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Abstract. We developed a climate data record (CDR) of atmospheric column water vapor (CWV) and sea sur-
face temperature (SST) under oceanic rain-free conditions using over two decades of observational records from
three satellite instruments: the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-
E), the MicroWave Radiation Imager (MWRI), and the Advanced Microwave Scanning Radiometer-2 (AMSR2).
The AMSR-E and AMSR2 satellites operated in near-stable orbits, while the MWRI experienced orbital drifts
of nearly 1 h during its operational period. The CWV and SST products were retrieved from well-recalibrated
level-1 brightness temperatures observed by common channels with the same frequencies on these instruments,
designed for measuring these properties. Adjustments for diurnal drifting errors caused by orbital drift were
applied to MWRI data using a semi-physical model developed in previous studies. The combination of prior
recalibration and diurnal drift adjustment ensured inter-satellite consistency in the CDRs. Compared to in-situ
radiosonde and buoy observations, the biases and root mean square errors of the CDRs are within 0.1 and 4.4 mm
for CWV, and 0.2 and 1.6 K for SST, respectively. Long-term trends of the retrieved CWV and SST align with
observations from the Global Navigation Satellite System (GNSS) and the Global Tropical Moored Buoy Ar-
ray (GTMBA) products. The global oceanic trends of CWV and SST were 0.39 mm per decade and 0.16 K per
decade, respectively, over the period 2002–2022. Inter-consistency between CWV and SST, as well as layer-
mean temperatures derived from satellite microwave sounder observations, was examined and compared with
climate model simulations from phase 6 of the Coupled Model Intercomparison Project (CMIP6). It was found
that the trend ratio of the retrieved CWV to SST was 9.9 % K−1 in the tropics, which closely aligns with CMIP6
models. These validation results indicate that the presented CDR has high accuracy and is suitable for long-term
climate change research. The CDR dataset is publicly available at https://doi.org/10.5281/zenodo.14539414 (Fu
et al., 2024).

1 Introduction

Atmospheric column water vapor (CWV) and sea surface
temperature (SST) are two essential climate variables (ECVs;
Zemp et al., 2022). The long-term trend of SST is a key indi-
cator of human-induced global warming (Fox-Kemper et al.,
2021). Changes in SST also influence the ocean-atmosphere
exchange of sensible and latent heat fluxes, as well as at-

mospheric dynamic and thermodynamic processes, through
ocean–atmosphere coupling (Huntington, 2006; Wang et al.,
2016a; Minnett et al., 2019). Similarly, long-term changes
in CWV affect the global water cycle, particularly the fre-
quency and severity of heavy precipitation and drought
events (Douville et al., 2021), which have significant impacts
on human life and economies. Understanding the long-term

Published by Copernicus Publications.

https://doi.org/10.5281/zenodo.14539414


4652 Y. Fu et al.: A climate data record of atmospheric moisture and sea surface temperature

changes in CWV and SST on a global scale is therefore of
fundamental importance for climate change mitigation and
adaptation efforts (Banzon et al., 2016; Ferreira et al., 2019;
Blunden and Boyer, 2022).

Satellite remote sensing is the only means available to
provide CWV and SST observations with global coverage.
Satellite climate data records (CDRs) are essential for in-
vestigating long-term changes in CWV and SST (Mears et
al., 2018; Minnett et al., 2019). A CDR is defined as a time
series of measurements with sufficient length, consistency,
and continuity (Council et al., 2004). Establishing a multi-
decade CDR using a single instrument is challenging since
most satellite instruments are designed for weather moni-
toring and have much shorter operational lifespans than re-
quired for climate change research. To overcome this chal-
lenge, it is necessary to splice together observations from the
same or similar sensors onboard multiple satellites. Intercal-
ibration between satellite instruments, which aims to remove
inter-satellite inconsistencies, is a critical step in CDR devel-
opment.

Several satellite-based CWV and SST CDRs have been
developed and extensively used for climate trend studies
(Blunden and Boyer, 2022; Santer et al., 2021; Schröder et
al., 2016). The CWV CDRs include merged satellite prod-
ucts provided by Remote Sensing Systems (RSS) (Mears
et al., 2018), the Hamburg Ocean Atmosphere Parameters
and Fluxes from Satellite Data (HOAPS) from the Eu-
ropean Organisation for the Exploitation of Meteorologi-
cal Satellites’ (EUMETSAT’s) Satellite Application Facil-
ity on Climate Monitoring (CM SAF) (Andersson et al.,
2010), and the National Aeronautics and Space Adminis-
tration (NASA) Water Vapor Project–MEaSUREs (NVAP-
M) from the NASA Making Earth Science Data Records for
Use in Research Environments (MEaSUREs) program (Von-
der Haar et al., 2012). For SST, satellite and in-situ observa-
tions are fused to produce global analyses, such as the Hadley
Center Sea Ice and SST dataset (HadISST; Rayner et al.,
2003) and National Oceanic and Atmospheric Administra-
tion’s (NOAA’s) Optimum Interpolation SST (OISST; Huang
et al., 2020).

Despite extensive studies on the long-term trends in in-
dividual CWV and SST products, large uncertainties re-
main when their trends are analyzed for climate covariability
(Wang et al., 2016a; Mears et al., 2018; Santer et al., 2021).
The Clausius-Clapeyron equation predicts a trend ratio of ap-
proximately 7 % K−1 for CWV relative to SST over the tropi-
cal oceans (Wentz and Schabel, 2000; Held and Soden, 2006;
Trenberth et al., 2005; Wang et al., 2016a), assuming con-
stant relative humidity. This predicted ratio is well-replicated
in simulations by phases 5 and 6 of the Coupled Model In-
tercomparison Project (CMIP5 and CMIP6) models (Santer
et al., 2021). Such results provide a strong constraint on the
observational trend ratio of CWV relative to SST (Santer et
al., 2021). However, observational datasets often show CWV-
to-SST ratios and other atmospheric temperature trends that

deviate significantly from theoretical expectations and cli-
mate model simulations (Santer et al., 2005, 2021; Mears
et al., 2007). It remains unclear whether these differences
are caused by trend errors in observed CWV, SST, or both
(Santer et al., 2021). This highlights the need for improved
observational datasets of CWV and SST and a deeper under-
standing of the error sources associated with their CDRs.

Two main sources of error arise when developing a
satellite-based CDR. First, measurement differences between
sensors can result from variations in preprocessing, calibra-
tion approaches, and hardware designs, such as channel fre-
quency, Earth incident angle, and bandwidth (Zou et al.,
2018; Wu et al., 2020; Liu et al., 2023). Second, different
satellites often have different local observation times depend-
ing on their orbits. Even within the same satellite, local ob-
servation times may vary over time due to orbital drift (Zou et
al., 2018; Bojanowski and Musial, 2020; Lang et al., 2020).
For physical variables with significant diurnal cycles, these
variations can lead to large measurement differences (O’Dell
et al., 2018), potentially introducing spurious trend signals in
CDRs if not corrected. Different algorithms for correcting di-
urnal drift effects can also lead to trend differences in CDRs
(Mears and Wentz, 2016; Po-Chedley et al., 2015; Zou et al.,
2023).

We aim to develop a new set of CWV and SST CDRs,
both using observations from three satellite instruments with
close local observation time: the Advanced Microwave Scan-
ning Radiometer for Earth Observing System (AMSR-E)
onboard NASA’s Aqua satellite (Kawanishi et al., 2003),
the Advanced Microwave Scanning Radiometer-2 (AMSR2)
onboard JAXA’s Global Change Observation Mission first-
Water (GCOM-W1) satellite (Maeda et al., 2016), and
the MicroWave Radiometer Imager (MWRI) onboard the
FengYun-3B (FY3B) satellite (Yang et al., 2011), devel-
oped by the National Satellite Meteorological Center of the
China Meteorological Administration (NSMC). These in-
struments share the same channel frequencies, in the mi-
crowave range from 10.65 to 89 GHz, designed to measure
water-vapor-related geophysical parameters with both verti-
cal and horizontal polarizations. In particular, the MWRI can
serve as an effective bridging instrument to fill the observa-
tion gap of approximately nine months, from October 2011 to
July 2012, between AMSR-E and AMSR2, making continu-
ous and complete CDRs possible for the period from 2002
to 2022. Recently, Wu et al. (2020) recalibrated the level-
1 brightness temperatures (TBs) for these three sensors and
constructed a consistent fundamental CDR (FCDR) for the
last two decades using several intercalibration approaches.
Additionally, it is worth noting that two of the three satel-
lites have stable local overpass times, while one experienced
orbital drift, as discussed below. Previous studies (Zou et
al., 2018, 2021) demonstrated that satellite observations in
stable sun-synchronous orbits produce highly accurate CDR
trends. For satellites with orbital drift, Zou et al. (2023) de-
veloped a novel semi-physical model to effectively remove
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diurnal drifting errors in satellite microwave observations.
These new developments have provided a solid foundation
for constructing more accurate CWV and SST CDRs.

Here, we apply these recent advances to develop CWV
and SST CDRs from satellite microwave observations. Our
results demonstrate that the CWV and SST CDRs from the
same observations produced in this study exhibit trend ra-
tios consistent with climate model simulations and theoret-
ical expectations. The rest of this article is organized as
follows. Section 2 presents the datasets used for validating
the retrieved CDRs. Section 3 describes the source FCDR
and ECV algorithm. Section 4 performs the validation of
the CWV and SST products against various observations
from other instruments and climate reanalyses. Section 5 ex-
amines the ratios of CWV to SST and satellite microwave
sounder-based atmospheric layer temperatures over the trop-
ical ocean. Finally, conclusions and discussions are provided
in Sect. 7.

2 Validation data

2.1 Radiosonde and buoy observations

In-situ measurements are widely used to validate retrievals
from satellite observations at the pixel level (Gentemann and
Hilburn, 2015; Wentz and Meissner, 2000). In this study, ra-
diosonde observations (RAOBs) from the Integrated Global
Radiosonde Archive (Durre et al., 2006) are used to evalu-
ate the retrieved CWV (CWVRTV). Since the retrieved CWV
is available only over the ocean, RAOB sites on 63 islands
are selected for validation (Fig. 1). The equivalent CWV
from RAOB (CWVRAOB) is calculated from RAOB profiles,
which include pressure, air temperature, and dew point de-
pression (Alishouse et al., 1990). The RAOB data has un-
dergone a multi-stage quality assurance process, including
persistence checks, climatological outlier removal, and verti-
cal/temporal consistency tests, which ensure internal coher-
ence and minimize undetected errors to about 1.1 % (Durre
et al., 2008). During validation, only CWVRTV pixels closest
to CWVRAOB are selected for comparison. The collocation
criteria for CWVRTV and CWVRAOB are a spatial distance of
60 km and a temporal interval of 3 h (Wang et al., 2009).

The US Global Ocean Data Assimilation Experi-
ment (GODAE) from the Fleet Numerical Meteorology and
Oceanography Center (FNMOC) has collected global SST
observations (SSTGODAE) from ships, moored buoys, and
drifting buoys (Fig. 1). These observations are used to val-
idate the retrieved SST (SSTRTV) on a pixel-by-pixel basis.
GODAE files include time, latitude, longitude, SST, the prob-
ability of gross error – assuming a normal probability density
function for SST errors (Cummings, 2011) – and other meta-
data. The probability of gross error is used to guarantee data
quality and consistency, ensuring that only high-confidence
data (defined as those with a probability less than 0.6 K)
are used here (Gentemann and Hilburn, 2015). For valida-

tion, only the satellite observation pixel closest to each in-
situ measurement is selected. The high spatial and temporal
resolutions of GODAE observations enable a stringent collo-
cation criterion of 0.1° and 6 min.

In addition to GODAE, the Global Tropical Moored Buoy
Array (GTMBA) provides systematic and sustained SST ob-
servations for monitoring tropical atmospheric and oceanic
interactions, supporting climate research and assessment
(McPhaden et al., 2023). GTMBA consists of three moored
buoy arrays: the Tropical Atmosphere Ocean/Triangle Trans-
Ocean Buoy Network (TAO/TRITON), the Prediction and
Research Moored Array in the Atlantic (PIRATA), and the
Research Moored Array for African-Asian-Australian Mon-
soon Analysis and Prediction (RAMA) (Foltz et al., 2019;
Smith et al., 2019; Beal et al., 2020). These buoy arrays are
located in the tropical waters of the Pacific (0° N, 156° E), At-
lantic (6° S, 10° W), and Indian Oceans (5° S, 95° E) (Fig. 1).
Observations from these buoys provide the longest con-
tinuous time series for validating the long-term trends of
SSTRTV.

2.2 Global Navigation Satellite System (GNSS) CWV
retrievals

The GNSS deployed at ground stations provides moisture
profile retrievals (Bock, 2020). GNSS retrievals offer advan-
tages such as long-term stability, high accuracy, and high
temporal resolution. They are often used for monitoring cli-
mate change and validating satellite and reanalysis products
(Mears et al., 2018; Chen et al., 2021; Yuan et al., 2023;
Blunden and Boyer, 2022). For comparison, the GNSS mois-
ture profiles are converted to equivalent CWV. Monthly mean
data from three isolated island stations with long observation
records – BRMU (32.37° N, 64.70° W), COCO (12.19° S,
96.83° E), and DGAR (7.27° S, 72.37° E) (Fig. 1) – are se-
lected to validate the long-term trend in CWVRTV.

2.3 SST analysis product

The NOAA OISST (also known as Reynolds’ SST) is a long-
term, globally gridded SST analysis product (Huang et al.,
2020). It is developed by optimally integrating SST retrievals
from satellite Advanced Very High Resolution Radiometer
(AVHRR) observations with in-situ buoy and ship measure-
ments. This SST dataset has been widely used in trend stud-
ies (Blunden and Boyer, 2022; Banzon et al., 2016). In this
study, the monthly mean OISST product (version 2.1) with a
horizontal resolution of 0.25° is used for climate trend com-
parisons with our SSTRTV.

2.4 RSS CDRs

Among the CWV CDRs, the RSS product (available at http:
//www.remss.com, last access: 13 September 2025) has the
longest time period with documented accuracy (Mears et
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Figure 1. Geographic locations of RAOB, GNSS, and GTMBA sites, along with GODAE measurements used for validation in this study.
The number of GODAE buoy observations in 2021 is shown within 0.25° grid boxes.

al., 2018). This CWV product is a monthly gridded dataset
with 1° resolution, created by averaging observations from
11 inter-calibrated satellites spanning 1987 to the present
(Mears et al., 2018). In this study, the RSS CWV (CWVRSS)
product from 2002 to 2022 is used for climate trend compar-
isons with CWVRTV. However, the RSS SST cannot be re-
trieved for several of these 11 satellites (e.g., F08–F18) due
to the absence of low-frequency (10 GHz) channels on some
of the passive microwave (PMW) imagers. To address this,
another RSS product, named the Air-Sea ECV Merged Mi-
crowave CDR (hereinafter referred to as RSS-CDR), was de-
veloped by the RSS group (Wentz and the RSS team, 2021)
using RSS CWV and OISST instead of RSS SST. This later
RSS-CDR product, available on a monthly global 2.5°×2.5°
grid from July 1987 through February 2021, is used for vali-
dation purposes in this study.

2.5 Reanalysis datasets

Reanalysis data provide long-term, globally continuous
ECVs within the Earth-atmosphere system. These datasets
are generated by assimilating various observed data into
model simulations using a fixed atmospheric numerical
weather forecast model over time (Dee et al., 2011; Kalnay et
al., 1996). Since different observations vary in accuracy and
spatiotemporal coverage, optimal algorithms are required to
blend observations with model simulations, ensuring that re-
analysis data remain consistent with both physical principles
and observational constraints.

In this study, we use the fifth generation of the European
Centre for Medium-Range Weather Forecasts (ECMWF) at-
mospheric reanalysis products (ERA5; Hersbach et al., 2020)
for climatological comparisons with our retrieved CWV and
SST. ERA5 is produced with an advanced atmospheric model
and data assimilation system, offering improved accuracy
and resolution compared to its predecessor, ECMWF ERA-

Interim. Monthly mean ERA5 products with a 0.25°× 0.25°
resolution for CWV (CWVERA) and SST (SSTERA) are uti-
lized to compare the climate trends of our satellite-retrieved
CDR and SST over the same time period.

2.6 CMIP6 product

The CMIP6 (Eyring et al., 2016) provides multi-decadal sim-
ulations of various atmospheric parameters, including at-
mospheric moisture profiles and SST, from multiple ocean-
atmosphere coupled global climate models. In these simu-
lations, the thermodynamic properties of the climate sys-
tem are controlled and constrained by interior physical
mechanisms (Santer et al., 2021). One such process is that
the tropical atmosphere (20° S–20° N) generally follows the
Clausius–Clapeyron law due to adiabatic moisture processes
(Trenberth et al., 2005; Wang et al., 2016a). As a result, the
trend ratio of CWV over temperature remains relatively con-
stant across different climate model simulations, although in-
dividual trends of CWV and temperature vary among mod-
els due to differences in climate sensitivities and the cou-
pling of dynamical and radiative processes. This character-
istic can be used to constrain satellite-observed trend ra-
tios (Santer et al., 2021; Wang et al., 2016a), including the
ratio of CWV over SST (denoted as R{CWV /SST}), the ra-
tio of CWV over mid-tropospheric temperatures (TMT; de-
noted as R{CWV /TMT}) and the ratio of CWV over lower-
tropospheric temperate (TLT; denoted as R{CWV /TLT}).

CMIP6 includes simulation results from multiple ex-
periments designed to address specific scientific questions
(Eyring et al., 2016). Among these, the historical simu-
lation experiment covers the climate change process from
1850 to 2014, while the Scenario Model Intercompari-
son Project (ScenarioMIP) provides projections of climate
change beyond 2015 based on different Shared Socioeco-
nomic Pathway (SSP) scenarios. For example, SSP585 is a
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Table 1. Basic information of CMIP6 models. The term “Ensemble Member” refers to the initial conditions of the climate model and the
identifiers of the different parameters. For example, r1i1p1f1 indicates the simulation result for the first initial condition, the first physical
parameterization setting, and the first external forcing setting, while r1i1p1f2 is the same as r1i1p1f1 except for the second external forcing.

Num. Forecast centre Model Ensemble
member

1 Australian Community Climate and Earth System Simulator (ACCESS), ACCESS-CM2 r1i1p1f1
2 Australia ACCESS-ESM1-5 r1i1p1f1

3 Alfred Wegener Institute, Helmholtz Centre for Polar and Marine AWI-CM-1-1-MR r1i1p1f1
Research, Germany

4 Beijing Climate Center, China Meteorological Administration, China BCC-CSM2-MR r1i1p1f1

5 Chinese Academy of Meteorological Sciences, China CAMS-CSM1-0 r1i1p1f1

6 Community Earth System Model, National Center for Atmospheric CESM2-WACCM r1i1p1f1
Research (NCAR), USA

7 Centre National de Recherches Météorologiques, France CNRM-CM6-1-HR r1i1p1f2
8 CNRM-ESM2-1 r1i1p1f2

9 Energy Exascale Earth System Model, US Department of Energy, USA E3SM-1-0 r1i1p1f1
10 E3SM-1-1 r1i1p1f1
11 E3SM-1-1-ECA r1i1p1f1

12 EC-Earth consortium, Europe EC-Earth3 r1i1p1f1
13 EC-Earth3-CC r1i1p1f1
14 EC-Earth3-Veg r1i1p1f1
15 EC-Earth3-Veg-LR r1i1p1f1

16 Flexible Global Ocean-Atmosphere-Land System Model, Institute of FGOALS-g3 r1i1p1f1
Atmospheric Physics, Chinese Academy of Sciences, China

17 Geophysical Fluid Dynamics Laboratory, NOAA, USA GFDL-CM4 r1i1p1f1

18 Institute of Numerical Mathematics, Russian Academy of Sciences, Russia INM-CM4-8 r1i1p1f1
19 INM-CM5-0 r1i1p1f1

20 Korea Institute of Atmospheric Prediction Systems (KIAPS), Korea KACE-1-0-G r1i1p1f1

21 Korea Institute of Ocean Science and Technology, Korea KIOST-ESM r1i1p1f1

22 Model for Interdisciplinary Research on Climate, Japan MIROC6 r1i1p1f1
23 MIROC-ES2L r1i1p1f2

24 Max Planck Institute for Meteorology, Germany MPI-ESM1-2-HR r1i1p1f1
25 MPI-ESM1-2-LR r1i1p1f1

26 Meteorological Research Institute, Japan MRI-ESM2-0 r1i1p1f1

27 Norwegian Climate Centre, Norway NorESM2-LM r1i1p1f1
28 NorESM2-MM r1i1p1f1

climate prediction under extreme emission scenarios, which
can be spliced with historical simulations to obtain contin-
uous simulation results (Santer et al., 2021). In this study,
outputs from 28 spliced models in CMIP6 (Table 1) during
2003–2020 from the tropics were selected to validate the co-
variation trend of the current CDR ECVs. To compare with
satellite observations, the air temperature profiles in CMIP6
models are converted to the TMT and the TLT using their
weighting functions (Santer et al., 2021).

2.7 Satellite temperature data

Three TMT and TLT products derived from satellite mi-
crowave sounder observations – NOAA’s Center for Satel-
lite Applications and Research (STAR; version 5.0; Zou et
al., 2021, 2023), RSS (version 4.0; Mears and Wentz, 2016,
2017), and the University of Alabama in Huntsville (UAH;
version 6.0; Spencer et al., 2017) – are used to examine the
covariance of CWVRTV with observed tropospheric temper-
atures in this study. STAR, RSS, and UAH are all monthly
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mean datasets on a global 2.5°×2.5° grid. Their temperature
trends over the tropical ocean from 2003 to 2020 were used
to construct observed trend ratios of CWV over tropospheric
temperatures and to compare them with climate model re-
sults.

It is worth noting that STAR has constructed a reference
TMT and TLT dataset based solely on microwave sounder
observations in stable orbits during the period from 2002
to the present (Zou et al., 2021). This reference time se-
ries achieves an accuracy of 0.012 K per decade in trend
detection (Zou et al., 2021). The STAR V5.0 dataset main-
tains this trend detection accuracy during 2002–present by
inter-calibrating satellites with orbital drifts to the reference
dataset (Zou et al., 2023). The high trend accuracy in the
STAR dataset serves as a robust reference for evaluating the
trend accuracy of CWVRTV presented in this study. This is
demonstrated in Sect. 5, where we examine the ratios of
CWV over tropospheric temperatures.

2.8 Validation framework of reference datasets

To ensure a structured evaluation of the CDR quality, we
systematically validated the retrieved CWV and SST prod-
ucts across multiple dimensions: retrieval accuracy, local and
global long-term trends, and climate trend covariability. The
various datasets mentioned above differ in spatial coverage,
temporal extent, measurement principles, and are therefore
suitable for different validation tasks. Table 2 summarizes the
validation objectives, evaluation metrics, corresponding ref-
erence datasets, and their independence from the retrievals.

3 CDR development for CWV and SST

The development of CWV and SST CDRs requires well-
intercalibrated and recalibrated radiance or TB data records
at the satellite swath pixel level (level-1). The continuous and
consistent radiance dataset, consisting of recalibrated obser-
vations from different sensors, is referred to as the FCDR
(Liu et al., 2023; Poli et al., 2023). Recently, Wu et al. (2020)
developed a continuous FCDR for the past two decades by
applying several intercalibration approaches to recalibrate
the observed TBs of the three sensors: AMSR-E, MWRI,
and AMSR2. By examining long-term changes in these re-
calibrated TBs over the global ocean, it is demonstrated that
this FCDR is consistent and homogeneous enough to be used
for obtaining CDRs of water cycle-related variables for cli-
mate research. Accordingly, this TB FCDR for the three
sensors – AMSR-E, MWRI and AMSR2 – is used for our
CWV and SST retrievals, which includes TBs from both ver-
tically (V ) and horizontally (H ) polarized channels at five
common frequencies: 10.65, 18.7, 23.8, 36.5, and 89.0 GHz
(hereinafter referred to as 10V/H, 18V/H, 23V/H, 36V/H,
and 89V/H for convenience). The observations from the three
sensors spanned 20 years, from June 2002 to May 2022
(Fig. 2). Among them, the AMSR-E and AMSR2 satel-

Figure 2. Ascending Local Equator Crossing Times (LECTs) for
the three satellites – Aqua, FY3B, and GCOM-W1 – used in CWV
and SST retrievals. The grey areas represent the overlap periods of
MWRI with AMSR-E or AMSR2.

lites maintained near-stable orbits throughout this period,
with their ascending Local Equator Crossing Times (LECTs)
around 13:30 LT. In contrast, the MWRI satellite’s orbit
drifted from 13:35 LT in 2011 to 15:40 LT in 2020 (Fig. 2).

The AMSR-E and AMSR2 FCDRs covered the periods
from June 2002 to August 2011 and July 2012 to May 2022,
respectively. To ensure continuity and stability of the CDR,
observations from MWRI during June 2011 to April 2015
were selected to bridge the temporal gap between AMSR-
E and AMSR2. This selection of FY3B data allows a few
months of overlap with AMSR-E (June to September 2011)
and more than two years of overlap with AMSR2, facilitat-
ing inter-satellite calibration. It is important to note that orbit
changes in May 2015 may have introduced bias jumps, so
MWRI data after this time were excluded.

In the FCDR development by Wu et al. (2020), AMSR2
was used as a reference to recalibrate AMSR-E and MWRI,
eliminating hardware differences between the sensors (e.g.,
those due to Earth incidence angle variations) using princi-
pal component analysis. This unique advantage of consistent
TBs between various sensors at the observation level enables
the FCDR to be directly utilized for CDR retrievals.

Table 3 summarizes the instruments and their time cov-
erage used to construct the current CDR. To ensure consis-
tency and long-term stability of the retrieved climate vari-
ables, a series of processing steps and adjustments were im-
plemented. These steps include: (i) removing precipitation
and sea ice pixels, (ii) correcting for diurnal drifts in MWRI,
(iii) retrieving CWV and SST, (iv) spatially gridding the data
onto a global 0.25°×0.25° grid, (v) merging of multi-sensor
anomalies into a continuous time series, and (vi) comprehen-
sive uncertainty quantification at each processing level. De-
tails of each step are provided below.

The influence of precipitation and sea ice on the CWV and
SST retrievals was eliminated. A TB threshold method for
precipitation identification (Durre et al., 2006) was applied
to remove precipitation-affected pixels. The Moderate Res-
olution Imaging Spectroradiometer (MODIS) onboard the
Aqua satellite provides daily gridded data on sea ice ex-
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Table 2. Reference datasets used in validation (RMSE: Root mean square error; CC: Correlation coefficient).

Validation Variable Evaluation metric Reference Dependency
objectives dataset

Retrieval CWV Bias, RMSE, CC RAOB Fully independent
accuracy SST Bias, RMSE, CC GODAE Fully independent

Regional CWV Trend, CC GNSS Fully independent
variability SST Trend, CC GTMBA Fully independent
and trend

Global CWV Trend, CC RSS AMSR-E and AMSR2
variability observations included
and trend SST Trend, CC OISST Fully independent

CWV and SST Trend, CC ERA5 AMSR-E and AMSR2
observations included

CWV and SST Trend, CC RSS-CDR AMSR-E and AMSR2
observations included

Climate trend CWV, SST, TLT R{CWV /SST}, R{CWV /TLT} CMIP6 Fully independent
covariability and TMT and R{CWV /TMT}

TLT and TMT R{CWV /TLT} and R{CWV /TMT} STAR Fully independent
TLT and TMT R{CWV /TLT} and R{CWV /TMT} RSS Fully independent
TLT and TMT R{CWV /TLT} and R{CWV /TMT} UAH Fully independent

Table 3. Satellite instruments contributing to the CDR.

Satellite Instrument Start End
date date

Aqua AMSR-E Jun 2002 Jun 2011
FY3B MWRI Mar 2011 Apr 2015
GCOM-W1 AMSR2 Sep 2012 May 2022

tent [MYD29; Wentz, 1997, distributed by the US National
Snow and Ice Data Center (NSIDC)]. This data was used to
exclude pixels with sea ice.

Moreover, Orbital drift caused MWRI scene TBs to de-
velop diurnal biases due to changes in diurnal sampling over
time. As a result, a diurnal drift correction was applied in
this study to all channels before they were used for CWV
and SST retrievals, by adjusting observations taken at differ-
ent times to a common local time consistent with AMSR2,
thereby empirically correcting diurnal drift biases. This pro-
cess requires knowledge of diurnal cycles, which are func-
tions of time and geolocation. Recently, Zou et al. (2023) de-
veloped a novel semi-physical model that effectively resolves
diurnal cycles in satellite observations and removes diurnal
drifting errors globally. In this study, we followed the proce-
dures and diurnal correction equations developed by Zou et
al. (2023) to resolve the diurnal drifting biases in MWRI. A
detailed description of the semi-physical model is referred to
Zou et al. (2023). For a single satellite such as MWRI, this
semi-physical model is expressed as:

DMWRI(X,m,L)= α(X)+β(X,m) sin(2πL/24)

+ γ (X,m)cos(2πL/24), (1)

where DMWRI is the diurnal anomaly of MWRI at geoloca-
tion X, month m and local time L; β(X,m) and γ (X,m) are
the amplitudes of the monthly diurnal components at differ-
ent geolocations. The coefficient α(X) is a constant changing
with geolocation. The coefficients β and γ varies with season
and are assumed as:

β = β0+β1 sin(2πm/12)+β2 cos(2πm/12), (2)
γ = γ0+ γ1 sin(2πm/12)+ γ2 cos(2πm/12), (3)

where β0, β1, β2, γ0, γ1 and γ2 are all constants.
The TBs after diurnal adjustment (TB′MWRI) can be ex-

pressed as:

TB′MWRI(X,t,m)= TBMWRI(X,t,m,L)−DMWRI(X,m,L). (4)

During the overlapping period between MWRI and the other
two AMSR instruments (Fig. 2), the TB differences can be
expressed as:

TB′MWRI(X,t,m)−TBAMSR(X,t,m)

= TBMWRI(X,t,m,L)
−TBAMSR(X,t,m,L)
−DMWRI(X,m,L). (5)

By minimizing inter-satellite differences between satellite
pairs (1TB′ = TB′MWRI(X,t,m)−TBAMSR(X,t,m)), the co-
efficients α, β and γ can be solved through multiple linear
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Figure 3. Inter-satellite differences (TBMWRI(X,t,m)−
TBAMSR(X,t,m)) before diurnal drift adjustment (blue lines)
and diurnal anomaly differences (DMWRI(X,m,L), red lines)
derived from the semi-physical model over the global ocean.
The differences are grouped into (a, c, e, g, i) ascending and
(b, d, f, h, j) descending data separately, with the channels shown
from (a, b) to (i, j): 10V, 10H, 19H, 23V, and 37H.

regression based on the monthly gridded (2.5°degree resolu-
tion) TBs.

It is essential to note that the “semi-physical” nature of the
diurnal model requires that Eqs. (1)–(55) be resolved sepa-
rately for daytime and nighttime, or for ascending and de-
scending nodes (Zou et al., 2023). This distinction arises be-
cause daytime diurnal cycles exhibit a physically-based, so-
lar heating-induced quasi-sinusoidal pattern, whereas night-
time diurnal cycles follow a thermal decay process. In the
latter case, Eq. (1) serves as an empirical approximation of
the thermal decay process (Zou et al., 2023).

Figure 3 shows the global ocean mean inter-satellite dif-
ference time series between MWRI and the other two satel-
lites, compared with their resolved diurnal cycle differences.
The agreement in the temporal patterns is generally impres-
sive across nearly all channels. Subtracting the diurnal dif-
ferences yields the diurnally adjusted MWRI TBs, which are
used for CWV and SST retrievals. These diurnally adjusted
MWRI TBs are consistent with AMSR-E and AMSR2, as
their mean biases are zero with negligible standard deviations
during their overlaps. The impact of the diurnal adjustment
on CWV and SST retrievals is shown below.

The retrieval algorithm for CWV is based on the one de-
veloped by Wang et al. (2009) for measurements from the
Tropical Rainfall Measuring Mission’s (TRMM) Microwave
Imager (TMI). This algorithm uses TBs on five channels in

the FCDR (10V, 10H, 19H, 23V, and 37H) with a logarithm
relationship between the channel signals and CWVRTV, ex-
pressed as:

CWVRTV = a0+

5∑
i=1

ai ln
(

288−TBi
288

)
, (6)

where the coefficients ai(i = 0,1, . . .5) in Eq. (6) were de-
rived from multiple linear regression of simulated AMSR2
TBs from a microwave radiative transfer model (Liu, 1998,
2004) with varying CWVs and cloud parameters as inputs.
These coefficients and the sensitivities of the retrieved CWV
to TB for each channel are shown in Table 4. As expected,
the 23V channel, near the water vapor absorption line, has
the largest influence on the CWV retrievals. The advantage
of this algorithm is that the retrieved CWV depends only
on TBs from the five channels, without additional ancillary
data. As a result, the CWVRTV trend is only related to the
TB trends.

According to Wang et al. (2009), the retrieval framework
for CWV can also be used to retrieve SST or surface wind
speed (SWS). To alleviate SST biases in the SST retrievals
associated with the assumption of a logarithm relationship
between SST (SWS) and the TB [see Eqs. (2) and (3) in
Wang et al. (2009) for details], a second-order term of the
logarithm of TB is added in Eq. (6) as a bias correction
term. This gives an SSTRTV or SWSRTV retrieval algorithm
expressed as:

SSTRTV = b0+

5∑
i=1

[
bi ln

(
288−TBi

288

)

+ci ln
(

288−TBi
288

)2
]
, (7)

SWSRTV = d0+

5∑
i=1

[
di ln

(
288−TBi

288

)

+ei ln
(

288−TBi
288

)2
]
, (8)

where the coefficients bi , ci , di , and ei (i = 0, 1, . . . 5) are de-
rived from similar simulations as described for CWV. Equa-
tions (7) and (8) provide a reasonably good initial estimate of
SST and SWS. However, the simple forms given by Eqs. (7)
and (8) are incapable of fully representing the non-linearities
in the relationship between TBs and SST (SWS) (Wentz and
Meissner, 2007; Li and Jiang, 2024). Hence, in this study, the
localized algorithm proposed by Wentz and Meissner (2007)
is applied to 34 SST reference values from 272 to 308 K and
34 SWS reference values from 0 to 35 m s−1. For each refer-
ence value, the coefficients are calculated within the ranges
of ±1 K for SST and ±1 m s−1 for SWS, respectively. The
final retrieval is a bilinear interpolation of the four nearest
first-step retrievals in the 2-D space of SST and SWS. Af-
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Table 4. Regression coefficients and the corresponding sensitivities of CWV and SST to TBs for different PMW channels used in the retrieval
algorithms. For SST, the regression coefficients represent the initial estimate.

Offset TB 10V TB 10H TB 19H TB 23V TB 37H

CWV ai −9.953 42.890 29.689 −84.776 −44.691 41.433
(mm) 1CWV/1TB −0.387 −0.151 0.524 0.732 0.319

SST bi −559.777 −940.886 −406.252 201.324 −72.084 47.956
(K) ci −393.786 −637.333 188.989 −20.560 13.612

1SST/1TB 1.764 −0.313 0.082 0.118 −0.203

ter retrieval, the satellite orbit data are averaged to monthly
global 0.25°× 0.25° gridded data for each satellite.

From the perspective of instrument design and microwave
radiative transfer, different ECVs respond to measurements
of different frequency channels in distinct ways. As shown
in Table 4, low-frequency channels such as 10V and 10H are
primarily sensitive to SST, while higher-frequency channels
like 19H, 23V, and 37H are more responsive to CWV. As a
result, although CWV and SST are both retrieved from the
same set of satellite TBs, the differences in channel sensitiv-
ity and retrieval algorithm expressions result in them being
physically and mathematically independent products.

Figure 4 shows the impact of diurnal adjustment on the
consistency of the retrieved CWV and SST between different
satellites. Before the adjustment, the mean biases between
MWRI and the other two satellites were −0.036 mm and
0.180 K for CWV and SST, respectively, with standard de-
viations of 0.114 mm and 0.076 K. After the adjustment, the
mean biases were reduced to 0.003 mm and 0.003 K, respec-
tively, with standard deviations of 0.058 mm and 0.050 K.

After diurnal adjustment, the MWRI observations were
converted to resemble observations from satellites in stable
orbits. As a final step to merge data from different satellites,
we followed the procedure outlined by Zou et al. (2021) for
merging satellites in stable orbits. The procedure is as fol-
lows: (i) calculate anomalies for ascending and descending
data separately, using a monthly climatology defined for the
entire observation period for each satellite. (ii) Average the
ascending and descending anomalies to construct daily mean
anomalies. (iii) Make an adjustment so that the SST or CWV
anomalies of individual satellites are defined relative to the
same monthly climatology. We use the AMSR2 monthly cli-
matology as a reference and adjust the MWRI anomalies
by subtracting the “monthly climatology” of anomaly dif-
ferences relative to AMSR2 during their overlapping periods
(Zou et al., 2021). The AMSR-E data was further adjusted
to match the MWRI anomalies using their overlapping ob-
servations. After these adjustments, the anomalies from the
three satellites are averaged together to generate a CDR for
the entire 2002–2022 period for trend investigation.

Uncertainties in our dataset were systematically assessed
across level-1 to level-3. Table 5 gives uncertainty esti-
mates for level-1 and level-2. For level-1, the FCDR relies

Figure 4. Monthly mean differences between MWRI and the other
two instruments for (a) CWV and (b) SST over the global ocean
during their overlapping period. The blue dashed and red solid lines
indicate the differences before and after diurnal adjustment, respec-
tively. The mean biases and standard deviations are shown in the
legends.

on pre-processed TBs from AMSR-E, AMSR2, and FY-3
MWRI. Channel-specific TB uncertainties for AMSR-E and
AMSR2 are defined by the noise-equivalent temperature dif-
ference (NE1T ) and adjusted by noise amplification factors
derived from the Backus–Gilbert (BG) resampling method
(Kawanishi et al., 2003; Maeda et al., 2016). For MWRI, the
complex recalibration introduces strong nonlinearity (Wu et
al., 2020), for which analytical Jacobians are not available to
uncertainty propagation. Thus, a Monte Carlo method (Mer-
chant et al., 2017; Roebeling et al., 2025) was used to esti-
mate the uncertainty after correction by perturbing input TBs
with NE1T and calculating the standard deviation of the cor-
rected outputs.

For level-2, total retrieval uncertainty includes both the
propagation of TB uncertainty and the intrinsic retrieval algo-
rithm error. The CWV algorithm allows both Jacobian-based
and Monte Carlo-based propagating uncertainty estimation
(Giering et al., 2019; Hans et al., 2019), which yield similar
results (< 0.01 mm difference). The SST algorithm involves
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Table 5. Uncertainty Estimates for level-1 TBs and level-2 retrievals.

Product Level Channel/parameter AMSR-E MWRI AMSR2

level-1 TB uncertainty (K) 10V 0.29 0.26 0.28
10H 0.29 0.25 0.28
18H 0.13 0.18 0.18
23V 0.12 0.18 0.15
36H 0.12 0.19 0.15

level-2 Retrieval uncertainty CWV (mm) 0.54 0.55 0.55
SST (K) 0.55 0.50 0.53

a localized approach, requiring Monte Carlo simulation. Al-
gorithmic uncertainties were further estimated by comparing
retrievals with simulated truth from the microwave radiative
transfer model, yielding standard uncertainties of 0.51 mm
for CWV and 0.20 K for SST. These values are lower than
those reported by Wentz and Schabel (2000), due to en-
hanced channel selection and algorithm design. Final level-
2 uncertainties (Table 5) were obtained by combining both
components using propagation of uncertainty (Giering et al.,
2019; Hans et al., 2019).

For level-3 gridded products, retrieval uncertainties are
substantially reduced through spatial and temporal averag-
ing. In this study, we focus primarily on the statistical uncer-
tainty (SU) associated with trend estimation, which is espe-
cially relevant given the limited record length and the pres-
ence of low-frequency climate variability (Zou et al., 2023).
Following the approach of Santer et al. (2008), we account
for temporal autocorrelation in the anomaly time series by
adjusting the effective sample size using the lagged autocor-
relation coefficient. This correction ensures that the derived
confidence intervals for linear trends are not underestimated,
providing a more reliable assessment of long-term climate
signals. The SU estimates of the trends are expressed at the
95 % confidence level, is computed as:

SU= 1.96 ·SE ·

√
1+ r
1− r

, (9)

where SE is the uncorrected standard error from ordinary
least squares regression, and r is the lagged autocorrelation
coefficient. Unless otherwise specified, r refers to the cor-
relation between values that are 1 time period apart (lag-1
autocorrelation) throughout this study. The level-3 trend un-
certainty is not included in Table 5, but is reported in all trend
analysis in the relevant comparison figures below.

4 Validation results

4.1 Validation with radiosonde and buoy observations

Figure 5 shows scatter diagrams of the CWV and SST re-
trievals against in-situ measurements for each of the AMSR-
E, AMSR2, and MWRI instruments. Collocated samples

span the entire lifetime for AMSR-E and AMSR2, and from
2011 to 2015 for MWRI, when its LECT drifted less than 1 h
(Wu et al., 2020).

For CWV, the satellite retrievals from all three instru-
ments are in good agreement with the RAOB sounding ob-
servations (Fig. 5a–c) and exhibit similar statistical charac-
teristics. Specifically, the retrieval bias is generally less than
0.1 mm, and the root mean square errors (RMSEs) are about
4 mm for all three instruments. This accuracy is comparable
to other retrieval products from satellite-based instruments
such as the Special Sensor Microwave Imager (SSM/I) and
the AMSR-E (Deeter, 2007; Liu et al., 2023). This indicates
that there is no significant difference between the retrievals
from the three instruments using the same algorithm. It is
worth noting that some of the residual variability may origi-
nate from collocation and representation mismatches (Zou et
al., 2006; Giering et al., 2019; Hans et al., 2019). Radiosonde
ascents typically take up to 2 h and can drift over 100 km
(Ingleby et al., 2016). Moreover, satellite-derived CWV in-
cludes the full atmospheric column, whereas RAOB may
miss water vapor near the surface depending on station el-
evation (Buehler et al., 2012).

For the SST CDR, retrievals from all three instruments
show similar accuracy compared to SSTGODAE (Fig. 5d
and e), with biases and RMSEs within 0.2 and 1.6 K, re-
spectively. This result is also similar to other retrievals from
AMSR-E, AMSR2, and MWRI (Gentemann, 2014; Gente-
mann and Hilburn, 2015; Liao et al., 2017; Li and Jiang,
2024). The observed differences can be partially attributed
to representation differences between microwave and in situ
measurements. While satellite sensors retrieve sub-skin tem-
perature at millimeter depth, GODAE integrates in situ mea-
surements from ships and buoys, primarily at a depth of 1 m
(Huang et al., 2020).

4.2 Validation of long-term climate trends against ERA5,
RSS retrievals, GTMBA, and Ground GNSS
observations

As one of the most important applications of CDRs, the ca-
pability of retrieved CWV and SST to detect climate trends
is assessed here. The first evaluation is a comparison with
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Figure 5. Density scatter diagram of retrieved CWV (a–c) and SST (d–f) versus in-situ measurements (CWVRAOB and SSTGODAE). From
left to right: AMSR-E, MWRI, and AMSR2. The black dotted lines represent the diagonal (N : Sample number; CC: Correlation coefficient;
RMSE: Root mean square error; Slope: Slope of linear regression).

long-term ground-based GNSS observations. As a ground-
based observation system, GNSS is completely independent
of retrievals and offers a reliable local reference. Such a com-
parison provides insight into the CDR trends at local geolo-
cations. Figure 6 shows time series of monthly mean CWV
anomalies from our merged satellite retrievals (CWVRTV)
and GNSS observations at three selected sites: BRMU,
COCO, and DGAR. For all sites, the time variation of the
GNSS CWV anomalies is highly consistent with CWVRTV,
with a statistically significant correlation coefficient (CC)
of more than 0.91. In addition, comparisons with RSS and
ERA5 at these three sites are also shown in Fig. 6. Simi-
lar correlations were found between CWVRTV and the ERA5
and RSS datasets. The CWVRTV trends at the three sites vary
from 0.4 to 1.2 mm per decade, suggesting a large range and
complexity in trend variations at different spatial locations.
For all three sites, trend differences between CWVRTV and
GNSS observations range from 7 % to 20 %. This is better
than the ERA5 and RSS validations, where trend differences
can reach 50 %–80 % when compared to GNSS observations
at some sites.

Figure 7 presents the time series of monthly mean anoma-
lies for SSTRTV and other products for the three GTMBA
sites. Since GTMBA is a moored in situ buoy network, it is
fully independent of the satellite retrievals and serves as a
reliable reference for evaluating SST trends at fixed ocean

locations. Similar to the CWV, their time series exhibit com-
parable seasonal variations, with correlations above 0.75, sta-
tistically significant at the 99 % significance level. The trends
of SSTRTV are within 0.3 K per decade, and its trend differ-
ences with GTMBA are within 0.11 K per decade.

Figure 8a compares trends for global ocean monthly
anomalies between our CWV retrievals and ERA5 and RSS,
while Fig. 8b presents SST comparisons between our re-
trievals and ERA5 and OISST. For CWV, all products are
closely correlated with the AMSR-E and AMSR2 measure-
ments. Specifically, the observed AMSR-E and AMSR2 TBs
were assimilated into ERA5 with bias corrections (Dee,
2005; Kazumori et al., 2016), while our CWVRTV and the
RSS datasets are retrieved and merged products from AMSR-
E and AMSR2 TB measurements (Mears et al., 2018). This
is demonstrated by their high CCs exceeding 0.94. For long-
term trends, CWVRTV exhibited a positive trend of 0.39 mm
per decade, which is close to the ERA5 and RSS values
of 0.41 and 0.40 mm per decade, respectively. For SST, all
products exhibited a large-scale warming trend, with values
of 0.16, 0.15, and 0.20 K per decade for the SSTRTV, ERA5,
and OISST datasets, all with CCs exceeding 0.91.

Although both RSS and ERA5 include AMSR-E and
AMSR2 data, their processing chains are entirely indepen-
dent of the RTV. As a peer satellite climate product, RSS
uses a different retrieval algorithm and merges the measure-
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Figure 6. Monthly anomaly time series for CWVRTV, GNSS, ERA5, and RSS over the three GNSS sites. The legend in each panel includes
statistical metrics for trend comparison. The black text indicates the linear trend of the RTV anomaly (black line) along with its SU. Colored
text represents the trend values, SUs, and RMSEs of the anomaly differences between RTV and each of the validation datasets (GNSS,
ERA5, and RSS). As the anomaly differences are computed over identical time periods, the mean bias is inherently zero and thus not shown.
The lag-3 autocorrelation is used for the BRMU station in (a), while the lag-1 is applied for (b) COCO and (c) DGAR.

ments from additional sensors (e.g., SSM/I and TMI) but not
MWRI (Mears et al., 2018). ERA5 also excludes MWRI and
applies variational bias correction to remove satellite drift-
ing biases, and assimilates observations into a model-based
reanalysis system (Hersbach et al., 2020). These differences
make them suitable, independent references for evaluating
variability and trends. Although independent, including the
fully independent OISST, all datasets exhibited a shift from
2010 to 2016 (Fig. 8). This most likely suggests that this shift
is a true climate shift.

We further compare trends between different datasets of
CWV and SST from 2003 to 2020 over the tropical ocean
(20° S–20° N) (Fig. 9), where there is well-understood co-
variability between temperature and atmospheric moisture
(Wentz and Schabel, 2000; Held and Soden, 2006; Mears
et al., 2007). The RSS-CDR trends is also included dur-
ing this period. Figure 9a shows that all products exhibit
similar interannual variations, with more pronounced ampli-
tudes than those of the global ocean. Trend values for CWV

during 2002–2022 are 0.61, 0.81, 0.81, and 0.83 mm per
decade (1.49 %, 1.97 %, 1.97 %, 2.02 % per decade) for the
CWVRTV, ERA5, RSS, and RSS-CDR datasets, respectively.
Meanwhile, the SST trends for the same period are 0.15,
0.14, 0.23, and 0.14 K per decade for the SSTRTV, ERA5,
OISST, and RSS-CDR datasets, respectively. The differences
of these trend values are essential in analyzing the covariabil-
ity between CWV and SST over the tropical ocean, which
will be discussed in Sect. 5.

The global trend distribution for CWVRTV and SSTRTV,
along with those from ERA5, RSS, and OISST, is shown in
Fig. 10. Different datasets show overall similar trend patterns
for both CWV and SST, with spatial CCs exceeding 0.78
and 0.85, respectively. As a result of human-induced global
warming, most global oceanic regions (80.7 % of grids) show
a positive trend in CWV, including the tropical Indian Ocean,
the eastern North Pacific Ocean, the South Pacific Ocean, and
the western tropical Pacific Ocean, with all of these regions
passing the 99 % significance test. This trend pattern is con-
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Figure 7. Similar to Fig. 6, but for SSTRTV, GTMBA, OISST and ERA5 data at three GTMBA sites.

Figure 8. Monthly anomaly time series of (a) CWV and (b) SST for different datasets over global oceanic areas from 2002 to 2022. The
legends indicate the linear trends and their SUs for the RTV anomalies (black lines) as well as for the anomaly differences between RTV and
each validation dataset. The grey areas represent the overlap periods of MWRI with AMSR-E or AMSR2.
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Figure 9. Similar to Fig. 8, but for the tropical ocean (20° S–20° N) from 2003 to 2020.

sistent with other studies (Wang et al., 2016a, b; Adler et al.,
2017). The regions with negative trends are mainly located
along the equatorial central Pacific to the west coast of South
America. The SST warming regions are consistent with the
positive CWV trend regions and also pass the significance
test. This is consistent with their physical covariance, as de-
termined by the Clausius–Clapeyron equations (Santer et al.,
2021; Held and Soden, 2006).

5 Trend covariance in CWV and satellite
temperature products over the tropical ocean

As mentioned earlier, the Clausius–Clapeyron relationship
imposes a strong thermodynamic constraint on the covari-
ance of CWV and temperature products under long-term
warming. This physical linkage can be used to examine
whether the joint behaviour of independently retrieved CWV
and temperature variables conforms to expectations under ra-
diative climate forcing. In fact, Santer et al. (2005, 2021)
pointed out that this approach provides a meaningful way to
evaluate observational datasets, with climate models offering
physically grounded reference values. Following this ratio-
nale, we regard the trend ratios between CWV and SST (or
TLT, TMT) as physically interpretable metrics that support
mutual consistency checks between observations and model
simulations.

Figure 11a compares the ratio of CWV to
SST (R{CWV /SST}) over the tropical ocean (20° S–20° N)
from our retrieved products with those from the CMIP6
multi-model simulations, as well as ERA5 and RSS-CDR
products. To ensure a fair evaluation, both CWV and SST
products were sourced from the same groups – either
RSS-CDR, ERA5, or our retrievals. Although individual
trends in CWV or SST differ significantly among different
CMIP6 models, their ratios, R{CWV /SST}, consistently align
around the 8.6 % K−1 regression diagonal line (Fig. 11a).
This occurs because most CMIP6 model simulations follow
the strict Clausius–Clapeyron physical constraints in an
adiabatic moisture process (Santer et al., 2021), providing
a strong constraint on the observed ratio. For the retrieved
CWV and SST products in this study, the R{CWV /SST} ratio
is 9.9 % K−1, quite close to the CMIP6 regression value of
8.6 % K−1. On the other hand, the R{CWV /SST} ratios for the
ERA5 and RSS-CDR products are as high as 13.9 % and
14.3 % K−1, respectively. A similar high R{CWV /SST} was
found over a longer time period for the RSS-CDR dataset
(Santer et al., 2021). The much larger ratio in the ERA5
and RSS-CDR datasets occurred because their CWV trends
appeared to be too large, while SST trends were slightly
smaller compared to those in our retrieved CDR over the
tropical ocean (Figs. 9 and 11a).

To further assess the accuracy of the CWVRTV trend, we
pair it with trends from atmospheric layer temperatures ob-
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Figure 10. Global trend distribution for CWV (a, c, e) and SST (b, d, f) from 2002 to 2022. From top to bottom: CDRRTV, ERA5, and RSS
or OISST.

served by satellite microwave sounders (Fig. 11b and ), fol-
lowing the studies in Santer et al. (2021). For ratios of CWV
over TLT (R{CWV /TLT}) and TMT (R{CWV /TMT}), the com-
bination of CWVRTV with the STAR dataset is closest to the
fitted straight line (Fig. 11b and c), with values of 6.3 % K−1

and 6.5 % K−1, compared to the CMIP6 values of 6.3 % K−1

and 5.3 % K−1, respectively. The combination of CWVRTV
and RSS-CDR TLT also gives a ratio of R{CWV /TLT} that
is closer to the expected CMIP6 value. The STAR TMT
shows a high accuracy of 0.012 K per decade in trend de-
tection from 2002 to 2022, as it was developed based on
satellite microwave sounder observations in stable orbits with
high radiometric stability (Zou et al., 2018, 2021). The fact
that the combination of CWVRTV with STAR TMT is clos-
est to the expected CMIP6 value strongly suggests that the
our CWVRTV product also has high accuracy in trend de-
tection. In contrast, the CWV trends in ERA5 and RSS-
CDR appeared to be too high, causing the R{CWV /TLT} and
R{CWV /TMT} ratios to deviate significantly from the expected
ratios in the CMIP6 simulations.

Figure 11d–f shows the histogram distributions of
the CMIP6 simulated ratios from different models for
R{CWV /SST},R{CWV /TLT}, andR{CWV /TMT}, compared with
ratios derived from other data products. The full width at half
maximum (FWHM) of the Gaussian fitting distribution de-
fines a range within which ratios from observational prod-
ucts are consistent with the CMIP6 simulations. Their con-
sistencies are further evaluated using the Z-score (Trenberth
et al., 2005), which is calculated as the difference between
the trend ratios of observed data products (RTV, ERA5, or
RSS-CDR) and the CMIP6 model simulations, divided by

the standard deviation of all CMIP6 models. A lower Z-
score indicates better agreement with climate model simu-
lations. In Fig. 11d, the retrieved CWV and SST products
in this study fall within the FWHM, with Z-scores of 0.67.
This performs much better than the other products, which
have Z-scores above 3. In Fig. 11e, the combination of
CWVRTV with TLT from the three groups – STAR, RSS,
and UAH – are all within the FWHM range, with the for-
mer two products positioned in the middle of the FWHM.
For the ratio of R{CWV /TMT} (Fig. 11f), only the combina-
tion of CWVRTV and STAR TMT falls within the FWHM,
with a Z-score of 0.92. These results suggest that ratios from
our retrieved products, combined with satellite observations
in stable orbits, generally align with expectations from the
CMIP6 model simulations.

The overall agreement in the R{CWV /SST} ratios between
climate model simulations and our retrieved products, as well
as the combined satellite microwave imagery and sounding
products, provided an extremely encouraging result. This
highlights the value of using climate covariance to evalu-
ate the internal consistency of both observations and models.
When retrieved satellite products reproduce the trend ratios
expected from CMIP6 simulations, it increases confidence in
their physical reliability. It also suggests that past disagree-
ments between models and observations may have stemmed
from biases in earlier datasets, rather than flaws in the mod-
els themselves. With careful calibration and inter-calibration,
satellite observations not only follow the constraints from cli-
mate model simulations, even when observations are from
completely different instrument sources, but also provide a
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Figure 11. Comparison of trend covariance over the tropical ocean (20° N–20° S) during 2003–2022 showing scatterplots of tropical trends
in (a)–(c) and histograms of the trend ratios between observations and CMIP6 model simulations in (d)–(f). The three comparisons from
left to right are CWV versus SST, CWV versus TLT, and CWV versus TMT. In (a)–(c), the orange “×” symbols represent trend ratios from
CMIP6, and the straight lines are their fitted lines. Squares, circles, and diamonds represent the CWV and SST from RTV, RSS-CDR, and
ERA5, respectively. In (b), (c), (e), and (f), the different colours of symbols indicate the CWV trend plotted against observed TLT or TMT
trends from STAR (red), RSS (blue), and UAH (purple). In (d)–(f), the orange curves are the fitting curves of the Gaussian distribution for
CMIP6, and the black dashed line represents the fitted FWHM. Observational trend ratios are plotted in one reference row (grey dashed line),
whose y-axis offset does not represent the actual value.

constraint on climate model simulations regarding trends in
separate CWV and SST.

6 Data availability

The CDR for CWV and SST described in this
work is available from the Zenodo repository:
https://doi.org/10.5281/zenodo.14539414 (Fu et al., 2024).

7 Conclusion

We developed a set of CDRs for CWV and SST spanning
over 20 years, from 2002 to 2022. The dataset is based on
recalibrated AMSR-E, MWRI, and AMSR2 radiance mea-
surements. A diurnal drift adjustment was conducted on the
MWRI radiances using novel diurnal adjustment algorithms
developed by Zou et al. (2023). The adjustment ensures con-
sistency in the developed CDRs and greatly enhances their
application value in climate research. The retrieval algo-
rithm utilizes the logarithmic relationship between observed
TBs from multiple satellite microwave imagery channels and

CWV and SST. The accuracy and long-term trends of the
CWV and SST CDRs were validated against various obser-
vations, including in-situ data, satellite retrievals, and climate
reanalyses.

In general, the retrieved CWV and SST are in good agree-
ment with in-situ observations, with small biases and RMSE,
and are consistent with retrievals from other instruments.
The variability in the developed CDR time series shows high
correlation when compared with other observations, includ-
ing GNSS, GTMBA, RSS, ERA5, and OISST. Long-term
trends of the presented CDRs are generally consistent with
the ERA5, RSS, and OISST datasets on a global scale. The
most encouraging result is that the covariance between our
retrieved CWV and SST over the tropical oceans is close to
the expectations from CMIP6 model simulations. The ratios
of our retrieved CWV to the layer mean temperatures from
satellite microwave sounder observations also show favor-
able agreement with expectations from climate model sim-
ulations. Given the constraint on the CWV and SST trend
ratios provided by CMIP6 model simulations, these agree-
ments suggest good accuracy in trend detection by the re-
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trieved CWV and SST products. In turn, because the satellite
CWV and SST are from well-calibrated satellite observations
of different instrument sources, the agreement also provides
a constraint on trends in separate CWV and SST from cli-
mate model simulations.

All these evaluation results suggest that the CDRs de-
veloped in this study can be effectively applied to climate
change research due to their high consistency, accuracy, and
continuity.

In the future, as more satellites are launched and mi-
crowave radiometers continue to be introduced and recali-
brated for the generation of FCDR datasets, it will be pos-
sible to establish CDRs for various geophysical parameters
with longer time spans and higher sampling frequencies. In
particular, we plan to extend the CWV record back to 1987
using SSM/I and the SST record back to 1997 using TMI,
respectively. Meanwhile, the forward extension will include
ongoing AMSR2 observations and data from next-generation
MWRI instruments onboard subsequent FY-3 series satel-
lites. This will enable coverage of the standard 30-year refer-
ence periods defined by the World Meteorological Organiza-
tion (WMO), ensuring that the dataset remains comprehen-
sive. This will help to better characterize climate change and
the diurnal variation of environmental variables, and improve
our understanding of the mechanisms behind them.
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