Articles | Volume 17, issue 9
https://doi.org/10.5194/essd-17-4651-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-4651-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A climate data record of atmospheric moisture and sea surface temperature from satellite observations
Yixiao Fu
School of Earth and Space Sciences, CMA-USTC Laboratory of Fengyun Remote Sensing, University of Science and Technology of China, Hefei, 230026, China
Cheng-Zhi Zou
independent researcher
Peng Zhang
Meteorological Observation Center, China Meteorological Administration, Beijing, 100081, China
Banghai Wu
School of Earth and Space Sciences, CMA-USTC Laboratory of Fengyun Remote Sensing, University of Science and Technology of China, Hefei, 230026, China
Shengli Wu
National Satellite Meteorological Center, China Meteorological Administration, Beijing, 100081, China
School of Earth and Space Sciences, CMA-USTC Laboratory of Fengyun Remote Sensing, University of Science and Technology of China, Hefei, 230026, China
National Satellite Meteorological Center, China Meteorological Administration, Beijing, 100081, China
Yu Wang
CORRESPONDING AUTHOR
School of Earth and Space Sciences, CMA-USTC Laboratory of Fengyun Remote Sensing, University of Science and Technology of China, Hefei, 230026, China
Related authors
No articles found.
Jing Xi, Yu Wang, Rui Li, Banghai Wu, Xiaoye Fan, Xinbin Ma, and Zixiang Meng
EGUsphere, https://doi.org/10.5194/egusphere-2025-2799, https://doi.org/10.5194/egusphere-2025-2799, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The impacts of Saharan dust aerosols on 3-D structure of organized precipitation systems of different horizontal sizes over the tropical Atlantic Ocean in spring were studied using multiple satellite observations. Results show that under comparable thermodynamic conditions, dust-laden precipitation systems have higher storm tops, broader upper-level precipitation areas with more large particles, stronger convective activities, and heavier surface rain rates than clean ones.
Qixiang Sun, Dabin Ji, Husi Letu, Yongqian Wang, Peng Zhang, Hong Liang, Chong Shi, Shuai Yin, and Jiancheng Shi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-365, https://doi.org/10.5194/essd-2025-365, 2025
Preprint under review for ESSD
Short summary
Short summary
The Tibetan Plateau plays a vital role in Asia’s water cycle, but tracking water vapor in this mountainous region is difficult, especially under cloudy conditions. We developed a new satellite-based method to generate hourly water vapor data at 0.02-degree resolution from 2016 to 2022, now available at https://data.tpdc.ac.cn/en/data/4bb3c256-3cdb-4373-9924-f7ac16ddc717, which improves accuracy and reveals fine-scale moisture transport critical for understanding rainfall and extreme weather.
Xiaozhong Cao, Qiyun Guo, Haowen Luo, Rongkang Yang, Peng Zhang, Jianping Guo, Jincheng Wang, Die Xiao, Jianping Du, Zhongliang Sun, Shijun Liu, Sijie Chen, and Anfan Huang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2012, https://doi.org/10.5194/egusphere-2025-2012, 2025
Short summary
Short summary
This study aims to introduce in-situ profiling techniques and cost-effective technology for upper-air observation—the Round-trip Drifting Sounding System (RDSS)—which reduces costs relative to intensive sounding and achieves three sounding phases: Ascent-Drift-Descent (ADD). The RDSS not only provides additional data for weather analysis and numerical prediction models but also makes substantial contributions to targeted observations.
Xinran Xia, Rubin Jiang, Min Min, Shengli Wu, Peng Zhang, and Xiangao Xia
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-395, https://doi.org/10.5194/essd-2024-395, 2024
Revised manuscript not accepted
Short summary
Short summary
Based on the MicroWave Radiation Imager aboard FY-3 series satellites, we developed a global terrestrial precipitable water vapor dataset from 2012 to 2020. This dataset overcomes the limitations of infrared observations and provides accurate, all-weather PWV data ,spanning all types of land surface. Researchers are expected to leverage it to explore the role of water vapor in weather patterns, refine precipitation forecasting, and validate climate simulations.
Fangbo Pan, Lingmei Jiang, Gongxue Wang, Jinmei Pan, Jinyu Huang, Cheng Zhang, Huizhen Cui, Jianwei Yang, Zhaojun Zheng, Shengli Wu, and Jiancheng Shi
Earth Syst. Sci. Data, 16, 2501–2523, https://doi.org/10.5194/essd-16-2501-2024, https://doi.org/10.5194/essd-16-2501-2024, 2024
Short summary
Short summary
It is important to strengthen the continuous monitoring of snow cover as a key indicator of imbalance in the Asian Water Tower (AWT) region. We generate long-term daily gap-free fractional snow cover products over the AWT at 0.005° resolution from 2000 to 2022 based on the multiple-endmember spectral mixture analysis algorithm and the gap-filling algorithm. They can provide highly accurate, quantitative fractional snow cover information for subsequent studies on hydrology and climate.
Zhenhao Wu, Yunfei Fu, Peng Zhang, Songyan Gu, and Lin Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-532, https://doi.org/10.5194/essd-2023-532, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We establish a new rain cell precipitation parameter and visible infrared and microwave signal dataset combining with the multi-instrument observation data on the Tropical Rainfall Measuring Mission (TRMM). The purpose of this dataset is to promote the three-dimensional study of rain cell precipitation system, and reveal the spatial and temporal variations of the scale morphology and intensity of the system.
Ying Chen, Ruibo Lei, Xi Zhao, Shengli Wu, Yue Liu, Pei Fan, Qing Ji, Peng Zhang, and Xiaoping Pang
Earth Syst. Sci. Data, 15, 3223–3242, https://doi.org/10.5194/essd-15-3223-2023, https://doi.org/10.5194/essd-15-3223-2023, 2023
Short summary
Short summary
The sea ice concentration product derived from the Microwave Radiation Image sensors on board the FengYun-3 satellites can reasonably and independently identify the seasonal and long-term changes of sea ice, as well as extreme cases of annual maximum and minimum sea ice extent in polar regions. It is comparable with other sea ice concentration products and applied to the studies of climate and marine environment.
Yungang Wang, Liping Fu, Fang Jiang, Xiuqing Hu, Chengbao Liu, Xiaoxin Zhang, Jiawei Li, Zhipeng Ren, Fei He, Lingfeng Sun, Ling Sun, Zhongdong Yang, Peng Zhang, Jingsong Wang, and Tian Mao
Atmos. Meas. Tech., 15, 1577–1586, https://doi.org/10.5194/amt-15-1577-2022, https://doi.org/10.5194/amt-15-1577-2022, 2022
Short summary
Short summary
Far-ultraviolet (FUV) airglow radiation is particularly well suited for space-based remote sensing. The Ionospheric Photometer (IPM) instrument carried aboard the Feng Yun 3-D satellite measures the spectral radiance of the Earth FUV airglow. IPM is a tiny, highly sensitive, and robust remote sensing instrument. Initial results demonstrate that the performance of IPM meets the designed requirement and therefore can be used to study the thermosphere and ionosphere in the future.
Lin Tian, Lin Chen, Peng Zhang, and Lei Bi
Atmos. Chem. Phys., 21, 11669–11687, https://doi.org/10.5194/acp-21-11669-2021, https://doi.org/10.5194/acp-21-11669-2021, 2021
Short summary
Short summary
The result shows dust aerosols from the Taklimakan Desert have higher aerosol scattering during dust storm cases of this paper, and this caused higher negative direct radiative forcing efficiency (DRFEdust) than aerosols from the Sahara.
The microphysical properties and particle shapes of dust aerosol significantly influence DRFEdust. The satellite-based equi-albedo method has a unique advantage in DRFEdust estimation: it could validate the results derived from the numerical model directly.
Cited articles
Adler, R. F., Gu, G. J., Sapiano, M., Wang, J. J., and Huffman, G. J.: Global precipitation: means, variations and trends during the satellite era (1979–2014), Surv. Geophys., 38, 679–699, https://doi.org/10.1007/s10712-017-9416-4, 2017.
Alishouse, J. C., Snyder, S. A., Vongsathorn, J., and Ferraro, R. R.: Determination of oceanic total precipitable water from the SSM/I, IEEE T. Geosci. Remote, 28, 811–816, https://doi.org/10.1109/36.58967, 1990.
Andersson, A., Fennig, K., Klepp, C., Bakan, S., Graßl, H., and Schulz, J.: The Hamburg ocean atmosphere parameters and fluxes from satellite data – HOAPS-3, Earth Syst. Sci. Data, 2, 215–234, https://doi.org/10.5194/essd-2-215-2010, 2010.
Banzon, V., Smith, T. M., Chin, T. M., Liu, C. Y., and Hankins, W.: A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies, Earth Syst. Sci. Data, 8, 165–176, https://doi.org/10.5194/essd-8-165-2016, 2016.
Beal, L., Vialard, J., Roxy, M. K., Li, J., Andres, M., Annamalai, H., Feng, M., Han, W., Hood, R., and Lee, T.: A road map to IndOOS-2: better observations of the rapidly warming Indian Ocean, B. Am. Meteorol. Soc., 101, 1891–1913, https://doi.org/10.1175/BAMS-D-19-0209.1, 2020.
Blunden, J. and Boyer, T.: State of the climate in 2021, B. Am. Meteorol. Soc., 103, 1–465, https://doi.org/10.1175/2022BAMSStateoftheClimate.1, 2022.
Bock, O.: Global GNSS integrated water vapour data, 1994–2020, Aeris [data set], https://doi.org/10.25326/68, 2020.
Bojanowski, J. S. and Musial, J. P.: Dissecting effects of orbital drift of polar-orbiting satellites on accuracy and trends of climate data records of cloud fractional cover, Atmos. Meas. Tech., 13, 6771–6788, https://doi.org/10.5194/amt-13-6771-2020, 2020.
Buehler, S. A., Östman, S., Melsheimer, C., Holl, G., Eliasson, S., John, V. O., Blumenstock, T., Hase, F., Elgered, G., Raffalski, U., Nasuno, T., Satoh, M., Milz, M., and Mendrok, J.: A multi-instrument comparison of integrated water vapour measurements at a high latitude site, Atmos. Chem. Phys., 12, 10925–10943, https://doi.org/10.5194/acp-12-10925-2012, 2012.
Chen, B. Y., Yu, W. K., Wang, W., Zhang, Z. T., and Dai, W. J.: A global assessment of precipitable water vapor derived from GNSS zenith tropospheric delays with ERA5, NCEP FNL, and NCEP GFS products, Earth Space Sci., 8, e2021EA001796, https://doi.org/10.1029/2021EA001796, 2021.
Council, N. R., Studies, D. E. L., Climate, B. A. S., and Satellites, C. C. D. R. N. O.: Climate data records from environmental satellites: interim report, National Academies Press, Washington, D.C., USA, 150 pp., ISBN 0309182190, 2004.
Cummings, J. A.: Ocean data quality control, in: Operational oceanography in the 21st Century, edited by: Schiller, A. and Brassington, G., Springer, Dordrecht, the Netherlands, 91–121, https://doi.org/10.1007/978-94-007-0332-2_4, 2011.
Dee, D. P.: Bias and data assimilation, Q. J. Roy. Meteorol. Soc., 131, 3323–3343, https://doi.org/10.1256/qj.05.137, 2005.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Deeter, M. N.: A new satellite retrieval method for precipitable water vapor over land and ocean, Geophys. Res. Lett., 34, L02815, https://doi.org/10.1029/2006gl028019, 2007.
Douville, H., Raghavan, K., Renwick, J., Allan, R. P., Arias, P. A., Barlow, M., Cerezo-Mota, R., Cherchi, A., Gan, T., and Gergis, J.: Water cycle changes, in: Climate change 2021: the physical science basis, edited by: Masson-Delmotte, V. P., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonno, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R. and Zhou, B., Cambridge University Press, Cambridge, UK, 1055–1210, https://doi.org/10.1017/9781009157896.010, 2021.
Durre, I., Vose, R. S., and Wuertz, D. B.: Overview of the Integrated Global Radiosonde Archive, J. Climate, 19, 53–68, https://doi.org/10.1175/Jcli3594.1, 2006.
Durre, I., Vose, R. S., and Wuertz, D. B.: Robust automated quality assurance of radiosonde temperatures, J. Appl. Meteorol. Clim., 47, 2081–2095, https://doi.org/10.1175/2008jamc1809.1, 2008.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Ferreira, A. P., Nieto, R., and Gimeno, L.: Completeness of radiosonde humidity observations based on the Integrated Global Radiosonde Archive, Earth Syst. Sci. Data, 11, 603–627, https://doi.org/10.5194/essd-11-603-2019, 2019.
Foltz, G. R., Brandt, P., Richter, I., Rodríguez-Fonseca, B., Hernandez, F., Dengler, M., Rodrigues, R. R., Schmidt, J. O., Yu, L., and Lefèvre, N.: The tropical Atlantic observing system, Front. Mar. Sci., 6, 206, https://doi.org/10.3389/fmars.2019.00206, 2019.
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, cryosphere and sea level change, in: Climate change 2021: the physical science basis, contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L. , Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou B., Cambridge University Press, Cambridge, UKand New York, NY, USA, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2021.
Fu, Y., Zou, C. Z., Zhang, P., Wu, B., Wu, S., Liu, S., and Wang, Y.: A climate data record of atmospheric moisture and sea surface temperature from satellite observations, Zenodo [data set], https://doi.org/10.5281/zenodo.14539414, 2024.
Gentemann, C. L.: Three way validation of MODIS and AMSR-E sea surface temperatures, J. Geophys. Res.-Oceans, 119, 2583–2598, https://doi.org/10.1002/2013jc009716, 2014.
Gentemann, C. L. and Hilburn, K. A.: In situ validation of sea surface temperatures from the GCOM-W1 AMSR2 RSS calibrated brightness temperatures, J. Geophys. Res.-Oceans, 120, 3567-3585, https://doi.org/10.1002/2014jc010574, 2015.
Giering, R., Quast, R., Mittaz, J. P. D., Hunt, S. E., Harris, P. M., Woolliams, E. R., and Merchant, C. J.: A novel framework to harmonise satellite data series for climate applications, Remote Sens., 11, 1002, https://doi.org/10.3390/rs11091002, 2019.
Hans, I., Burgdorf, M., Buehler, S. A., Prange, M., Lang, T., and John, V. O.: An uncertainty quantified fundamental climate data record for microwave humidity sounders, Remote Sens., 11, 548, https://doi.org/10.3390/rs11050548, 2019.
Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle to global warming, J. Climate, 19, 5686–5699, https://doi.org/10.1175/JCLI3990.1, 2006.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thepaut, J. N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T., and Zhang, H.: Improvements of the daily optimum interpolation sea surface temperature (DOISST) Version 2.1, J. Climate, 34, 2923–2939, https://doi.org/10.1175/JCLI-D-20-0166.1, 2020
Huntington, T. G.: Evidence for intensification of the global water cycle: review and synthesis, J. Hydrol., 319, 83–95, https://doi.org/10.1016/j.jhydrol.2005.07.003, 2006.
Ingleby, B., Pauley, P., Kats, A., Ator, J., Keyser, D., Doerenbecher, A., Fucile, E., Hasegawa, J., Toyoda, E., Kleinert, T., Qu, W. Q., James, J. S., Tennant, W., and Weedon, R.: Progress toward high-resolution, real-time radiosonde reports, B. Am. Meteorol. Soc., 97, 2149–2161, https://doi.org/10.1175/Bams-D-15-00169.1, 2016.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Kawanishi, T., Sezai, T., Ito, Y., Imaoka, K., Takeshima, T., Ishido, Y., Shibata, A., Miura, M., Inahata, H., and Spencer, R. W.: The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA's contribution to the EOS for global energy and water cycle studies, IEEE T. Geosci. Remote, 41, 184–194, https://doi.org/10.1109/Tgrs.2002.808331, 2003.
Kazumori, M., Geer, A. J., and English, S. J.: Effects of all-sky assimilation of AMSR2 radiances in the ECMWF numerical weather prediction system, Q. J. Roy. Meteorol. Soc., 142, 721–737, https://doi.org/10.1002/qj.2669, 2016.
Lang, T., Buehler, S. A., Burgdorf, M., Hans, I., and John, V. O.: A new climate data record of upper-tropospheric humidity from microwave observations, Sci. Data, 7, 218, https://doi.org/10.1038/s41597-020-0560-1, 2020.
Li, Z.-C. and Jiang, G.-M.: Sea surface temperature retrieval from the FY-3D MWRI measurements, IEEE T. Geosci. Remote, 62, 4201010, https://doi.org/10.1109/TGRS.2023.3346819, 2024.
Liao, Z. H., Dong, Q., and Xue, C. J.: Evaluation of sea surface temperature from FY-3C data, Int. J. Remote Sens., 38, 4954–4973, https://doi.org/10.1080/01431161.2017.1331058, 2017.
Liu, G. S.: A fast and accurate model for microwave radiance calculations, J. Meteorol. Soc. Jpn., 76, 335–343, https://doi.org/10.2151/jmsj1965.76.2_335, 1998.
Liu, G. S.: Approximation of single scattering properties of ice and snow particles for high microwave frequencies, J. Atmos. Sci., 61, 2441–2456, https://doi.org/10.1175/1520-0469(2004)061<2441:AOSSPO>2.0.CO;2, 2004.
Liu, S., Wu, B. H., Zou, C. Z., and Wang, Y.: Highly consistent brightness temperature fundamental climate data record from SSM/I and SSMIS, IEEE T. Geosci. Remote, 61, 5302313, https://doi.org/10.1109/Tgrs.2023.3316694, 2023.
Maeda, T., Taniguchi, Y., and Imaoka, K.: GCOM-W1 AMSR2 level 1R product: dataset of brightness temperature modified using the antenna pattern matching technique, IEEE T. Geosci. Remote, 54, 770–782, https://doi.org/10.1109/Tgrs.2015.2465170, 2016.
McPhaden, M. J., Connell, K. J., Foltz, G. R., Perez, R. C., and Grissom, K.: Tropical ocean observations for weather and climate, Oceanography, 36, 32–43, 2023.
Mears, C. A. and Wentz, F. J.: Sensitivity of satellite-derived tropospheric temperature trends to the diurnal cycle adjustment, J. Climate, 29, 3629–3646, https://doi.org/10.1175/Jcli-D-15-0744.1, 2016.
Mears, C. A. and Wentz, F. J.: A satellite-derived lower-tropospheric atmospheric temperature dataset using an optimized adjustment for diurnal effects, J. Climate, 30, 7695–7718, https://doi.org/10.1175/Jcli-D-16-0768.1, 2017.
Mears, C. A., Santer, B. D., Wentz, F. J., Taylor, K. E., and Wehner, M. F.: Relationship between temperature and precipitable water changes over tropical oceans, Geophys. Res. Lett., 34, L24709, https://doi.org/10.1029/2007GL031936, 2007.
Mears, C. A., Smith, D. K., Ricciardulli, L., Wang, J. H., Huelsing, H., and Wentz, F. J.: Construction and uncertainty estimation of a satellite-derived total precipitable water data record over the world's oceans, Earth Space Sci., 5, 197–210, https://doi.org/10.1002/2018ea000363, 2018.
Merchant, C. J., Paul, F., Popp, T., Ablain, M., Bontemps, S., Defourny, P., Hollmann, R., Lavergne, T., Laeng, A., de Leeuw, G., Mittaz, J., Poulsen, C., Povey, A. C., Reuter, M., Sathyendranath, S., Sandven, S., Sofieva, V. F., and Wagner, W.: Uncertainty information in climate data records from Earth observation, Earth Syst. Sci. Data, 9, 511–527, https://doi.org/10.5194/essd-9-511-2017, 2017.
Minnett, P. J., Alvera-Azcarate, A., Chin, T. M., Corlett, G. K., Gentemann, C. L., Karagali, I., Li, X., Marsouin, A., Marullo, S., Maturi, E., Santoleri, R., Picart, S. S., Steele, M., and Vazquez-Cuervo, J.: Half a century of satellite remote sensing of sea-surface temperature, Remote Sens. Environ., 233, 111366, https://doi.org/10.1016/j.rse.2019.111366, 2019.
O'Dell, C. W., Eldering, A., Wennberg, P. O., Crisp, D., Gunson, M. R., Fisher, B., Frankenberg, C., Kiel, M., Lindqvist, H., and Mandrake, L.: Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm, Atmos. Meas. Tech., 11, 6539–6576, https://doi.org/10.5194/amt-11-6539-2018, 2018.
Po-Chedley, S., Thorsen, T. J., and Fu, Q.: Removing diurnal cycle contamination in satellite-derived tropospheric temperatures: understanding tropical tropospheric trend discrepancies, J. Climate, 28, 2274–2290, https://doi.org/10.1175/Jcli-D-13-00767.1, 2015.
Poli, P., Roebeling, R., John, V. O., Doutriaux-Boucher, M., Schulz, J., Lattanzio, A., Petraityte, K., Grant, M., Hanschmann, T., Onderwaater, J., Sus, O., Huckle, R., Coppens, D., Theodore, B., August, T., Simmons, A. J., Bell, B., Mittaz, J., Hall, T., Vidot, J., Brunel, P., Johnson, J. E., Zamkoff, E. B., Al-Jazrawi, A. F., Esfandiari, A. E., Gerasimov, I. V., and Kobayashi, S.: Radiance simulations in support of climate services, Earth Space Sci., 10, e2023EA002868, https://doi.org/10.1029/2023EA002868, 2023.
Rayner, N., Parker, D. E., Horton, E., Folland, C. K., Alexander, L. V., Rowell, D., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res.-Atmos., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003.
Roebeling, R. A., Bojinski, S., Poli, P., John, V. O., and Schulz, J.: On the determination of GCOS ECV product requirements for climate applications, B. Am. Meteorol. Soc., 106, E868–E893, https://doi.org/10.1175/Bams-D-24-0123.1, 2025.
Santer, B. D., Wigley, T., Mears, C., Wentz, F., Klein, S., Seidel, D., Taylor, K., Thorne, P., Wehner, M., and Gleckler, P.: Amplification of surface temperature trends and variability in the tropical atmosphere, Science, 309, 1551–1556, https://doi.org/10.1126/science.1114867, 2005.
Santer, B. D., Thorne, P. W., Haimberger, L., Taylor, K. E., Wigley, T. M. L., Lanzante, J. R., Solomon, S., Free, M., Gleckler, P. J., Jones, P. D., Karl, T. R., Klein, S. A., Mears, C., Nychka, D., Schmidt, G. A., Sherwood, S. C., and Wentz, F. J.: Consistency of modelled and observed temperature trends in the tropical troposphere, Int. J. Climatol., 28, 1703–1722, https://doi.org/10.1002/joc.1756, 2008.
Santer, B. D., Po-Chedley, S., Mears, C., Fyfe, J. C., Gillett, N., Fu, Q., Painter, J. F., Solomon, S., Steiner, A. K., Wentz, F. J., Zelinka, M. D., and Zou, C. Z.: Using climate model simulations to constrain observations, J. Climate, 34, 6281–6301, https://doi.org/10.1175/Jcli-D-20-0768.1, 2021.
Schröder, M., Lockhoff, M., Forsythe, J. M., Cronk, H. Q., Vonder Haar, T. H., and Bennartz, R.: The GEWEX water vapor assessment: results from intercomparison, trend, and homogeneity analysis of total column water vapor, J. Appl. Meteorol. Clim., 55, 1633–1649, https://doi.org/10.1175/Jamc-D-15-0304.1, 2016.
Smith, N., Kessler, W. S., Cravatte, S., Sprintall, J., Wijffels, S., Cronin, M. F., Sutton, A., Serra, Y. L., Dewitte, B., and Strutton, P. G.: Tropical pacific observing system, Front. Mar. Sci., 6, 31, https://doi.org/10.3389/fmars.2019.00031, 2019.
Spencer, R. W., Christy, J. R., and Braswell, W. D.: UAH version 6 global satellite temperature products: methodology and results, Asia-Pac. J. Atmos. Sci., 53, 121–130, https://doi.org/10.1007/s13143-017-0010-y, 2017.
Trenberth, K. E., Fasullo, J., and Smith, L.: Trends and variability in column-integrated atmospheric water vapor, Clim. Dynam., 24, 741–758, https://doi.org/10.1007/s00382-005-0017-4, 2005.
Vonder Haar, T. H., Bytheway, J. L., and Forsythe, J. M.: Weather and climate analyses using improved global water vapor observations, Geophys. Res. Lett., 39, L15802, https://doi.org/10.1029/2012GL052094, 2012.
Wang, J. H., Dai, A. G., and Mears, C.: Global water vapor trend from 1988 to 2011 and its diurnal asymmetry based on GPS, radiosonde, and microwave satellite measurements, J. Climate, 29, 5205–5222, https://doi.org/10.1175/Jcli-D-15-0485.1, 2016a.
Wang, Y., Fu, Y. F., Liu, G. S., Liu, Q., and Sun, L.: A new water vapor algorithm for TRMM Microwave Imager (TMI) measurements based on a log linear relationship, J. Geophys. Res.-Atmos., 114, D21304, https://doi.org/10.1029/2008jd011057, 2009.
Wang, Y., Zhang, Y., Fu, Y. F., Li, R., and Yang, Y. J.: A climatological comparison of column-integrated water vapor for the third-generation reanalysis datasets, Sci. China Earth Sci., 59, 296–306, https://doi.org/10.1007/s11430-015-5183-6, 2016b.
Wentz, F. J.: A well-calibrated ocean algorithm for special sensor microwave/imager, J. Geophys. Res.-Oceans., 102, 8703–8718, https://doi.org/10.1029/96jc01751, 1997.
Wentz, F. J. and Meissner, T.: AMSR ocean algorithm, version 2, algorithm theoretical basis document, Remote Sensing Systems, Santa Rosa, CA, 66 pp., https://images.remss.com/papers/rsstech/2000_121599A-1_Wentz_AMSR_Ocean_ATBD_V2.pdf (last access: 13 September 2025), 2000.
Wentz, F. J. and Meissner, T.: Supplement 1: algorithm theoretical basis document for AMSR-E ocean algorithms, Remote Sensing Systems, Santa Rosa, 6 pp., https://images.remss.com/papers/rsstech/2007_051707_Wentz_AMSR_Ocean_V2_Supplement_1.pdf (last access: 13 September 2025), 2007.
Wentz, F. J. and the RSS team: Air-Sea essential climate variables climate data record, monthly data on 2.5 deg grid, Version 8.1, Remote Sensing Systems [data set], https://www.remss.com/climate/Air-Sea-Essential-Climate-Variables (last access: 13 September 2025), 2021.
Wentz, F. J. and Schabel, M.: Precise climate monitoring using complementary satellite data sets, Nature, 403, 414–416, https://doi.org/10.1038/35000184, 2000.
Wu, B. H., Wang, Y., Zou, C. Z., Li, R., Liu, S., Liu, G. S., and Fu, Y. F.: A fundamental climate data record derived from AMSR-E, MWRI, and AMSR2, IEEE T. Geosci. Remote, 58, 5450–5461, https://doi.org/10.1109/Tgrs.2020.2966055, 2020.
Yang, H., Weng, F. Z., Lv, L. Q., Lu, N. M., Liu, G. F., Bai, M., Qian, Q. Y., He, J. K., and Xu, H. X.: The FengYun-3 microwave radiation imager on-orbit verification, IEEE T. Geosci. Remote, 49, 4552–4560, https://doi.org/10.1109/Tgrs.2011.2148200, 2011.
Yuan, P., Blewitt, G., Kreemer, C., Hammond, W. C., Argus, D., Yin, X. A., Van Malderen, R., Mayer, M., Jiang, W. P., Awange, J., and Kutterer, H.: An enhanced integrated water vapour dataset from more than 10 000 global ground-based GPS stations in 2020, Earth Syst. Sci. Data, 15, 723–743, https://doi.org/10.5194/essd-15-723-2023, 2023.
Zemp, M., Chao, Q., Han Dolman, A. J., Herold, M., Krug, T., Speich, S., Suda, K., Thorne, P., and Yu, W.: GCOS 2022 implementation plan, in: The 2022 GCOS implementation plan, edited by: Chao, Q., Han Dolman, A. J., Herold, M., Krug, T., Speich, S., Suda, K., Thorne, P., Yu, W., and Zemp, M., World Meteo., Geneva, Swiss Confederation, 85 pp., https://doi.org/10.5167/uzh-224271, 2022.
Zou, C. Z., Goldberg, M. D., Cheng, Z. H., Grody, N. C., Sullivan, J. T., Cao, C. Y., and Tarpley, D.: Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses, J. Geophys. Res.-Atmos., 111, D19114, https://doi.org/10.1029/2005jd006798, 2006.
Zou, C. Z., Goldberg, M. D., and Hao, X. J.: New generation of U.S. satellite microwave sounder achieves high radiometric stability performance for reliable climate change detection, Sci. Adv., 4, eaau0049, https://doi.org/10.1126/sciadv.aau0049, 2018.
Zou, C. Z., Xu, H., Hao, X., and Fu, Q.: Post-millennium atmospheric temperature trends observed from satellites in stable orbits, Geophys. Res. Lett., 48, e2021GL093291, https://doi.org/10.1029/2021GL093291, 2021.
Zou, C. Z., Xu, H., Hao, X., and Liu, Q.: Mid-Tropospheric layer temperature record derived from satellite microwave sounder observations with backward merging approach, J. Geophys. Res.-Atmos., 128, e2022JD037472, https://doi.org/10.1029/2022JD037472, 2023.
Short summary
This study presents a climate data record (CDR) of atmospheric column water vapor and sea surface temperature using over two decades of stable-orbit satellite-based passive microwave imagery observations. The evaluation results show that the CDR has long-term consistency and continuity, and is more accurate than other similar products in climate covariability, suggesting that the CDR is suitable for climate change research and for constraining climate model simulations.
This study presents a climate data record (CDR) of atmospheric column water vapor and sea...
Altmetrics
Final-revised paper
Preprint