Articles | Volume 17, issue 9
https://doi.org/10.5194/essd-17-4513-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-4513-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rescue, integration, and analytical application of historical data from eight pioneering geomagnetic observatories in China
Suqin Zhang
Institute of Geophysics, China Earthquake Administration, Beijing, 100081, China
Changhua Fu
CORRESPONDING AUTHOR
Institute of Geophysics, China Earthquake Administration, Beijing, 100081, China
Jianjun Wang
Earthquake Administration of Gansu Province, Lanzhou, 730000, China
Chuanhua Chen
Earthquake Administration of Shandong Province, Jinan, 250014, China
Guohao Zhu
Shanghai Earthquake Agency, Shanghai, 200062, China
Qian Zhao
Earthquake Administration of Liaoning Province, Shenyang, 110034, China
Jun Chen
Shanghai Earthquake Agency, Shanghai, 200062, China
Shaopeng He
Hebei Earthquake Agency, Hebei Province, Shijiazhuang, 050022, China
Bin Wang
Hebei Earthquake Agency, Hebei Province, Shijiazhuang, 050022, China
Pengkun Guo
Hebei Earthquake Agency, Hebei Province, Shijiazhuang, 050022, China
Na Deng
Earthquake Administration of Hubei Province, Wuhan, 430071, China
Jinghui Lu
Earthquake Administration of Guangdong Province, Guangzhou, 510070, China
Hongchi Yu
Earthquake Administration of Jilin Province, Guangzhou, 130117, China
Related authors
Suqin Zhang, Changhua Fu, Jianjun Wang, Guohao Zhu, Chuanhua Chen, Shaopeng He, Pengkun Guo, and Guoping Chang
Earth Syst. Sci. Data, 14, 5195–5212, https://doi.org/10.5194/essd-14-5195-2022, https://doi.org/10.5194/essd-14-5195-2022, 2022
Short summary
Short summary
The Sheshan observatory has nearly 150 years of observation history, and its observation data have important scientific value. However, with time, these precious historical data face the risk of damage and loss. We have carried out a series of rescues on the historical data of the Sheshan observatory. New historical datasets were released, including the quality-controlled absolute hourly mean values of three components (D, H, and Z) from 1933 to 2019.
Yufei He, Xudong Zhao, Suqin Zhang, Qi Li, Fuxi Yang, Shaopeng He, and Pengkun Guo
EGUsphere, https://doi.org/10.5194/egusphere-2025-2557, https://doi.org/10.5194/egusphere-2025-2557, 2025
Short summary
Short summary
This study establishes GNSS-based azimuth remeasurement scenarios for geomagnetic observatories, overcoming limitations of traditional astronomical methods. Five prioritized workflows address diverse field conditions. Validations at Hongshan, Quanzhou, and Yulin observatories confirm Scenario I (dual-GNSS alignment) and Scenario II (angular conversion) feasibility. Preliminary error analysis informs a deployment priority sequence, providing scalable solutions for complex environments.
Xiujuan Hu, Shaopeng He, Xudong Zhao, Qin Tian, Alimjan Mamatemin, Pengkun Guo, and Guoping Chang
Geosci. Instrum. Method. Data Syst., 13, 301–308, https://doi.org/10.5194/gi-13-301-2024, https://doi.org/10.5194/gi-13-301-2024, 2024
Short summary
Short summary
Nearly 200 sets of three-axis fluxgate magnetometers are used in Chinese geomagnetic observatories, but due to their directional errors, it is necessary to study error correction methods to improve measurement accuracy. Experimental results show that correcting the Z-axis and D-axis directional errors is essential. The observation data after error correction demonstrate the clear correction effect. The measurement device used in the experiment is low in cost and easy to disseminate.
Suqin Zhang, Changhua Fu, Jianjun Wang, Guohao Zhu, Chuanhua Chen, Shaopeng He, Pengkun Guo, and Guoping Chang
Earth Syst. Sci. Data, 14, 5195–5212, https://doi.org/10.5194/essd-14-5195-2022, https://doi.org/10.5194/essd-14-5195-2022, 2022
Short summary
Short summary
The Sheshan observatory has nearly 150 years of observation history, and its observation data have important scientific value. However, with time, these precious historical data face the risk of damage and loss. We have carried out a series of rescues on the historical data of the Sheshan observatory. New historical datasets were released, including the quality-controlled absolute hourly mean values of three components (D, H, and Z) from 1933 to 2019.
Cited articles
Alexandrescu, M., Gibert, D., Hulot, G., Le Mouël, J.-L., and Saracco, G.: Detection of geomagnetic jerks using wavelet analysis, J. Geophys. Res., 100, 12557–12572, https://doi.org/10.1029/95JB00314, 1995.
Alexandrescu, M., Gibert, D., Hulot, G., Le Mouël, J.-L., and Saracco, G.: Worldwide wavelet analysis of geomagnetic jerks, J. Geophys. Res., 101, 21975–21994, https://doi.org/10.1029/96JB01648, 1996.
Alexandrescu, M., Courtillot, V., and Le Mouël, J.-L.: High-resolution secular variation of the geomagnetic field in western Europe over the last 4 centuries: Comparison and integration of historical data from Paris and London, J. Geophys. Res., 102, 20245–20258, https://doi.org/10.1029/97JB01423, 1997.
Amory-Mazaudier, C.: Electric current systems in the earth's environment, Niger. J. Space Res., 8, 178–255, 2009.
Bai, C. H., Kang, G. F., Gao, G. M., Wen, L. M., and Sun, Y. P.: Response of geomagnetic jerk features to the geomagnetic secular acceleration in the China region, Chinese J. Geophys.-CH, 66, 3747–3760, https://doi.org/10.6038/cjg2022Q0270, 2023.
Bloxham, J. and Jackson, A.: Time-dependent mapping of the magnetic field at the core-mantle boundary, J. Geophys. Res., 97, 19537–19563, https://doi.org/10.1029/92JB01591, 1992.
Bolduc, L., Langlois, P., Boteler, D., and Pirjola, R.: A study of geoelectromagnetic disturbances in quebec. II. Detailed analysis of a large event, IEEE T. Power Deliver., 15, 272–278, 2002.
Boteler, D. H., Pirjola, R. J., and Nevanlinna, H.: The effects of geomagnetic disturbances on electrical systems at the Earth's surface, Adv. Space Res., 22, 17–27, 1998.
Brown, W. J., Mound, J. E., and Livermore, P. W.: Jerks abound: an analysis of geomagnetic observatory data from 1957 to 2008, Phys. Earth Planet. In., 223, 62–76, https://doi.org/10.1016/j.pepi.2013.06.001, 2013.
Campbell, W. H.: Introduction to Geomagnetic Fields, Cambridge University Press, 62–102, https://doi.org/10.1017/CBO9781139165136, 2003.
CEA – China Earthquake Administration : Specification for the construction of seismic station Geomagnetic station, DB/T 9–2004, China Earthquake Publishing House, Beijing, https://www.doc88.com/p-5853043901817.html (last access: 20 August 2025), 2004.
Cheng, A. L.: Modernization technology album of geomagnetic stations and networks, Recent Developments in World Seismological, 6, 1–40, 1995.
Chulliat, A. and Telali, K.: World monthly means database project, Publications of the Institute of Geophysics, Polish Academy of Sciences, C-99, 268–274, 2007.
Chulliat, A., Thébault, E., and Hulot, G.: Core field acceleration pulse as a common cause of the 2003 and 2007 geomagnetic jerks, Geophys. Res. Lett., 37, L07301, https://doi.org/10.1029/2009GL042019, 2010.
Chulliat, A., Alken, P., and Maus, S.: Fast equatorial waves propagating at the top of the Earth's core, Geophys. Res. Lett., 42, 3321–3329, https://doi.org/10.1002/2015GL064067, 2015.
Clarke, E., Flower, S., Humphries, T., McIntosh, R., McTaggart, F., McIntyre, B., Owenson, N., Henderson, K., Mann, E., MacKenzie, K., Piper, S., Wilson, L., and Gillanders, R.: The digitization of observatory magnetograms, poster presented at: 11th IAGA Scientific Assembly, Sopron, Hungary, 23–30 August 2009, https://www.osti.gov/etdeweb/biblio/21389614 (last access: 3 January 2025), 2009.
Curto, J. J. and Marsal, S.: Quality control of Ebro magnetic observatory using momentary values, Earth Planets Space, 59, 1187–1196, 2007.
Dawson, E., Reay, S., Macmillan, S., Flower, S., and Shanahan, T.: Quality control procedures at the World Data Centre for Geomagnetism (Edinburgh), IAGA 11th Scientific Assembly, Sopron, Hungary, 23–30 August 2009, https://www.researchgate.net/publication/264590163_Quality_control_procedures_at_the_World_Data_Centre_for_Geomagnetism_Edinburgh (last access: 29 December 2024), 2009.
Dong, X. H., Li, X. J., Zhang, G. Q., Shi, J., and Liu, C.: The study of digital identification of magnetogram, Seismological and Geomagnetic Observation and Research, 30, 49–55, 2009.
Department of Monitoring and Prediction, China Earthquake Administration: Electromagnetic observation instruments, in: Comprehensive Collection of Seismic Monitoring Instruments, 191–251, 2008.
Duan, P. and Huang, C.: Intradecadal variations in length of day and their correspondence with geomagnetic jerks, Nat. Commun., 11, 2273, https://doi.org/10.1038/s41467-020-16109-8, 2020.
Duka, B., De Santis, A., Mandea, M., Isac, A., and Qamili, E.: Geomagnetic jerks characterization via spectral analysis, Solid Earth, 3, 131–148, https://doi.org/10.5194/se-3-131-2012, 2012.
Feldstein, Y. I. and Zaitzev, A. N.: Quiet and disturbed solar-daily variations of magnetic field at high latitudes during the IGY, Tellus, 20, 338–366, https://doi.org/10.3402/tellusa.v20i2.10014, 1968.
Feng, Y., Holme, R., Cox, G. A., and Jiang, Y.: The geomagnetic jerk of 2003.5-characterisation with regional observatory secular variation data, Phys. Earth Planet. In., 278, 47–58, https://doi.org/10.1016/J.PEPI.2018.03.005, 2018.
Feng, Y., Jiang, Y. S., Gu, J. L., Xu, F., Jiang, Y., and Liu S.: Geomagnetic jerk extraction based on the covariance matrix, Appl. Geophys., 16, 153–159, https://doi.org/10.1007/s11770-019-0761-6, 2019.
Finlay, C. C., Olsen, N., Kotsiaros, S., Gillet, N., and Tøffner-Clausen, L.: Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model, Earth Planet Space, 68, 112, https://doi.org/10.1186/s40623-016-0486-1, 2016.
Gillet, N., Jault, D., Finlay, C. C., and Olsen, N.: Stochastic modeling of the Earth's magnetic field: Inversion for covariances over the observatory era, Geochem. Geophy. Geosy., 14, 766–786, https://doi.org/10.1002/ggge.20041, 2013.
Gvishiani, A. and Soloviev, A.: Observations, Modeling and Systems Analysis in Geomagnetic Data Interpretation, Springer Nature, ISBN 978-3-030-58969-1 (eBook), https://doi.org/10.1007/978-3-030-58969-1, 2020.
He, Y. F., Zhao, X. D., Zhang, S. Q., Yang, D. M., and Li, Q.: Geomagnetic jerks based on the midnight mean of the geomagnetic field from geomagnetic networks of China, Acta Seismologica Sinica, 41, 512–523, https://doi.org/10.11939/jass.20190009, 2019.
Holme, R. and De Viron, O.: Characterization and implications of intradecadal variations in length of day, Nature, 499, 202–204, https://doi.org/10.1038/nature12282, 2013.
Institute of Geophysics, China Earthquake Administration: Geomagnetic Observation Report of Wuhan Geomagnetic Observatory, 2005.
Institute of Geophysics, China Earthquake Administration: Geomagnetic Observation Report of Urumqi Geomagnetic Observatory, 2012.
Jankowski, J. and Sucksdorff, S.: Guide for magnetic measurements and observatory practice, The Polish National Space Research Press, Warszawa, Poland, 235 pp, ISBN: 0-9650686-2-5, 1996.
Jonkers, A. R. T., Jackson, A., and Murray, A.: Four centuries of geomagnetic data from historical records, Rev. Geophys., 41, 1006, https://doi.org/10.1029/2002RG000115, 2003.
Kang, G. F., Gao, G. M., Wen, L. M., and Bai, C. H.: The 2014 geomagnetic jerk observed by geomagnetic observatories in China, Chinese J. Geophys.-CH, 63, 4144–4153, https://doi.org/10.6038/cjg2020N0337, 2020.
Korte, M., Mandea, M., and Matzka, J.: A historical declination curve for Munich from different data sources, Phys. Earth Planet. In., 177, 161–172, https://doi.org/10.1016/j.pepi.2009.08.005, 2009.
Kotzé, P. B.: Signature of the 2007 geomagnetic jerk at the Hermanus magnetic observatory, S. Afr J. Geol., 114, 207–210, https://doi.org/10.2113/gssajg.114.2.207, 2011.
Kudin, D. V., Soloviev, A. A., Sidorov, R. V., Starostenko, V. I., Sumaruk, Y. P., and Legostayeva, O. V.: Advanced Production of Quasi-Definitive Magnetic Observatory Data of the INTERMAGNET Standard, Geomagn. Aeron.+, 61, 54–67, https://doi.org/10.1134/S0016793221010096, 2021.
Linthe, H. J., Reda, J., Isac, A., Matzka, J., and Turbitt, C.: Observatory data quality control-the instrument to ensure valuable research, in: Proceedings of the XVth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing: extended abstract volume, edited by: Hejda, P., San Fernando, Spain, March 2013, 173–177, https://core.ac.uk/download/pdf/20319986.pdf (last access: 18 November 2022), 2013.
Liu, C. M., Liu, L. G., and Pirjola, R.: Geomagnetically induced currents in the high voltage power grid in China, IEEE T. Power Deliver., 24, 2368–2374, 2009.
Liu, L. G., Liu, C. M., Zhang, B., Wang, Z. Z., Xiao, X. N., and Han, L. Z.: Strong magnetic storm's influence on China's Guangdong power grid, Chinese J. Geophys.-CH, 51, 976–981, https://doi.org/10.3321/j.issn:0001-5733.2008.04.004, 2008.
Liu, L. G., Ge, X. N., Wang, K. R., Zong, W., and Liu C. M.: Observation studies of encroachment by geomagnetic storms on high-speed railways and oil-and-gas pipelines in China, Sci. Sin. Tech., 46, 268–275, https://doi.org/10.1360/N092015-00279, 2016.
Lowes, F.: An estimate of the errors of the IGRF/DGRF fields 1945–2000, Earth Planets Space, 52, 1207–1211, 2000.
Lowes, F. J.: IGRF Health Warning, Errors, and Limitations, NOAA, https://www.ncei.noaa.gov/products/international-geomagnetic-reference-field/health-warning (last access: 29 December 2024), 2022.
Lutephy, M.: Interplanetary external driven quasidynamo as the origin of geomagnetic jerks correlated with length of day and gravity anomaly, Contrib. Geophys. Geod., 48, 23–74, https://doi.org/10.2478/congeo-2018-0002, 2018.
Ma, L. H., Han, Y. B., and Yin, Z. Q.: Progress on variable earth rotation rate and geophysical phenomena, Progress in Geophysics, 19, 968–974, https://doi.org/10.3969/j.issn.1004-2903.2004.04.043, 2004.
Malin, S. R. C. and Hodder, B. M.: Was the 1970 geomagnetic jerk of internal or external origin?, Nature, 296, 726–728, 1982.
Mandea, M. and Olsen, N.: Investigation of a secular variation impulse using satellite data: The 2003 geomagnetic jerk, Earth Planet. Sc. Lett., 255, 94–105, 2007.
Mandea, M., Bellanger, E., Le Mouël, J. L.: A geomagnetic jerk for the end of the 20th century?, Earth Planet. Sc. Lett., 183, 369–373, 2000.
Mandea, M., Holme, R, Pais, A., Pinheiro, K., Jackson, A., and Verbanac, G.: Geomagnetic jerks: rapid core field variations and core dynamics, Space Sci. Rev., 155, 147–175, 2010.
Marshall, R. A., Smith, E. A., Francis, M. J., Waters, C. L., and Sciffer, M. D.: A preliminary risk assessment of the Australian region power network to space weather, Space Weather, 9, S10004, https://doi.org/10.1029/2011SW000685, 2011.
Morozova, A. L., Ribeiro, P., and Pais, M. A.: Correction of artificial jumps in the historical geomagnetic measurements of Coimbra Observatory, Portugal, Ann. Geophys., 32, 19–40, https://doi.org/10.5194/angeo-32-19-2014, 2014.
Morozova, A. L., Ribeiro, P., and Pais, M. A.: Homogenization of the historical series from the Coimbra Magnetic Observatory, Portugal, Earth Syst. Sci. Data, 13, 809–825, https://doi.org/10.5194/essd-13-809-2021, 2021.
Nahayo, E., Kotzé, P. B., Korte, M., and Webb, S.: A harmonic spline magnetic main field model for Southern Africa combining ground and satellite data to describe the evolution of the South Atlantic Anomaly in this region between 2005 and 2010. Earth Planets Space, 70, 30, https://doi.org/10.1186/s40623-018-0796-6, 2018.
Nie, L. J., Qiu, Y. D., Shen, W. B., Zhang, S. Q., and Zhang, B. B.: Accuracy Evaluation and Applicability of IGRF12 and WMM2015 Model in Chinese Mainland, Geomatics and Information Science of Wuhan University, 42, 1229–1235, https://doi.org/10.13203/j.whugis20160143, 2017.
Ou, J. M., Du, A. M., and Xu, W. Y.: Investigation of the SA evolution by using the CHAOS-4 model over 1997–2013, Sci. China Earth Sci., 59, 1041–1050, https://doi.org/10.1007/s11430-016-5265-0, 2016.
Pedatella, N. M., Forbes, J. M., Maute, A., Richmond, A. D., Fang, T.-W., Larson, K. M., and Millward, G.: Longitudinal variations in the F region ionosphere and the topside ionosphere-plasmasphere: Observations and model simulations, J. Geophys. Res., 116, A12309, https://doi.org/10.1029/2011JA016600, 2011.
Pinheiro, K. J., Jackson, A., and Finlay, C. C.: Measurements and uncertainties of the occurrence time of the 1969, 1978, 1991, and 1999 geomagnetic jerks, Geochem. Geophy. Geosy., 12, Q10015, https://doi.org/10.1029/2011GC003706, 2011.
Qamili, E., De Santis, A., Isac, A., Mandea, M., Duka, B., and Simonyan, A.: Geomagnetic jerks as chaotic fluctuations of the Earth's magnetic field, Geochem. Geophy. Geosy., 14, 839–850, https://doi.org/10.1029/2012GC004398, 2013.
Rasson, J. J.: Observatories, instrumentation, in: Encyclopedia of geomagnetism and paleomagnetism, edited by: Gubbins, D. and Herrero-Bervera, E., Springer, New York, https://doi.org/10.1007/978-1-4020-4423-6_225, 711–713, 2007.
Reay, S. J., Allen, W., Baillie, O., Bowe, J., Clarke, E., Lesur, V., and Macmillan, S.: Space weather effects on drilling accuracy in the North Sea, Ann. Geophys., 23, 3081–3088, https://doi.org/10.5194/angeo-23-3081-2005, 2005.
Reay, S. J., Clarke, E., Dawson, E., and Macmillan, S.: Operations of the World Data Centre for Geomagnetism, Edinburgh, Data Science Journal, 12, WDS47–WDS51, 2013.
Reda, J., Fouassier, D., Isac, A., Linthe, H. J., Matzka, J., and Turbitt, C. W.: Improvements in Geomagnetic Observatory Data Quality, in: Geomagnetic Observations and Models, vol. 5, edited by: Mandea, M. and Korte, M., Springer Science + Business Media, 127–148, eBook ISBN 978-90-481-9858-0, 2011.
Sergeyeva, N., Gvishiani, A., Soloviev, A., Zabarinskaya, L., Krylova, T., Nisilevich, M., and Krasnoperov, R.: Historical K index data collection of Soviet magnetic observatories, 1957–1992, Earth Syst. Sci. Data, 13, 1987–1999, https://doi.org/10.5194/essd-13-1987-2021, 2021.
Soloviev, A., Chulliat, A., and Bogoutdinov, S.: Detection of secular acceleration pulses from magnetic observatory data, Phys. Earth Planet. In., 270, 128–142, https://doi.org/10.1016/j.pepi.2017.07.005, 2017.
Soloviev, A., Lesur, V., and Kudin, D.: On the feasibility of routine baseline improvement in processing of geomagnetic observatory data, Earth Planets Space, 70, 16, https://doi.org/10.1186/s40623-018-0786-8, 2018.
Sun, X. L.: Analysis of long-term variation characteristics of geomagnetic field in Changchun, Journal of Disaster Prevention and Reduction, 29, 44–48, 2013.
Torta, J. M., Pavón-Carrasco, F. J., Marsal, S., Finlay, C. C.: Evidence for a new geomagnetic jerk in 2014, Geophys. Res. Lett., 42, 7933–7940, https://doi.org/10.1002/2015GL065501, 2015.
Tozzi, R., De Michelis, P., and Meloni, A.: Geomagnetic jerks in the polar regions, Geophys. Res. Lett., 36, L15304, https://doi.org/10.1029/2009GL039359, 2009.
Vichare, G., Rawat, R., Jadhav, M., and Sinha, A. K.: Seasonal variation of the Sq focus position during 2006–2010, Adv. Space Res., 59, 542–556, https://doi.org/10.1016/j.asr.2016.10.009, 2017.
V-MOD Working Group: IGRF 14th generation, http://www.ngdc.noaa.gov/IAGA/vmod/ (last access: 20 May 2025).
Wang, D. W.: Analysis of the International Geomagnetic Reference Field Error in the China Continent, Chinese J. Geophys., 46, 63–73, 2003.
Xu, W. Y.: Physics of Electromagnetic Phenomena of the Earth, University of Science and Technology of China Press, Hefei, 558 pp., ISBN 978-7312022562, 2009.
Yamazaki, Y. and Maute, A.: Sq and EEJ – A review on the daily variation of the geomagnetic field caused by ionospheric dynamo currents, Space Sci. Rev., 206, 299–405, 2017.
Yamazaki, Y., Kathrin, H., and Anderson, W. J.: Day-to-day variability of midlatitude ionospheric currents due to magnetospheric and lower atmospheric forcing, J. Geophys. Res.-Space, 121, 7067–7086, https://doi.org/10.1002/2016JA022817, 2016.
Zhang, S., Fu, C., Wang, J., Zhu, G., Chen, C., He, S., Guo, P., and Chang, G.: Rescue and quality control of historical geomagnetic measurement at Sheshan observatory, China, Earth Syst. Sci. Data, 14, 5195–5212, https://doi.org/10.5194/essd-14-5195-2022, 2022b.
Zhang, S., Fu, C., Zhao, X., Zhang, X., He, Y., Li, Q., Chen, J., Wang, J., and Zhao, Q.: Strategies in the Quality Assurance of Geomagnetic Observation Data in China, Data Science Journal, 2, 1–11, https://doi.org/10.5334/dsj-2024-009, 2024.
Zhang, S., Zhu, G., Chen, J., Deng, N., Lu, J., Yu, H., Chen, C., and Wang, B.: An integrated and quality-controlled historical datasets of eight pioneering geomagnetic observatories in China, Zenodo [data set], https://doi.org/10.5281/zenodo.15481895, 2025.
Zhang, S. Q., Fu, C. H., He, Y. F., Yang, D. M., Li, Q., Zhao, X. D., and Wang, J. J.: Quality Control of Observation Data by the Geomagnetic Network of China, Data Science Journal, 15, 15, https://doi.org/10.5334/dsj-2016-015, 2016.
Zhang, S. Q., Zhu, G. H., Wang, J. J., Chen, C. H., He, S. P., and Guo, P. K.: Quality-controlled geomagnetic hourly mean values datasets of Sheshan observatory from 1933 to 2019, Zenodo [data set], https://doi.org/10.5281/zenodo.7005471, 2022a.
Zhang, S. Q., Fu, C. H., Wang, J. J., Zhao, Q., Hu, X. J., Zhang, X. X., Guo, P. K., He, S. P., and Chang, G. P.: A method for automatic identification and processing of step-like interference information in geomagnetic data, CN117687104B, Intellectual Property Press, China, https://max.book118.com/html/2024/0313/5341141102011122.shtm (last access: 29 Auguest 2025), 2023.
Zhang, X. L., Chang, G. P., and Zhang, M. D.: Interferences on the geomagnetism observation system in Beijing National Earth Observatory, Seismological and Geomagnetic Observation and Research, 39, 108–113, https://doi.org/10.3969/j.issn.1003-3246.2018.06.016, 2018.
Zhao, X. D., Yang, D. M., He, Y. Fei., Yu, P. Q., Liu, X. C., Zhang, S. Q., Luo, K. Q., Hu, X. J.: The study of Sq equivalent current during the solar cycle, Chinese J. Geophys., 57, 3777–3788, https://doi.org/10.6038/cjg20141131, 2014.
Zhao, X. K., Wu, B. Y., and N., B. Q.: The geomagnetic dataset of Beijing Ming Tombs station (1991–2001), China Scientific Data, 2, 1–9, https://www.sciengine.com/csD/doi/10.11922/csdata.170.2016.0074 (last access: 29 December 2024), 2017.
Zhou, J. P.: Reminiscences of the Lhasa Geomagnetic Observatory, Recent Developments in World Seismological, 1, 34–40, https://doi.org/10.3969/j.issn.0235-4975.2013.01.009, 2013.
Short summary
The objective of this study is to rescue and integrate historical data from eight pioneering geomagnetic observatories in China. Data quality is significantly improved through integration. The integrated dataset is now publicly available for easy access and use by the academic community and the public. These datasets are of great significance for optimizing historical geomagnetic field models and investigating changing magnetic fields, the main geomagnetic field.
The objective of this study is to rescue and integrate historical data from eight pioneering...
Altmetrics
Final-revised paper
Preprint