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Abstract. In mature karst aquifers, networks of interconnected conduits focus and control water flow and so-
lute transport. To improve the knowledge of the multi-scale geometry of typical conduits, we acquired a data
set of point clouds and triangulated surface models of 16 different underground caves: KarstConduitCatalogue
(Racine et al., 2025a, available at https://doi.org/10.60544/sbjr-z851). We employed terrestrial and mobile laser
scanning workflows as fast and reliable methods for acquiring a dense point cloud of wall surfaces in enclosed
spaces. These collected data can be used for many different purposes: evaluation of geometrical descriptors,
direct numerical simulations of flow and transport, geomorphological mapping, structure and fracture mapping,
etc. In this paper, we present the various assets derived from the acquisition. The conduits presented herein span
a variety of karst massifs of Western and Central Europe, from low-elevation karst plateaus to higher-elevation

Alpine aquifers.

1 Introduction

Obtaining fast, accurate, and high-resolution geometric in-
formation about real-world objects is a prerequisite to an-
swer many open scientific questions. Using an active sens-
ing method like laser scanning, surveyors are able to charac-
terise the geometry of objects by evaluating the positions of
many discrete sample points from the real surface. Using this
set of points, the underlying surface may be reconstructed
and its geometric properties quantitatively analysed. For in-
stance LiDAR- (Light Detection And Ranging) derived data
products may be used to build high-resolution digital eleva-
tion models (DEM), allowing detailed topographic analyses
to be carried out. Repeated LiDAR acquisitions over several
epochs allow for change detection and quantification, shed-
ding insight into riverine erosional processes (Lague et al.,
2013), mountain glacier accumulation or ablation dynamics
(Réveillet et al., 2021), and sediment transport (Feagin et al.,
2014). As a result, the use of laser scanners to map specific
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landforms at a range of scales and monitor their change over
time, has become ubiquitous in geosciences.

Spurred with the advent of increasingly powerful proces-
sors and the miniaturisation of the sensors, the use of laser
scanners to measure high-resolution 3D geometries of cave
passages or chambers has accelerated in the last two decades
(Idrees and Pradhan, 2016). The underground environment
presents however an inherent challenge in the form of limited
line of sight in cave or mine passages. General cave passage
tortuosity, dissolution morphologies and secondary mineral
deposits all result in numerous and complex occlusions or
gaps in the acquired point cloud (Fig. 3). The workflow for
cartography using terrestrial laser scanner devices, which op-
erate on fixed stations and acquire cave geometry data by a
full rotation of the sensor, relies on the operator’s choice of
fixed stations to guarantee enough overlap between each scan
to allow for accurate co-registration, as well as enough cover-
age of complex shapes (Gallay et al., 2016). Mobile mapping
using handheld devices with live user feedback largely over-
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comes these challenges by allowing the scanning operator
to multiply the viewpoints of the active sensor (Bosse et al.,
2012). Finally, the problem of segmenting and classifying the
datasets have been solved by calibrating the scanner return
intensity to classify contrasting lithologies (Novakova et al.,
2022). The collection, manipulation, visualisation, and inter-
pretation of dense 3D point clouds is now possible on even
moderately powerful desktop computers. This has opened the
doors to an increasing number of investigations dealing with
surface reconstruction of artefacts or speleogenetic features
in caves, as well as more detailed queries on the spatial distri-
bution and relative chronology of sedimentary deposits and
the orientation of structural features.

At its core, LIDAR-based telemetry is suited to the dark
underground environment, affords faster acquisition and
post-processing times than visual methods like Structure-
from-Motion, while the latter provides a strong alternative in
terms of accuracy, feasibility, and cost-effectiveness (Gior-
dan et al., 2021). Despite its cost, LIDAR telemetry over-
comes many challenges inherent to light-based techniques.
The use of terrestrial laser scanners (TSL) in low-light un-
derground environments has become a standard for detailed
geometric reconstructions (Idrees and Pradhan, 2016), with
mobile mapping solutions also being increasingly explored
(e.g., Dewez et al., 2016a). Lidar scans are digital twins
of cave sites, in the form of high-resolution point clouds
or meshes. They have been leveraged by a wide range of
studies bearing on documentation of archeological heritage
sites (Grussenmeyer et al., 2012), speleogenetic interpreta-
tions (Gallay et al., 2016; Fabbri et al., 2017; Konsolaki et al.,
2020), structural analyses and stability assessments (Idrees
and Pradhan, 2018; Kazmierczak et al., 2020), improving
show-cave management (Milius and Petters, 2012; Pfeiffer
et al., 2023), or detailed and accurate cartography (Supinsky
et al., 2022). Long-term campaigns to document complex
cave systems developed over more than 10 km are well un-
derway all over the world (Kariuk et al., 2024).

Lasergrammetric surveys have been leveraged under-
ground to support structural and speleogenetic interpreta-
tions in varied contexts. Hajri et al. (2009) used a TLS de-
rived point cloud to reconstruct a dense mesh and, through
automated classification, investigated the relation between
geometric parameters of a stalagmite forest and their prox-
imity to an underlying karst conduit undermining their struc-
tural integrity. De Waele et al. (2018) reconstructed the spa-
tial and relative temporal relationships between ceiling dis-
solution morphologies using a combination of TLS and pho-
togrammetric approaches. Elsewhere in a Pyrenean cave, un-
der favourable geological settings offering strong lithological
contrasts, Novdkova et al. (2022) developed a complex work-
flow leveraging a LiDAR point cloud’s intensity and colour
attributes to classify different bedrock types within the un-
derground environment. One of the more complete uses of a
high resolution laser scan in an Italian cave by Fabbri et al.
(2017) showcases how cm to dm size morphologies can be
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observed and added to a geodatabase of speleogens, allow-
ing the various phases of speleogenetic development to be
distinguished both spatially, in a quantitative sense, and tem-
porally, in a relative sense. Finally, repeated high-resolution
acquisitions open the door for yet other applications dealing
with change detection. Sediment or ice mobility in the under-
ground environment was evidenced through multi-temporal
LiDAR and photogrammetric projects tracking moving tar-
gets or differencing series of surfaces (Blatnik et al., 2023;
§upinsky et al., 2019; Securo et al., 2022). Therefore, sur-
vey approaches resulting in detailed and spatially accurate
geo-databases of underground objects are extremely valu-
able for morphometric analyses, speleogenetic reconstruc-
tion, and change detection. However, most of these datasets
are not widely available to the scientific community

There is a need for new high-resolution geometric infor-
mation on karst conduits to better inform the statistical met-
rics of cave networks because models for flow and transport
rely on passage size distributions and network topology. Ex-
isting studies on large cave datasets, e.g., (Collon et al., 2017;
Jouves et al., 2017) rely on traditional speleological data,
containing relatively sparse information of passage size at
each measured station. Here, we demonstrate that the spele-
ological measurements can be supplemented by the detailed
point cloud data. We propose a workflow for extracting a
curve skeleton (Cao et al., 2010) or 3D-centreline from the
point cloud, and investigating the geometric properties of the
karst conduit along this 3D curvilinear object.

The aim of the work presented in this paper was to ac-
quire and share cave scans covering a broad range of hydro-
logically active conduit morphologies, ranging from phreatic
to vadose (Lauritzen and Lundberg, 2000). The aim of this
dataset is not to provide complete scans of existing cave sys-
tems but to sample a broad spectrum of different conduits
considered as hydrologically consistent units. We chose the
scan sites foremost due to their hydrological function: rang-
ing from periodically flooded to inactive/relict stream pas-
sages. We also considered the ease of access and scanning
by mobile mapping, rejecting too-narrow or too-vertical cave
sections which were impractical to scan. We then explored as
many lithology and structural setting types as possible within
the project time frame and the broader Alpine geographic
area. The cave scans come from various karst massifs of the
Jura, the European Alps, the French central Massif, and the
Classical Karst of Slovenia (Fig. 1). This allowed the con-
duits catalogued hereafter to span a range of hydro-geologic,
lithological, and structural settings, with varying degrees of
sediment fill and secondary mineral deposition.

The data set is available through the KarstConduitCata-
logue repository (Racine et al., 2025a). A brief overview
of each passage morphology is given in each cave’s meta-
data file. Hydrologists may find this dataset suited for the
analysis of key geometric characteristics shared by typical
cave conduits, including downstream distribution of aper-
tures and roughness elements. Moreover, karst geomorphol-
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Figure 1. Situation map of the selected cave sites centred over the European Alps and the respective karst massifs in which the conduit scans
were collected. Maps data: Google, Landsat/Copernicus, Data SIO, NOAA, U.S. Navy, NGA, GEBCOGeoBasis-DE/BKG (© 2009), Inst.

Geogr. Nacional.

ogy studies benefit from high-fidelity and high-resolution ge-
ometric data for the georeferencing of key erosional mark-
ers in caves. This dataset also has a didactic vocation as it
presents geometries of an exemplary, characteristic nature.
The spatial arrangement of various speleogenetic forms and
secondary infill or deposits may be discussed as part of teach-
ing material. The dataset can be readily viewed at lower
resolution on the web-based application Potree, through
the KarstConduitCatalogue-Potree repository (Racine et al.,
2025b).

In the following sections, we present the dataset acquisi-
tion and consolidation procedure, going from the raw field
data to the ready-to-use end products. For each cave passage,
these products comprise (1) a georeferenced, classified point
cloud, (2) a triangulated mesh surface, (3) a simplified cen-
treline representation, and (4) 2D raster images of both floor
and ceiling cutouts. We detail the pre- and post-processing
steps involved in the cleaning, classification, and georefer-
encing of the dataset and describe the various data records
available. We finally showcase the end-products using a sin-
gle karst conduit, Markov Spodmol cave (Slovenia) as an ex-
ample.

2 Methods

The cave conduits were scanned with two different instru-
ments: we used the Leica BLK2GO for the majority conduits
we scanned ourselves, while at two locations, we scanned
the conduits using the FARO Focus 3D instrument. We per-
formed most of the visualisation and processing of point
cloud and mesh elements using the open source and free
software CloudCompare (Girardeau-Montaut et al., 2016), as
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well as a wrapper written in Python language (CloudCom-
pare, 2024) to automate some of the processing routines.

Here we describe the properties for those two instruments
that were used in this study, as well as the methods we used
for scanning the cave and post-processing the point cloud
dataset (Fig. 2). We also briefly discuss the expected sam-
pling density, and resulting resolution of the cave features
which could be obtained.

2.1 Laser scanning of caves

2.1.1 Terrestrial laser scanning

The cave passages in Rupt-du-Puits and Grotte de la
Madeleine were scanned with the terrestrial laser scanner
FARO focus 3D. The sensor has a range from 0.6 m to over
100 m and a ranging error of 2 mm. The point positions are
recorded in polar coordinates during the distance measure-
ment and are subsequently converted to a local cartesian sys-
tem. Since the scanner sensor revolves once around a vertical
axis from a fixed position, the operator usually starts the scan
remotely from a hidden location and repeats the procedure to
eliminate occlusions from the acquired scene.

2.1.2 Mobile mapping with Leica BLK2GO

We acquired most of the cave conduit from the dataset with
a light-weight mobile handheld laser scanning system (Le-
ica BLK2GO) capable of capturing detailed point sets within
an underground cavity. With the aid of 830 nm wavelength
laser pulses, the scanner measures up to 420 000 ptss~! with
a field of view (FOV) spanning 360 ° horizontally and 270°
vertically. The sensor range goes from about 0.5 to 25 m. The
device is also equipped with a 3-camera system, each with a
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Figure 2. Summary of the point cloud processing workflow (grey) and delivered data records (light blue).

4.8 Mpx sensor and 300° x 135° FOV. The range error re-
ported by the manufacturer for indoor use is =3 mm.

At the core, mobile mapping devices consist of a LIDAR
distance sensor, coupled with inertial sensors (Bosse et al.,
2012; Zlot and Bosse, 2014). Assuming that the scanner’s
surroundings neither move nor deform, the Simultaneous Lo-
calisation and Mapping (SLAM, Bailey and Durrant-Whyte,
2006) algorithm allows for the x, y and z coordinate tuples to
be stored in a local cartesian reference frame. To achieve this,
the algorithm uses regular updates to the scanner position by
(1) using the device’s Internal Motion Unit (IMU) and (2) by
triangulating between recognisable point features.
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2.1.3 In-cave scanning strategy

The in-cave scanning workflow begins with a reconnaissance
of the conduit to be scanned, identifying the various obsta-
cles to progression. These obstacles include: passage inter-
sections, large changes in average section dimensions, floor-
steps, pits, narrow sections, waterways, etc. An overview of
the acquisition progress in the form of a rough point cloud
visualisation is transmitted to the scan operator navigating
the cave conduit or chamber in real time over a wireless con-
nection, facilitating decision making for an optimal scan tra-
jectory and cave features coverage. We split the conduit to be
scanned in several overlapping acquisitions (scenes) acquired
separately. The decision to stop an ongoing acquisition was
almost always chosen with respect to (1) encounter with an
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obstacle or (2) scan duration exceeding a chosen threshold.
The obstacle criterion is self-explanatory. The scan duration
criterion was chosen with respect to the hardware specifica-
tion of the phone on which the point cloud scanning progress
was displayed to the scan operator. In practice, the monitor
displaying the scan progress would become unresponsive af-
ter 5—7 min, so shorter scans were preferred to better monitor
any obvious gaps in the acquisition process. Using the terres-
trial laser scanner, a scene corresponds to a single revolution
of the scanner sensor around a vertical axis. The scan times
depend on the spatial sampling density selected by the op-
erator. For the mobile mapper, a scene corresponds to a sev-
eral minutes long walk by the operator within the cave en-
vironment (Fig. 3) with the scanner sensor revolving at con-
stant angular velocity around a mobile axis. Using the mobile
mapper, we scanned the conduit sections with partial spatial
overlaps for subsequent co-registration. We achieved this in
the field by retracing our steps anywhere between 2—10m
to guarantee that acquisitions intended to be co-registered
would have enough common points.

A lighting system provided by Méandre Techologie com-
prising 5 LEDs with a flux of 2250 to 15000 Im each, ar-
ranged around the scanner, provides near-panoramic illumi-
nation allowing for visible light information to be encoded
into the point set data file as Red, Green, and Blue chan-
nels. Outside the cave on a work station, we process the raw
files corresponding to each acquisition scene with the propri-
etary software Cyclone Register 360. We carry out the co-
registration of scenes in two steps: first by visual alignment,
second by iterative closest point algorithm (Besl and McKay,
1992). Finally, we export a raw, assembled point cloud to
LAS format, the open and industry-standard format for Li-
DAR data.

2.1.4 Point cloud density

Because of the controlled sensor rotation, TLS-derived raw
clouds exhibit clear patterns of concentric rings on surfaces
which were sampled only once (Fig. 4a). For the mobile
scanner, the instrument’s constant movement results in some
cave walls being more densely sampled than others (Fig. 4b),
and thus requires point density resampling. It is impossi-
ble to anticipate precisely the density of the final assembled
point cloud. Wherever separate acquisitions are overlapping,
meaning they have been visited at least twice, the point cloud
has a high sampling density. For other regions, especially
high in ceiling pockets or fractures, the walls are seen by the
scanner only briefly, yielding a low spatial sampling density.

To harmonise the density of point coverage, we sub-
sampled each point cloud using the CloudCompare spatial
sampling algorithm. We set a threshold value of d =2 mm
and d =5cm (d being the minimum distance between a
point and its nearest neighbour), for high and low resolution
point clouds, respectively.
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2.2 Georeferencing

Raw point clouds are collected in local coordinate systems.
For a levelled terrestrial laser scanner, or the mobile mapper,
the distance between points and position relative to the verti-
cal are tracked by the scanner. This means that while the scale
of the point cloud model is known, its overall position and
orientation relative cardinal directions need to be calculated
with independently surveyed control points. To determine the
necessary rigid (rotation and translation) transformation, we
measured the geographic coordinates of a series of reference
points by placing a series of targets along the cave: these are
laminated sheets containing a visual aid to determine their
centre. The position of these targets in local scan coordi-
nates was determined by using the closest point to the centre
recorded on the scan, using intensities of return and RGB in-
formation as visual aids. The targets were always placed in
an easily accessible location, so that the scanner itself could
be brought to bear on the target within a 1 m radius. This
ensured an adequate point sampling density around the tar-
get in order to locate the target centre within less than 1 cm.
We measured the position of those targets with a calibrated
laser-distance meter called the disto X2 and widely used in
cave surveying (Heeb, 2016). With the disto X2, we recorded
the three following quantities for each shot linking two sur-
vey stations: distance, bearing, and inclination. To control
operator errors, we triplicated each shot front and back, and
averaged them for each station-to-station shot. From these
data records, we extracted the triplet of geographic coordi-
nates for every known point in a cartesian reference frame.
We compiled the resulting survey data using the public cave
survey software Therion (Mudrdk and Budaj, 2025), which
uses the Survex (Betts, 2024) program for loop closure error
calculations and shot data averaging, as well as a model to
correct for magnetic declination at a given place and time on
the Earth’s surface.

We georeference the point clouds by calculating a rota-
tion and translation matrix using the pairwise registration al-
gorithm (Arun et al., 1987) between the targets’ local coor-
dinates and their geographic counterparts. This was imple-
mented in Python and applied to the point clouds. The new
coordinates of the point clouds are calculated by matrix mul-
tiplication, applying a rigid transformation so that the Eu-
clidean distance between pairs of points is preserved. This
also serves to (1) check the validity of loop-closure whilst
the SLAM algorithm is running, avoiding potential drift, and
(2) to detect user blunders when assembling the scanned
scenes after their acquisition.

2.3 Point cloud segmentation and cleaning

Dataset noise for cave scans arises from two main sources.
The first are erroneous pulse returns due to excess mois-

ture, water droplets, or interference with airborne parti-

cles. This usually results in sparse clusters of points be-
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Figure 3. (a) Typical scanning stance of a speleologist in a cave passage, with a laminated scan target in the background (photo: Tan-
guy Racine). (b) Mobile cave scanning workflow and usual causes for masks, occlusions, or missing data on bedrock cave walls (adapted

from Racine et al., 2025c).

Figure 4. Detailed views of the scanning and meshing results using TLS (a, ¢, €) and SLAM (b, d, f) technologies. (a) Close-up view of the
raw Rupt du Puits point cloud with concentric circular data distribution pattern of the TLS (blue) and one of the spheres placed in the scene
to help with scene co-registration (red) (b) close-up of the raw Grotte de la Sourde data, with overlapping, criss-crossing poin trails acquired
by the BLK2GO scanner; (c¢) point cloud of the Rupt du Puits, downsampled to 2 mm and (e) the reconstructed mesh at 5 cm resolution;

(d) point cloud of Grotte de la Sourde and (f) its reconstructed mesh.
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ing recorded within the cave passage itself. We use the
CloudCompare algorithm to label connected components
and thereby divide the point cloud in groups. With the rel-
evant algorithm parameters, we adjusted the minimum size
of cluster to be labelled as a group, and the smallest pair-
wise distance between any two points belonging to different
groups. This is an effective strategy for removing the floating
clusters when choosing an appropriate minimum distance be-
tween clusters with the octree subdivision level parameter, as
well as a threshold number of points defining a cluster. We
were able to effectively remove noisy floating regions and
solitary noise points by selecting only the clusters containing
the largest number of points, which correspond to the conduit
walls.

The second kind of noise in the dataset stems from occlu-
sions or masks in the cave point cloud caused by the presence
of the scan operator and or assistants. The BLK2GO scanner
automatically masks out points taken in a quadrant facing
the scan operator to prevent this type of self-scanning. Ad-
ditionally, we minimised this type of noise with an adequate
scanning strategy. However, narrow twisting passages often
require the operator to carry the scanner in a sub-optimal ori-
entation, putting the scan operator or any helper in the way of
the laser swath. Whenever this resulted in noisy data patches
(Fig. 5), we removed the latter semi-automatically or manu-
ally from the cave point cloud. We adopted the multi-scale
dimensionality criterion approach using the CANUPO al-
gorithm plugin for CloudCompare (Lague et al., 2013). At
the Grotte de la Cascade, we implemented this step in the
workflow by labelling clusters of noisy data. In this case, the
CANUPO algorithm was effective because of a critical dif-
ference in multi-scale dimensionality of noise clusters. These
noisy clusters exhibit a high linearity score from the cm to
the m scale) while the cave walls score highly on planarity
at those scales. By segmenting out the points thus labelled
as noise from the point cloud, a subsequent analysis of con-
nected components was sufficient to remove the remaining
floating clusters, negating the necessity to manually clean the
point cloud. Elsewhere, manual segmentation was made on
CloudCompare by iteratively selecting noisy regions and re-
moving them from the dataset.

2.4 Determination of instrumental noise

The point cloud generated by the BLK2GO device has a spe-
cific 3D structure made of criss-crossing point trails which
originates from the scanner movement during a survey. Fol-
lowing Dewez et al. (2016b), we compute the roughness dis-
tribution on a test surface (a 1.1 x 0.8 m whiteboard) to eval-
uate the performance of the scanner. First, for each point, the
euclidean distance to its nearest neighbour was computed.
We find that for a test surface sampled at approximately 1—
2 m, the mean distance to the nearest neighbour is of 1.3 mm.
We then fitted a plane to the point cloud acquired by sampling
this artificial, smooth planar surface with the BLK2GO scan-
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(a)

Figure 5. Illustration of the cleaning process (a) before automatic
removal and manual segmentation of noise points, (b) after clean-
ing. In red: trails arising from the scan operator scanning themselves
in the narrow passage. In blue: lone points corresponding to narrow
fissures incompletely scanned.

ner and computed the distance to this plane at each point. We
find that 95 % of all points fall within a distance of 0.016 m
to the best-fit plane (Fig. 6).

A related way in which we can confront the precision limit
quoted by the manufacturer is to compute the distribution
of point cloud roughness with variable neighbourhood radii,
adopting the strategy of Dewez et al. (2016b). In CloudCom-
pare, the roughness value o (r) can be computed at any point
of a cloud and it represents the distance from a point to a
plane fitted to its neighbours within a chosen search radius
r (Girardeau-Montaut et al., 2016). We want to find out at
which scale the calculation of the implicit surface will be ro-
bust, specifically how small a neighbourhood radius one may
choose to fit a surface model before instrument noise makes
the reconstruction unreliable. For a simple planar surface
with normally distributed noise in the normal vector direc-
tion, roughness distributions change with the search radius in
a predictable way: above a given r, determined by instrument
noise, the shape of roughness distribution should stabilise,
and its parameters, like the 68th percentile, should remain
constant with increasing r. For the BLK2GO, we find that
for r > 0.08 m, the 68th percentile of roughness stabilises at
a value of 0.01 m. This is very close to the value for 68th
percentile of unsigned distances over the entire dataset. Ac-
cording to this result, we adopt this value of 0.08 m as the
smallest possible resolution for robust normal computation
and meshing steps described below (Fig. 6).

2.5 Normals calculation and meshing

Point cloud normals are spatial vectors calculated at each
point. The plane uniquely defined by the point and its normal
vector is a local linear approximation of the implicit surface

Earth Syst. Sci. Data, 17, 4671-4690, 2025
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Figure 6. (a) Distribution of unsigned distances to a best-fit plane adjusted to the test surface. The 68th percentile of this distribution
(n=4.84 x 104 points) is taken as the position uncertainty associated with the mobile laser scanner (on the order of 0.01 m). (b) Point-cloud
roughness computed with CloudCompare as a function of the search radius: the greater the search radius, the greater the number of points

used for plane fitting.

to be reconstructed (Hoppe et al., 1992). We ran the calcu-
lation of point normals on CloudCompare by least-squares
fitting of a plane surface model using the neighbourhood of
each point. Here, the neighbourhood of a point denotes the
subset of points from the cloud within a specified euclidean
distance, the search radius, of that point. Following the nota-
tion of Hoppe et al. (1992), the tangent plane at the ith point
is determined by its centre o; (the centroid of the point neigh-
bourhood) and a normal vector 7;. In CloudCompare, the so-
lution normal vectors were reoriented by way of a minimum
spanning tree of the k-nearest neighbours at each point; a
complete description of the algorithm used to reorient the
solution vectors is outside the scope of this paper, but details
may be found in Hoppe et al. (1992). In this graph optimi-
sation problem, the weight of an edge between points i and
Jj is taken as the scalar product between neighbouring solu-
tion vectors, reflecting the intuition that the tangent plane at
nearby points should be sub-parallel for sufficiently smooth
surfaces. We started the algorithm with 6 k-neighbours and
increased the number of nearest neighbours k considered in
the calculation of the spanning tree if at first the normals
were not consistently re-oriented (Table 2). In our datasets,
a neighbourhood with a search radius of 0.08 m was found to
give reliable results for finding consistently oriented normals,
corresponding to the threshold at which the cave wall rough-
ness signal drowns roughness due to instrumental limits (see
Fig. 6). Choosing a smaller search radius would yield vector
normal orientations affected by instrument noise. The reori-
entation of normals can fail at sharp boundaries of the 3D
surface sampled, and it is sometimes necessary to manually
segment the cloud at those edges. This is to prevent the reori-
entation algorithm from finding and using nearby points be-
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longing to a different surface in the nearest neighbour search.
We computed a triangulated mesh in CloudCompare, using
its mesh construction routine based on point cloud normals,
using a radius of 5cm. This routine is a wrapper for the
screened Poisson Reconstruction algorithm (Kazhdan et al.,
2006). Meshes were subsequently segmented and cleaned us-
ing the CloudCompare and Blender segmentation tools to re-
move spuriously interpolated surfaces, for instance, wherever
open passage ends or areas of missing data were patched up
with the algorithm. The resulting meshes are therefore not
closed surfaces (Fig. 4e and f).

2.6 Floor and ceiling raster extraction

We provide a georeferenced DEM of the cave passage floor
and ceiling by classifying the cave floor and cave ceiling
by using the Cloth Simulation Filter algorithm (CSF; Zhang
et al.,, 2016). This segmentation step is essential in most
airborne LiDAR mapping campaigns, as it effectively sep-
arates ground points from non-ground points. Intuitively, a
non-rigid cloth is draped over the upturned point cloud, and
points touching the cloth are labelled as ground category. On
a cave point cloud, this algorithm extracts ground points cor-
responding to the passage floor. The remaining points corre-
spond to the cave ceiling. We considered several cases where
this algorithm could classify points incorrectly and manu-
ally attributed the correct classification to the points. Wher-
ever gaps in the point cloud are apparent due to the presence
of a water body, then only one surface (the ceiling) will ap-
pear on the scan. Running the CSF algorithm would classify
the ceiling as a floor. Wherever one passage overlies another,
then more than one surface should be classified as a floor.
However, the lowest lying passage will hide all the others,
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and floor points will be mislabelled as ceiling points. In this
case, we split the point cloud into disjunct sections and sub-
sequently ran the algorithm on each. Finally, complex floor
geometries such as overhanging boulder sides will hide some
floor points from the CSF algorithm. For these cases, we
manually attributed the floor attribute to the relevant points
based on visual inspection.

Using the Relief Visualization toolbox (Kokalj et al.,
2016), we also provide a combined image specifically de-
signed to highlight subtle topographic changes (Kokalj and
Somrak, 2019). We find that projecting the resulting point
cloud as a floor or ceiling DEM and using a suitable relief
visualisation technique highlighted subtle topographic relief
and can help emulate traditional cave maps. We modified the
presets for the steep Visual Archeology terrain blend, to ac-
count for the event steeper topographic features of cave floors
and ceilings. The parameters used to generate the blended
images (top to bottom) are given in Table 3.

2.7 Centreline extraction

We refer to the cave’s centreline as an undirected metric
graph which captures the cave conduit topology. It is based
on a subset of points belonging to the curve skeleton of the
cave wall point cloud. There are many algorithms for extract-
ing such a skeleton curve from a three-dimensional object
(Tagliasacchi et al., 2016). To compute this object, we use the
Python implementation of Cao et al. (2010) point cloud con-
traction algorithm based on local-Delaunay triangulation and
topological thinning. This technique is robust to noise and
missing data, which is often present in in-cave surface acqui-
sitions due to the common occurrence of small and/or nar-
row inaccessible side-passages, and water surfaces (streams,
dammed pools, etc.).

There are several key parameters for this algorithm includ-
ing the initial balance between the contraction and attraction
weights matrices, as well as the level of downsampling of the
initial point cloud on which to perform the contraction. By
default, the initial contraction weights are set to 1 and the at-
traction weights are set to 0.5. For several cave point clouds,
we tested varying starting ratios of these weights and noticed
that a high ratio of contraction to attraction yields fewer, rec-
tilinear branches than a low one. We found that the algorithm
terminated within 4-5 iterations using downsampling param-
eters. In the end, we chose to use 0.5 for both initial con-
traction and attraction ratios (Table 2). The end position of
the nodes describing the centreline generated by contraction
follows the ratio of contraction and attraction weights de-
fined by the user. Indeed, low attraction to contraction ratios
yielded topologically simpler (fewer branches) and geomet-
rically smoother curve skeletons, with clear differences even
after the first contraction iteration (Fig. Sla in the Supple-
ment), one can observe a strong collapse and smoothing of
the point cloud geometry towards the objects skeleton. The
reverse is true for the smaller initial contraction to attraction
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weights ratio (Fig. S1d). With strong contraction, we observe
that centreline nodes could even fall outside the walls of the
original point cloud due to the Laplacian smoothing of the
walls if the conduit bent sharply without bifurcations (see
for example Fig. S2).

We spatially sub-sampled the contracted point cloud to
yield a sparse cloud. This sparse cloud can be thought of
as a discrete sampling of the curve skeleton, i.e. the thinned
1D representation of the 3D cave wall model. We performed
a final connected component analysis to remove badly con-
tracted points from this curve skeleton cloud, as these may be
located far away from the original point cloud and selected
its largest component. Finally, we reconstruct the skeleton
topology by considering the set of points as an undirected,
complete graph, where each edge weight represents the eu-
clidean distance between any pair of nodes. We computed the
minimum spanning tree on this graph. In this mathematical
object, a degree-1 node is called a leaf and corresponds to
a cave opening or a dead-end. Formally, the trajectory of a
person or object travelling the inside of a cave conduit while
avoiding its walls can be described by a walk from a start to
an end node along the centreline graph. This allows us to de-
scribe variations in cave geometric properties along a given
walk, which corresponds to the position of an observer along
the cave passage.

3 Data records

The general organisation of the datasets is as follows. Within
the data repository, we provide one subfolder per cave, and
within, one folder per elementary cave passage, following
the local toponymy. Each passage folder holds a set of point
clouds, meshes, rasters, and centrelines, as well as the meta-
data file in self-describing yaml format. The repository or-
ganisation for a single cave is detailed in Fig. 7. In a compan-
ion GitHub repository called pc-processing (https://github.
com/ERC-Karst/pc-processing/releases/tag/v1.0.0, last ac-
cess: 3 April 2025), we also provide a set of Python scripts
which we ran to (1) extract centrelines, (2) extract rasters of
the floor and ceiling, and (3) convert the centrelines to vari-
ous formats.

3.1 Point clouds

Each unified, cleaned, and georeferenced point cloud is
archived in LAS format, the industry standard, open, bi-
nary format for interchanging point cloud data. We chose
the LAS 1.4 with point format 7, which includes the RGB
color channels by default. For each cave and conduit therein,
we provide a point cloud spatially sampled at 2mm and
5 cm, corresponding to high and low resolution, respectively.
Some datasets are georeferenced, and the point coordinates
are given in their country’s official coordinate reference sys-
tems. Since some of the coordinates may be very large,
LAS usually provides the data using a Global Shift infor-
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root/

|--- Cavel/

| |--- Passagel/

| |--- pointclouds/

|--- mesh/

|--- raster/

|--- centreline/

|--- scan.yaml
--- Passage2/
...

|--- cave.yaml
--- Cave2/

Figure 7. Dataset repository structure.

mation, which is stored in the data header and can be read by
OpenSource programs, e.g., CloudCompare. We populate the
LAS classification field with the intensity, a measure of the
strength of the returning laser pulse. The data is organised in
a table with headers containing a set of spatial coordinates,
and additional scalar fields such as: return intensity, a triplet
for red (R), green (G) and blue (B) channels and normal unit
vector coordinates n,, ny and n, an integer classification flag
(1: unclassified or ceiling, 2: ground), and a 64-bit float cor-
responding to the illuminance value which is analogous to
the sky view factor (Duguet and Girardeau-Montaut, 2004),
see Table 1.

3.2 Meshes

The provided meshes are the 3-dimensional representations
of the cave walls. They are calculated using the Screened
Poisson Surface Reconstruction algorithm (Kazhdan et al.,
2006) using the parameters indicated in Table 2. The meshes
are stored in binary PLY format, whereby the surface is de-
fined by (1) a list of vertex coordinates, normals, and texture
information and (2) a list of faces.

3.3 Cave centrelines

Cave centrelines, as realisations of discrete sampling of the
curve skeletons, are given as undirected graphs. These ob-
jects are stored in three ASCII files, which are essentially re-
lational tables: the first file containing the x, y, z geographic
coordinates triplet of each point (vertex), one point per line,
the line number being the unique identifier (ID) of the cor-
responding point. The second file contains the links (edges)
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| |--- Cavel_Passagel_sampled_2mm_PCV_normals_classified_georef.las
| |--- Cavel_Passagel_sampled_5cm_PCV_normals_classified_georef.las

| |--- Cavel_Passagel_mesh_bcm.ply

|
|
|
|
|
| | |--- Cavel_Passagel_floor_4cm.tif

| | |--- Cavel_Passagel_floor_4cm_Cave_Terrain.tif

| | |--- Cavel_Passagel_ceiling_4cm.tif

| | |--- Cavel_Passagel_ceiling_4cm_Cave_Terrain.tif
|

|

|

|

|

|

|

|

|

| |--- Cavel_Passagel_nodes.txt

| |--- Cavel_Passagel_links.txt

| |--- Cavel_Passagel_branches.txt
| |--- Cavel_Passagel.dxf

| |--- Cavel_Passagel.geojsons

Elevation [m asl]

565.0

560.0

555.0

550.0

1st Pit
545.0
Entrance ™

Entrance '&M

PROFILE (080) s0m
Figure 8. (a) Plan view and projected profile of altitude coloured
point cloud and (b) illuminance (PCV) coloured point cloud of
Markov Spodmol cave. Ntrue denotes the orientation of geographic
north.

between the points: each line corresponds to a link between
the source and target node IDs, and the line number is the
edge’s unique ID. The third file corresponds to the branch
ID for each edge: this contains two columns, the first be-
ing the branch ID, the second, the edge ID. Thus, one can,
for instance, query the position of all nodes belonging to a
branch by way of edge indices. All processing parameters
are given in Table 2. To integrate the conduit centrelines with
the point clouds and meshes in a single visualisation, we also
provide them in the interoperable Drawing Interchange For-
mat (DXF). Further, to integrate the visualisation of the cen-
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Table 1. Point cloud data file description.
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label description unit
Intensity relative strength of pulse return, 64-bit float
Classification point label, integer
X, ¥, 2 coordinate in cartesian geographic reference system, 64-bit float m
Ny, Ny, Nz unit normal coordinate, 64-bit float m
R,G,B red color channel intensity, 64-bit float
Illuminance (PCV)  sky view factor sampled from a sphere, 64-bit float
Table 2. Point cloud processing parameters.
item software parameter value
spatial resampling CloudCompare minimum distance 0.002 & 0.05m
connected components CloudCompare octree level 10
min. points per component 10
manual segmentation CloudCompare - -
ambient occlusion calculation PCV plugin samples rays on a sphere True
Count 256
Render context resolution 1024
normals calculation CloudCompare radius 0.08 m
model planar
normals reorientation CloudCompare method Minimum Spanning Tree
k nearest neighbours at minimum 6
Screened Poisson Screened Poisson boundary condition Neumann
reconstruction plugin plugin spatial reconstruction 0.05
floor extraction Cloth Simulation Filter  cloth size 0.05m
plugin terrain type steep
threshold 0.5
skeleton curve extraction pc-skeletor Python initial attraction weights 0.5
library initial contraction weights 0.5
point cloud down sampling distance 0.4m
skeleton point cloud minimum distance 0.4m
downsampling
skeleton point cloud connected minimum component size 5
components octree level 8
skeleton topological number of k-nearest neighbours 12
reconstruction
Rasterise floor point cloud CloudCompare pixel size 0.04m
pixel size 0.04 m

trelines with the raster files on any Geographic Information

System (GIS) software, we also provide the centrelines in the
interoperable Geographic JSON (GeoJSON) format. For any

given conduit, the sum of every centreline segment is given
in Table S1 in the Supplement as the surveyed length of each

scan.

https://doi.org/10.5194/essd-17-4671-2025

3.4 Floor and ceiling raster models

DEMs of the cave floor and ceiling (described in Sect. 2.6)
are provided as a raster file in GeoTIFF format. All cave

floor rasters are provided with square pixels of size 4 cm. We
also include a blended image highlighting subtle topographic
changes and roughness elements of the cave floor and ceil-
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Table 3. Visual Archeology Terrain blend parameters for the cave
terrain shading (Kokalj et al., 2016).

Layer (blending mode)  parameter value/range
sky-view factor number of directions 32
(multiply) noise removal 0 (none)
maximum radius (pixels) 10
linear normalisation 0.55-1
opacity (%) 25
positive openness number of directions 32
(overlay) noise removal 3 (high)
maximum radius (pixels) 10
linear normalisation 55-95°
opacity (%) 50
slope gradient linear normalisation 0-60°
(luminosity) opacity (%) 50
hillshade sun elevation 55
(normal) sun azimuth 315
linear normalisation 0-1
opacity (%) 100

ing based on the Relief Visualization Toolbox (Kokalj et al.,
2016), using the presets detailed in Table 3.

3.5 Metadata and description

To complement the overview of notable features given be-
low in Table 4, we also provide a set of descriptive metadata
files: cave.yaml and scan.yaml. The specific details
are highlighted in relevant template files (Sect. S2.1 and S2.2
in the Supplement). At the cave level, they include, wherever
applicable, cave entrance location and passage toponymy in
relation to published maps, as well as an overview of the lo-
cal geological, hydrological, and speleogenetic context. For
each individual scan, we also give basic information about
the acquisition strategy, the extent of the scanned passages
with regards to the cave, and details on the instruments used
and scan operators present.

4 Data examples

4.1 Site description

We use the example of Markov Spodmol (cadastral number
878), a temporary stream cave located in the classical Karst
region of Slovenia, to showcase the data products presented
herein. The cave, with a recorded length and depth of 868 and
61 m respectively, opens at the end of a closed valley west of
Strmec mountain, at an elevation 556 m a.s.l. The intermittent
stream at the cave entrance traverses the karst massif with
dye tracing connections to the Reka river.

Earth Syst. Sci. Data, 17, 4671-4690, 2025
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4.2 Scanning procedure

The scan was carried out in May 2024, in 24 different acqui-
sitions assembled together, totalling approximately 500 lin-
ear metres of passage, from the entrance inwards, and stop-
ping (due to time constraints) at a 10 m pit. In parallel, a tra-
ditional speleologist’s centreline was measured in order to
record the geographic coordinates of 13 tie-points (Sect. 2.2).
The entrance coordinates were derived from the Slovenian
online cave cadastre.

4.3 Results
4.3.1 Point cloud

At Markov Spodmol, we compared two sets of point clouds
collected independently: (1) a traditional set of passage di-
mensions from marked stations using a laser distance-metre,
numbering 375 points, anchored on a centreline of 29 tripli-
cated backwards and forwards survey shots, and (2) a dense
point cloud using the mobile BLK2GO scanner, totalling a
little more than 10° points (Fig. 8). With the mobile map-
per, the effective scan time was 116 min, while the actual
scan time was 240 min. As we constituted the KarstConduit-
Catalogue, we experienced a four-fold variation in the ac-
quisition speed using the mobile scanner, which was highly
dependent on the type of conduit. Highly convoluted pas-
sages demand that the user walk a complex trajectory in 3D
to capture as many details that would otherwise be hidden,
increasing the acquisition time. Nevertheless, lower and up-
per bounds on typical effective scan times can be given here
for two typical end-members. At Holloch, in gently inclined,
tubular conduit called Riesengang whose dimensions exceed
2m in diameter at the narrowest point, 570 m of passage
were scanned in 103 min of effective scan time and 19 scenes
were required altogether. The actual acquisition time includ-
ing the downtime between scans, battery changes and obsta-
cle crossing was 145 min, corresponding to a linear scanning
speed of 3.9 mmin~!. At the Baume de Longeaigue, a much
more steeply inclined, convoluted cave passage with a con-
striction and vertical shaft, 55 m were scanned in 44 min of
effective scan time and 9 scenes were required altogether.
The actual acquisition time was 60 min, yielding an average
scan progress speed of 0.9 mmin~!. Therefore, at the Main
Gallery of Markov Spodmol, a conduit which involved a
mixture of large galleries and severe obstacles, such as lakes
which had to be crossed by inflatable dinghy, the scanning
speed of 1.7mmin~"! recorded falls consistently between the
speeds expected for the two end-members above.

In essence, the splay shots collected during the traditional
speleological survey represent a much sparser sampling of
wall surface, compared to LiDAR acquisitions. The splay
shots, anchored on the distoX centreline, provide an inde-
pendent way to check that no drift or distortion has occurred
during the point cloud assembly. When measuring the centre-
line and repeating station sightings, mismatches arise from
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Table 4. Continued.

cave location hydrology bedrock lithology, structural setting notable features
epoch

Grotte de la Sourde Swiss Jura epiphreatic conduit micritic limestone, within folded beds of the Cote solution pockets, potholes, siphon
limestone breccia and de Riau NW vergent anticline.
dolomite, Upper Beds are vertical to overturned
Jurassic

Holloch Swiss Alps epiphreatic conduits massive bioclastic NW gently dipping strata potholes, karren, solution pockets,
limestone, Lower within thrust duplex of the gravel banks, erosion flutes, solution
Cretaceous Axen nappe scallops

Lauiloch Swiss Alps epiphreatic conduit massive bioclastic SE gently dipping strata within  potholes, solution pockets, gravel

limestone, Lower
Cretaceous

the Drusberg nappe

banks, erosion flutes, solution scallops

Les Cavottes

French tabular Jura

inactive

oolitic and bioclastic
limestone, Middle
Jurassic

flat lying beds of the Ornans
plateau

alteration corridors, paragenetic ceiling
channels, pendants, collapse rooms

Markov Spodmol

Slovenian Classical
Karst

stream sink

biomicrite with coal
measures, Upper
Cretaceous, Paleocene

gently NE dipping beds, NE
limb of U¢jenik antiform
structure

solution scallops, erosion flutes and
potholes, seepage karren, gravel bars,
lakes

Rupt du Puits Barrois active river passage, oolitic limestone, eastern margin of Paris basin, lateral notches, potholes, waterfalls,
traced to River Saulx Upper Jurassic gently SW dipping beds solution pockets
Grotte de Vallorbe Swiss Jura epiphreatic gallery bioclastic and micritic NW dipping beds, southern solution pockets and chimneys, silts to
connected to the Orbe limestones, marls, limb of a syncline, associated cobble bars, vadose entrenchment
spring Upper Jurassic with NW vergent
”Crét-des-Alouettes” thrust
Vers Chez Le Brandt Swiss Jura mostly dry small marly limestone, gently SE dipping beds on speleothems, collapse chambers

stream, dye traced to
Areuse Spring

oolitic and oncolith
well bedded limestone,
Upper Jurassic

southern limb of Le Grand
Bois anticline, NNW-SSE main
fracture orientation
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Figure 9. (a) Scan targets registration residuals for Markov Spodmol. (b) Comparison of the traditional survey splay shots (coloured points)
with the mobile laserscan (grey points). (¢) Histogram of the Cloud-2-Cloud (C2C) distances calculated from splay shots to laser scan point

cloud. Coordinate reference system: EPSG:3912.

uncertainties in the distoX measurement due to either (1) im-
precise handling of the instrument by the user (2) quality of
the compass and clinometer calibration. To minimise those,
we carried out triplicate station-to-station measurements, ro-
tating the device along the sighting axis. We also measured
backwards and forwards readings between any two stations.
After compiling the cave survey data using the Therion soft-
ware, we report an average loop error of 0.72 % on the for-
ward and backward sightings.

We provide two metrics for the comparison of distoX
based surveys and the point cloud generated by laser scan-
ning. When georeferencing the cave point cloud using the
pair-wise registration method of Arun et al. (1987) on spe-
cific targets, we computed the root mean square of residuals
(distances) between the two sets of points. This RMS be-
tween identified targets in the distoX survey and the laser
scan was 31 cm for Markov Spodmol. Over the whole Cave-
ConduitCatalogue, we were able to perform a similar check
for drift or survey blunders on all cave datasets we intended
to georeference, the RMS for target identification is given
wherever applicable in Table S1. We found that this RMS of
31 cm is at the upper limit of the residual offsets observed for
joint distoX and laser scanning surveys.

After georeferencing, we used CloudCompare to compute
the unsigned cloud-2-cloud (C2C) distance between the tra-
ditional, sparse point cloud made of splay shots and the
dense, laser-scan (Fig. 9). We find that 95 % of the splay end
points are within a distance of 31 cm or less from the laser-
scan point cloud, while the mean C2C distance between the
two survey techniques is 12 cm. While some splay shots may
inadvertently end up close to the wall, but far from the in-
tended corresponding features, systematic offsets due to sur-
vey blunders on the one side, or scan drift and distortion on
the other, would appear in Fig. 9 as regions with either con-
sistently high, non-random offset, or noticeable trends of in-
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creasing or decreasing offset. We could not observe any ob-
vious spatial trend in the distribution of C2C distances on
Fig. 9, which would otherwise highlight first-order discrep-
ancies or major blunders between the traditional survey and
the point cloud scene assembly. The agreement between the
scan and the passage dimension measurements collected us-
ing traditional speleological mapping techniques is therefore
within the same error range as the registration residuals. We
conclude that for the example Markov Spodmol, both sur-
vey techniques yield consistent results with respect to cave
geometry at the decimetre to metre scale.

4.3.2 Mesh

The screened Poisson reconstruction yields a watertight sur-
face by closing off holes in the point cloud. This results in
the erroneous reconstruction of large areas of the model us-
ing few or no data points as constraints. In addition to the
cave opening, there are several large lakes in Markov Spod-
mol cave where no geometry data was acquired during laser
scanning. We later refined the reconstructed mesh of Markov
Spodmol using the mesh sculpting tool Blender to remove
high uncertainty zones caused by large areas of standing wa-
ter. The resulting mesh has an area of 1.5851 x 10* m? for
1.848 x 107 triangles, and the average triangle area of the re-
constructed mesh is 8.6 cm?. Since the meshing procedure
reconstructs the implicit surface without honouring the data
points, we calculated the cloud-to-mesh (C2M) distance us-
ing the relevant CloudCompare algorithm to detect locations
where the reconstructed surface might be far from the un-
derlying point cloud data. We find that 95 % of points in the
original dataset lie within 4.9 cm of the reconstructed mesh,
which is in agreement with the parameter used for the recon-
struction scale in the screened Poisson Reconstruction (Ta-
ble 2).
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Figure 10. Detailed point cloud contraction and skeleton extraction workflow for the example of Markov Spodmol cave. (a—c) Point cloud
at different iterations of Laplacian-based contraction using the algorithm of Tagliasacchi et al. (2016). (d) Spatially downsampled skeleton
point cloud. (e) Reconstructed Minimum Spanning Tree (MST), (f) example of a walk along the MST graph from a source to a target node.

Coordinate reference system: EPSG:3912

4.3.3 Centreline

Part of the reconstructed centreline of Markov Spodmol Cave
is shown on Fig. 10e—f. The centreline contains 978 points,
977 edges. There are 43 nodes of degree 1 (leaves of the
tree graph, also known as external vertices) and 39 nodes
of degree 3 (branch vertices). The tortuosity of individual
branches, defined as 7, = L /L., with L being the branch’s
curvilinear length and L. the euclidean distance between its
start and end nodes is generally low. The mean tortuosity
(weighted by branch’s curvilinear length) is Ty = 1.17. The
arithmetic mean branch curvilinear length is L = 9.7 m. The
downsampling of the skeleton point cloud with a spatial scale
of 0.5 m, results in a mean edge length of 0.52 m for the cen-
treline graph. The mode of edge length distributions is lo-
cated at 0.5 m.
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4.3.4 Raster interpretations

The extracted floor DEM and combined shading are primary
tools for the investigation of relationships between morpho-
logical elements in the cave and an interpretation of the cave
speleogenesis and sediment mobility. Figure 11 highlights
the value in culling away ceiling points to reveal the plan
view morphologies of the cave passage. The floor of the en-
trance chamber is littered with metre scale boulders to the
North, while to the South, a finer, partly incised sediment
bank can be seen to form a topographic step to the South-
west. Downstream of target A, a 2 m wide and several metres
deep stream channel ends abruptly between targets A and
B, corresponding to a temporary sink. Large wooden logs
are entangled around this point. A smooth, inclined bedding
plane is then exposed up to target B, with a floor step corre-
sponding to another stratum. Downstream of target B, a kar-
ren morphology is developed for some 20 m, with two major

https://doi.org/10.5194/essd-17-4671-2025
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Slovenije © 2014 https://www.gis.si (last access: 12 September 2025).

preferential directions of development following the bedrock
fractures. This gives way to a boulder-strewn passage around
target C. Opposite target B, we observe a metre-high, partly
incised sediment bank, deposited by slacker waters in sudden
passage enlargement.

5 Data availability

The complete data set described in this manuscript
is accessible at the SwissUBase repository under
https://doi.org/10.60544/sbjr-z851 (Racine et al., 2025a).
This points to a catalogue of DOIs corresponding to the
respective individual cave datasets.

6 Code availability

Data processing steps were performed using CloudCom-
pare software and its Python wrapper CloudComPy.
Centrelines were computed using the Laplacian-based
contraction algorithm of Tagliasacchi et al. (2016),
implemented in Python. Example scripts for the cen-
treline extraction and rasterisation steps are given
at https://github.com/ERC-Karst/pc-processing.git
(https://doi.org/10.5281/zenodo.17150928, Racine, 2025).
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7 Conclusions

This paper introduces a dataset of karstic conduit geome-
tries acquired in various karst massifs around the European
Alps and beyond. They represent a spectrum of sizes, tortu-
osity, and roughness characteristics arising from their differ-
ing host-bedrock and speleogenetic history. The data set in-
cludes products, derived from the acquired point sets, which
represent different types of generalisation of the cave conduit
geometry. The triangulated meshes are reconstructions of the
implicit surfaces underlying the point clouds. Raster datasets
of cave floors and ceilings can be seamlessly integrated in
GIS projects or databases containing other karst objects and
analyze key processes controlling speleogenesis. The com-
puted centrelines, approximations of the 3D curve skeleton
of each conduit, are objects to which local geometric prop-
erties of the conduit may be attached, for instance, conduit
diameter, aspect ratio, shape index, etc.

The workflows presented here are specifically tailored to
the cleaning and reconstruction of cave-like, georeferenced
3D objects. The point cloud cleaning to the floor/ceiling clas-
sification, and rasterisation schemes depend on several pa-
rameter choices, in particular those related to spatial resam-
pling distances, which were guided by the scanner resolution
limits and the various requirements of karst geomorphology
or hydraulic modelling applications. For instance, the reso-
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lution of the raster maps is in accordance with the need to
map decimetric objects or obstacles on the cave walls. We
also demonstrate the application of automated computation
of cave centrelines based on trial-and-error testing of the
Laplacian-based-contraction hyper-parameters, in particular,
the ratio of initial contraction and attraction weights.

These numerical representations may be used to investi-
gate a wide range of scientific questions. The raster DEM can
be used, for example, for understanding the self-organisation
of corrosion features and/or sediment deposits. The 3D point
cloud can help identify and map fracture orientations (e.g.,
Cacciari and Futai, 2017) or quantifying the geometry or den-
sity of specific geomorphological features. The unstructured
point clouds acquired by laser-scanning in the underground
environment usually contain gaps as well as noise for vari-
ous technical or geometric reasons; they therefore present a
challenge at the surface reconstruction stage. These datasets
may also provide useful challenges with regards to develop-
ing semantic classification tools, as the latter could be used
to segment and categorise parts of a cave point cloud as
bedrock wall, secondary mineral deposit, artificial structures,
etc. The surface mesh can be used for analysing, with compu-
tational fluid dynamics tools, the physical laws of water flow
and solute transport in these complex geometries. They can
also be used to understand typical cave geometries and re-
late these geometries with local geological and hydrological
conditions. Finally, this work shows that the ease of use of
mobile scanners allows for fast acquisition of large datasets.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/essd-17-4671-2025-supplement.
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