduit geometry and morphology
Centre for Hydrogeology and geothermics, University of Neuchâtel, 11 Rue Emile Argand, 2000 Neuchâtel, Switzerland
Celia Trunz
Centre for Hydrogeology and geothermics, University of Neuchâtel, 11 Rue Emile Argand, 2000 Neuchâtel, Switzerland
Julien Straubhaar
Centre for Hydrogeology and geothermics, University of Neuchâtel, 11 Rue Emile Argand, 2000 Neuchâtel, Switzerland
Stéphane Jaillet
EDYTEM, Université Savoie Mont-Blanc, 5 bd de la mer Caspienne 73376 Le Bourget du Lac, France
Philippe Renard
Centre for Hydrogeology and geothermics, University of Neuchâtel, 11 Rue Emile Argand, 2000 Neuchâtel, Switzerland
Related authors
No articles found.
Chloé Fandel, Ty Ferré, François Miville, Philippe Renard, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 27, 4205–4215, https://doi.org/10.5194/hess-27-4205-2023, https://doi.org/10.5194/hess-27-4205-2023, 2023
Short summary
Short summary
From the surface, it is hard to tell where underground cave systems are located. We developed a computer model to create maps of the probable cave network in an area, based on the geologic setting. We then applied our approach in reverse: in a region where an old cave network was mapped, we used modeling to test what the geologic setting might have been like when the caves formed. This is useful because understanding past cave formation can help us predict where unmapped caves are located today.
Alexis Neven, Valentin Dall'Alba, Przemysław Juda, Julien Straubhaar, and Philippe Renard
The Cryosphere, 15, 5169–5186, https://doi.org/10.5194/tc-15-5169-2021, https://doi.org/10.5194/tc-15-5169-2021, 2021
Short summary
Short summary
We present and compare different geostatistical methods for underglacial bedrock interpolation. Variogram-based interpolations are compared with a multipoint statistics approach on both test cases and real glaciers. Using the modeled bedrock, the ice volume for the Scex Rouge and Tsanfleuron glaciers (Swiss Alps) was estimated to be 113.9 ± 1.6 million cubic meters. Complex karstic geomorphological features are reproduced and can be used to improve the precision of underglacial flow estimation.
Alexis Neven, Pradip Kumar Maurya, Anders Vest Christiansen, and Philippe Renard
Earth Syst. Sci. Data, 13, 2743–2752, https://doi.org/10.5194/essd-13-2743-2021, https://doi.org/10.5194/essd-13-2743-2021, 2021
Short summary
Short summary
The shallow underground is constituted of sediments that present high spatial variability. This upper layer is the most extensively used for resource exploitation (groundwater, geothermal heat, construction materials, etc.). Understanding and modeling the spatial variability of these deposits is crucial. We present a high-resolution electrical resistivity dataset that covers the upper Aare Valley in Switzerland. These data can help develop methods to characterize these geological formations.
Valentin Dall'Alba, Philippe Renard, Julien Straubhaar, Benoit Issautier, Cédric Duvail, and Yvan Caballero
Hydrol. Earth Syst. Sci., 24, 4997–5013, https://doi.org/10.5194/hess-24-4997-2020, https://doi.org/10.5194/hess-24-4997-2020, 2020
Short summary
Short summary
Due to climate and population evolution, increased pressure is put on the groundwater resource, which calls for better understanding and models. In this paper, we describe a novel workflow to model the geological heterogeneity of coastal aquifers and apply it to the Roussillon plain (southern France). The main strength of the workflow is its capability to model aquifer heterogeneity when only sparse data are available while honoring the local geological trends and quantifying uncertainty.
Cited articles
Arun, K. S., Huang, T. S., and Blostein, S. D.: Least-squares fitting of two 3-D point sets, IEEE Transactions on pattern analysis and machine intelligence, https://doi.org/10.1109/TPAMI.1987.4767965, 698–700, 1987. a, b
Bailey, T. and Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM): Part II, IEEE robotics & automation magazine, 13, 108–117, 2006. a
Besl, P. J. and McKay, N. D.: Method for registration of 3-D shapes, in: Sensor fusion IV: control paradigms and data structures, vol. 1611, Spie, 586–606, https://doi.org/10.1117/12.57955, 1992. a
Betts, O. J. W.: Survex, https://github.com/ojwb/survex (last access: 8 August 2025), 2024. a
Blatnik, M., Obu, J., Košutnik, J., and Gabrovšek, F.: Use of Terrestrial LiDAR Scanner for Monitoring of Ice Thickness in Ice Caves; Examples from Slovenia, in: EuroKarst 2022, Málaga, edited by: Andreo, B., Barberá, J. A., Durán-Valsero, J. J., Gil-Márquez, J. M., and Mudarra, M., 185–192, Springer International Publishing, Cham, ISBN 978-3-031-16879-6, 2023. a
Cacciari, P. P. and Futai, M. M.: Modeling a shallow rock tunnel using terrestrial laser scanning and discrete fracture networks, Rock Mechanics and Rock Engineering, 50, 1217–1242, 2017. a
Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., and Su, Z.: Point cloud skeletons via laplacian based contraction, in: 2010 Shape Modeling International Conference, IEEE, 187–197, https://doi.org/10.1109/SMI.2010.25, 2010. a, b
CloudCompare: CloudComPy, GitHub, https://github.com/CloudCompare/CloudComPy (last access: 12 August 2025), 2024. a
Collon, P., Bernasconi, D., Vuilleumier, C., and Renard, P.: Statistical metrics for the characterization of karst network geometry and topology, Geomorphology, 283, 122–142, https://doi.org/10.1016/j.geomorph.2017.01.034, 2017. a
De Waele, J., Fabbri, S., Santagata, T., Chiarini, V., Columbu, A., and Pisani, L.: Geomorphological and speleogenetical observations using terrestrial laser scanning and 3D photogrammetry in a gypsum cave (Emilia Romagna, N. Italy), Geomorphology, 319, 47–61, 2018. a
Dewez, T. J. B., Girardeau-Montaut, D., Allanic, C., and Rohmer, J.: FACETS : A CLOUDCOMPARE PLUGIN TO EXTRACT GEOLOGICAL PLANES FROM UNSTRUCTURED 3D POINT CLOUDS, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B5, 799–804, https://doi.org/10.5194/isprs-archives-XLI-B5-799-2016, 2016a. a
Dewez, T., Plat, E., Degas, M., Richard, T., Pannet, P., Thuon, Y., Meire, B., Watelet, J.-M., Cauvin, L., Lucas, J., and Dian, G.: Handheld Mobile Laser Scanners Zeb-1 and Zeb-Revo to map an underground quarry and its above-ground surroundings, in: 2nd Virtual Geosciences Conference: VGC 2016, hal-01348956, 2016b. a, b
Duguet, F. and Girardeau-Montaut, D.: Rendu en portion de ciel visible de gros nuages de points 3d, in: Actes des journees de l'AFIG, p. 11, inria-00606751, 2004. a
Fabbri, S., Sauro, F., Santagata, T., Rossi, G., and Waele, J. D.: High-resolution 3-D mapping using terrestrial laser scanning as a tool for geomorphological and speleogenetical studies in caves: An example from the Lessini mountains (North Italy), Geomorphology, https://doi.org/10.1016/j.geomorph.2016.12.001, 2017. a, b
Feagin, R. A., Williams, A. M., Popescu, S., Stukey, J., and Washington-Allen, R. A.: The use of terrestrial laser scanning (TLS) in dune ecosystems: The lessons learned, Journal of Coastal Research, 30, 111–119, 2014. a
Gallay, M., Hochmuth, Z., Kaňuk, J., and Hofierka, J.: Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning, Hydrol. Earth Syst. Sci., 20, 1827–1849, https://doi.org/10.5194/hess-20-1827-2016, 2016. a, b
Giordan, D., Godone, D., Baldo, M., Piras, M., Grasso, N., and Zerbetto, R.: Survey solutions for 3D acquisition and representation of artificial and natural caves, Applied Sciences, 11, 6482, https://doi.org/10.3390/app11146482, 2021. a
Grussenmeyer, P., Burens, A., Moisan, E., Guillemin, S., Carozza, L., Bourrillon, R., and Petrognani, S.: 3D multi-scale scanning of the archaeological cave “Les Fraux” in Dordogne (France), in: Progress in Cultural Heritage Preservation: 4th International Conference, EuroMed 2012, Limassol, Cyprus, 29 October–3 November 2012, Proceedings 4, 388–395, Springer, https://doi.org/10.1007/978-3-642-34234-9_39, 2012. a
Hajri, S., Sadier, B., Jaillet, S., Ployon, E., Boche, E., Chakroun, A., Saulnier, G.-M., and Delannoy, J.-J.: Analyse spatiale et morphologique d'une forêt de stalagmites par modélisation 3D dans le réseau d'Orgnac (Ardèche, France), Karstologia, 53, 1–14, 2009. a
Heeb: Paperless Cave Surveying, https://paperless.bheeb.ch/ (last access: 15 June 2025), 2016. a
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W.: Surface reconstruction from unorganized points, in: Proceedings of the 19th annual conference on computer graphics and interactive techniques, 71–78, SIGGRAPH, https://doi.org/10.1145/133994.13401, 1992. a, b, c
Idrees, M. O. and Pradhan, B.: A decade of modern cave surveying with terrestrial laser scanning: A review of sensors, method and application development, International Journal of Speleology, 45, 71–88, https://doi.org/10.5038/1827-806X.45.1.1923, 2016. a, b
Idrees, M. O. and Pradhan, B.: Geostructural stability assessment of cave using rock surface discontinuity extracted from terrestrial laser scanning point cloud, Journal of rock mechanics and geotechnical engineering, https://doi.org/10.1016/j.jrmge.2017.11.011, 2018. a
Jouves, J., Viseur, S., Arfib, B., Baudement, C., Camus, H., Collon, P., and Guglielmi, Y.: Speleogenesis, geometry, and topology of caves: A quantitative study of 3D karst conduits, Geomorphology, 298, 86–106, https://doi.org/10.1016/j.geomorph.2017.09.019, 2017. a
Kaňuk, J., Šupinskỳ, J., Meneely, J., Hochmuth, Z., Šašak, J., Gallay, M., and Callieri, M.: Laser Scanning of a Complex Cave System during Multiple Campaigns: A Case Study of the Domica Cave, Slovakia, in: 3D Imaging of the Environment, 56–81, CRC Press, https://doi.org/10.1201/9780429327575, 2024. a
Kazmierczak, E., Jaillet, S., Vandycke, S., and Verheyden, S.: Modélisation 3D par imagerie lidar et analyse structurale de la Salle du Dôme des Grottes de Han-sur-Lesse (Belgique, Ardenne), Géomorphologie: relief, processus, Environnement, 26, 231–240, 2020. a
Kokalj, Ž. and Somrak, M.: Why not a single image? Combining visualizations to facilitate fieldwork and on-screen mapping, Remote Sensing, 11, 747, https://doi.org/10.3390/rs11070747, 2019. a
Konsolaki, A., Vassilakis, E., Gouliotis, L., Kontostavlos, G., and Giannopoulos, V.: High resolution digital 3D modelling of subsurface morphological structures of Koutouki Cave, Greece, Acta Carsologica, 49, https://doi.org/10.3986/ac.v49i2-3.7708, 2020. a
Lauritzen, S. and Lundberg, J.: Meso-and micromorphology of caves: solutional and erosional morphology, in: Speleogenesis. Evolution of Karst aquifers, 407–426, National Speleological Society, Huntsville, Ala, https://doi.org/10.1016/S0022-1694(00)00341-3, 2000. a
Milius, J. and Petters, C.: Eisriesenwelt–From laser scanning to photo-realistic 3D model of the biggest ice cave on Earth, in: GI-Forum 2012: Geovizualisation, Society and Learning, 513–523, VDE Verlag GMBH, ISBN 978-3-87907-521-8, 2012. a
Mudrák, S. and Budaj, M.: The Therion Book: Vol. V.6.3.3, https://github.com/therion/therion/releases/tag/v6.3.3 (last access: 22 September 2025), 2025. a
Nováková, M., Gallay, M., Šupinskỳ, J., Ferré, E., Asti, R., de Saint Blanquat, M., Bajolet, F., and Sorriaux, P.: Correcting laser scanning intensity recorded in a cave environment for high-resolution lithological mapping: A case study of the Gouffre Georges, France, Remote Sensing of Environment, 280, 113210, https://doi.org/10.1016/j.rse.2022.113210, 2022. a, b
Pfeiffer, J., Rutzinger, M., and Spötl, C.: Terrestrial laser scanning for 3D mapping of an alpine ice cave, The Photogrammetric Record, 38, 6–21, 2023. a
Racine, T.: ERC-Karst/pc-processing: v1.0.1 (v1.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.17150928, 2025. a
Racine, T., Trunz, C., Straubhaar, J., Jaillet, S., and Renard, P.: KarstConduitCatalogue (Version 1.0), UNINE data service [data set], https://doi.org/10.60544/sbjr-z851, 2025a. a, b, c
Racine, T., Trunz, C., Straubhaar, J., Jaillet, S., and Renard, P.: KarstConduitCatalogue-Potree (Version 1.0), Zenodo [code], https://doi.org/10.5281/zenodo.16754405, 2025b. a
Racine, T., Chappuis, J., Renard, P., and Jaillet, S.: Entre modélisation et visualisation: lasergrammétrie terrestre et mobile pour l'analyse des géométries de conduits karstiques, Dynamiques Environnementales, in press, https://doi.org/10.4000/146pe, 2025c. a
Réveillet, M., Vincent, C., Six, D., Rabatel, A., Sanchez, O., Piard, L., and Laarman, O.: Spatio-temporal variability of surface mass balance in the accumulation zone of the Mer de Glace, French Alps, from multitemporal terrestrial LiDAR measurements, Journal of Glaciology, 67, 137–146, 2021. a
Securo, A., Forte, E., Martinucci, D., Pillon, S., and Colucci, R. R.: Long-term mass-balance monitoring and evolution of ice in caves through structure from motion–multi-view stereo and ground-penetrating radar techniques, Progress in Physical Geography: Earth and Environment, 46, 422–440, 2022. a
Šupinský, J., Kaňuk, J., Hochmuth, Z., and Gallay, M.: Detecting dynamics of cave floor ice with selective cloud-to-cloud approach, The Cryosphere, 13, 2835–2851, https://doi.org/10.5194/tc-13-2835-2019, 2019. a
Šupinskỳ, J., Kaňuk, J., Nováková, M., and Hochmuth, Z.: LiDAR point clouds processing for large-scale cave mapping: a case study of the Majko dome in the Domica cave, Journal of Maps, 18, 268–275, 2022. a
Tagliasacchi, A., Delame, T., Spagnuolo, M., Amenta, N., and Telea, A.: 3d skeletons: A state-of-the-art report, in: Computer Graphics Forum, vol. 35, 573–597, Wiley Online Library, https://doi.org/10.1111/cgf.12865, 2016. a, b, c
Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X., and Yan, G.: An easy-to-use airborne LiDAR data filtering method based on cloth simulation, Remote sensing, 8, 501, https://doi.org/10.3390/rs8060501, 2016. a
Zlot, R. and Bosse, M.: Three-dimensional mapping of caves, Journal of Cave and Karst Studies, https://doi.org/10.4311/2012ex0287, 2014. a
Short summary
Karst phenomena arise through dissolution, and the resulting landscapes are characterised by caves which focus the transport of water underground. To better understand geometry of these conduits at various scales, we mapped caves with laser scanners and built models of the walls to constitute the KarstConduitCatalogue. These mapping techniques allow us to measure cave geometries accurately. This paper describes how we acquired and curated the dataset and explores possible geoscientific uses.
Karst phenomena arise through dissolution, and the resulting landscapes are characterised by...
Altmetrics
Final-revised paper
Preprint