Articles | Volume 17, issue 9
https://doi.org/10.5194/essd-17-4397-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-4397-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Large-scale forest stand height mapping in the northeastern US and China using L-band spaceborne repeat-pass InSAR and GEDI lidar data
Yanghai Yu
National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China
National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China
Paul Siqueira
Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003-9284, USA
Xiaotong Liu
Academy of Forest Inventory and Planning, State Forestry Administration, Beijing, 100714, China
Denuo Gu
Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing, 100091, China
Anmin Fu
Academy of Forest Inventory and Planning, State Forestry Administration, Beijing, 100714, China
Yong Pang
Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing, 100091, China
Wenli Huang
School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China
Jiancheng Shi
National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China
Related authors
No articles found.
Alex S. Gardner, Chad A. Greene, Joseph H. Kennedy, Mark A. Fahnestock, Maria Liukis, Luis A. López, Yang Lei, Ted A. Scambos, and Amaury Dehecq
The Cryosphere, 19, 3517–3533, https://doi.org/10.5194/tc-19-3517-2025, https://doi.org/10.5194/tc-19-3517-2025, 2025
Short summary
Short summary
The NASA MEaSUREs Inter-mission Time Series of Land Ice Velocity and Elevation (ITS_LIVE) project provides glacier and ice sheet velocity products for the full Landsat, Sentinel-1, and Sentinel-2 satellite archives and will soon include data from the NISAR satellite. This paper describes the ITS_LIVE processing chain and gives guidance for working with the cloud-optimized glacier and ice sheet velocity products.
Qixiang Sun, Dabin Ji, Husi Letu, Yongqian Wang, Peng Zhang, Hong Liang, Chong Shi, Shuai Yin, and Jiancheng Shi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-365, https://doi.org/10.5194/essd-2025-365, 2025
Preprint under review for ESSD
Short summary
Short summary
The Tibetan Plateau plays a vital role in Asia’s water cycle, but tracking water vapor in this mountainous region is difficult, especially under cloudy conditions. We developed a new satellite-based method to generate hourly water vapor data at 0.02-degree resolution from 2016 to 2022, now available at https://data.tpdc.ac.cn/en/data/4bb3c256-3cdb-4373-9924-f7ac16ddc717, which improves accuracy and reveals fine-scale moisture transport critical for understanding rainfall and extreme weather.
Jingtian Zhou, Yang Lei, Jinmei Pan, Cunren Liang, Yunjun Zhang, Weiliang Li, Chuan Xiong, and Jiancheng Shi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2329, https://doi.org/10.5194/egusphere-2025-2329, 2025
Short summary
Short summary
Understanding how much water is stored in snow is important for tracking climate change and managing water supply. This study used satellite radar data from 2019 to 2021 to measure snow water changes in a mountain region of China. The results matched ground data well, especially in cold, dry conditions without heavy snowfall. A new phase calibration method helped improve accuracy, offering a useful reference for global snow monitoring using widely available satellite data.
Benoit Montpetit, Julien Meloche, Vincent Vionnet, Chris Derksen, Georgina Wooley, Nicolas R. Leroux, Paul Siqueira, J. Max Adams, and Mike Brady
EGUsphere, https://doi.org/10.5194/egusphere-2025-2317, https://doi.org/10.5194/egusphere-2025-2317, 2025
Short summary
Short summary
This paper presents the workflow to retrieve snow water equivalent from radar measurements for the future Canadian radar satellite mission, TSMM. The workflow is validated by using airborne radar data collected at Trail Valley Creek, Canada, during winter 2018–19. We detail important considerations to have in the context of an Earth Observation mission over a vast region such as Canada. The results show that it is possible to achieve the desired accuracy for TSMM, over an Arctic environment.
Defeng Feng, Tianjie Zhao, Jingyao Zheng, Yu Bai, Youhua Ran, Xiaokang Kou, Lingmei Jiang, Ziqian Zhang, Pei Yu, Jinbiao Zhu, Jie Pan, Jiancheng Shi, and Yuei-An Liou
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-62, https://doi.org/10.5194/essd-2025-62, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
This study introduces a downscaling approach that integrates passive microwave and optical satellite data to generate a long-term (2002–2023), high-resolution (0.05°) global near-surface FT state dataset, ensuring daily seamless continuity. The dataset achieves an overall accuracy of 83.78%, consistent with the microwave-based dataset while offering enhanced spatial detail. This record providing detailed FT information, enhancing the understanding of hydrological and ecological impacts globally.
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024, https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary
Short summary
This paper validates the use of free open-source models to link distributed snow measurements to radar measurements in the Canadian Arctic. Using multiple radar sensors, we can decouple the soil from the snow contribution. We then retrieve the "microwave snow grain size" to characterize the interaction between the snow mass and the radar signal. This work supports future satellite mission development to retrieve snow mass information such as the future Canadian Terrestrial Snow Mass Mission.
Fangbo Pan, Lingmei Jiang, Gongxue Wang, Jinmei Pan, Jinyu Huang, Cheng Zhang, Huizhen Cui, Jianwei Yang, Zhaojun Zheng, Shengli Wu, and Jiancheng Shi
Earth Syst. Sci. Data, 16, 2501–2523, https://doi.org/10.5194/essd-16-2501-2024, https://doi.org/10.5194/essd-16-2501-2024, 2024
Short summary
Short summary
It is important to strengthen the continuous monitoring of snow cover as a key indicator of imbalance in the Asian Water Tower (AWT) region. We generate long-term daily gap-free fractional snow cover products over the AWT at 0.005° resolution from 2000 to 2022 based on the multiple-endmember spectral mixture analysis algorithm and the gap-filling algorithm. They can provide highly accurate, quantitative fractional snow cover information for subsequent studies on hydrology and climate.
Jinmei Pan, Michael Durand, Juha Lemmetyinen, Desheng Liu, and Jiancheng Shi
The Cryosphere, 18, 1561–1578, https://doi.org/10.5194/tc-18-1561-2024, https://doi.org/10.5194/tc-18-1561-2024, 2024
Short summary
Short summary
We developed an algorithm to estimate snow mass using X- and dual Ku-band radar, and tested it in a ground-based experiment. The algorithm, the Bayesian-based Algorithm for SWE Estimation (BASE) using active microwaves, achieved an RMSE of 30 mm for snow water equivalent. These results demonstrate the potential of radar, a highly promising sensor, to map snow mass at high spatial resolution.
Yang Lei, Alex S. Gardner, and Piyush Agram
Earth Syst. Sci. Data, 14, 5111–5137, https://doi.org/10.5194/essd-14-5111-2022, https://doi.org/10.5194/essd-14-5111-2022, 2022
Short summary
Short summary
This work describes NASA MEaSUREs ITS_LIVE project's Version 2 Sentinel-1 image-pair ice velocity product and processing methodology. We show the refined offset tracking algorithm, autoRIFT, calibration for Sentinel-1 geolocation biases and correction of the ionosphere streaking problems. Validation was performed over three typical test sites covering the globe by comparing with other similar global and regional products.
Leung Tsang, Michael Durand, Chris Derksen, Ana P. Barros, Do-Hyuk Kang, Hans Lievens, Hans-Peter Marshall, Jiyue Zhu, Joel Johnson, Joshua King, Juha Lemmetyinen, Melody Sandells, Nick Rutter, Paul Siqueira, Anne Nolin, Batu Osmanoglu, Carrie Vuyovich, Edward Kim, Drew Taylor, Ioanna Merkouriadi, Ludovic Brucker, Mahdi Navari, Marie Dumont, Richard Kelly, Rhae Sung Kim, Tien-Hao Liao, Firoz Borah, and Xiaolan Xu
The Cryosphere, 16, 3531–3573, https://doi.org/10.5194/tc-16-3531-2022, https://doi.org/10.5194/tc-16-3531-2022, 2022
Short summary
Short summary
Snow water equivalent (SWE) is of fundamental importance to water, energy, and geochemical cycles but is poorly observed globally. Synthetic aperture radar (SAR) measurements at X- and Ku-band can address this gap. This review serves to inform the broad snow research, monitoring, and application communities about the progress made in recent decades to move towards a new satellite mission capable of addressing the needs of the geoscience researchers and users.
G. Li, X. Gao, F. Hu, A. Guo, Z. Liu, J. Chen, C. Liu, S. Nie, and A. Fu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2022, 53–58, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-53-2022, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-53-2022, 2022
Y. Tao, W. Huang, W. Gan, and H. Shen
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2022, 209–215, https://doi.org/10.5194/isprs-annals-V-3-2022-209-2022, https://doi.org/10.5194/isprs-annals-V-3-2022-209-2022, 2022
Shu Fang, Kebiao Mao, Xueqi Xia, Ping Wang, Jiancheng Shi, Sayed M. Bateni, Tongren Xu, Mengmeng Cao, Essam Heggy, and Zhihao Qin
Earth Syst. Sci. Data, 14, 1413–1432, https://doi.org/10.5194/essd-14-1413-2022, https://doi.org/10.5194/essd-14-1413-2022, 2022
Short summary
Short summary
Air temperature is an important parameter reflecting climate change, and the current method of obtaining daily temperature is affected by many factors. In this study, we constructed a temperature model based on weather conditions and established a correction equation. The dataset of daily air temperature (Tmax, Tmin, and Tavg) in China from 1979 to 2018 was obtained with a spatial resolution of 0.1°. Accuracy verification shows that the dataset has reliable accuracy and high spatial resolution.
Cited articles
Abdalati, W., Zwally, H. J., Bindschadler, R., Csatho, B., Farrell, S. L., Fricker, H. A., Harding, D., Kwok, R., Lefsky, M., and Markus, T.: The ICESat-2 laser altimetry mission, Proc. IEEE, 98, 735–751, https://doi.org/10.1109/JPROC.2009.2034765, 2010.
Ahmed, R., Siqueira, P., Hensley, S., Chapman, B., and Bergen, K.: A survey of temporal decorrelation from spaceborne L-Band repeat-pass InSAR, Remote Sens. Environ., 115, 2887–2896, https://doi.org/10.1016/j.rse.2010.03.017, 2011.
Alaska Satellite Facility: ASF Data Search Vertex, NASA [data set], https://search.asf.alaska.edu/#/?dataset=_ALOS (last access: 29 July 2025), 2025.
Allaby, M.: A dictionary of plant sciences, Oxford University Press, https://doi.org/10.1093/acref/9780199600571.001.0001, 2012.
Angelsen, A.: Realising REDD+: National strategy and policy options, Cifor, https://doi.org/10.17528/cifor/002871, 2009.
Askne, J. I., Fransson, J. E., Santoro, M., Soja, M. J., and Ulander, L. M.: Model-based biomass estimation of a hemi-boreal forest from multitemporal TanDEM-X acquisitions, Remote Sens., 5, 5574–5597, https://doi.org/10.3390/rs5115574, 2013.
Askne, J. I. H., Dammert, P. B. G., Ulander, L. M. H., and Smith, G.: C-band repeat-pass interferometric SAR observations of the forest, IEEE T. Geosci. Remote S., 35, 25–35, https://doi.org/10.1109/36.551931, 1997.
Bamler, R. and Hartl, P.: Synthetic aperture radar interferometry, Inverse Probl., 14, R1, https://doi.org/10.1088/0266-5611/14/4/001, 1998.
Bhogapurapu, N., Siqueira, P., and Armston, J.: A new InSAR temporal decorrelation model for seasonal vegetation change with dense time-series data, IEEE Geosci. Remote Sens. Lett., 21, 1–5, https://doi.org/10.1109/LGRS.2024.3434653, 2024.
Blair, J. B., Rabine, D. L., and Hofton, M. A.: The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography, ISPRS J. Photogramm., 54, 115–122, https://doi.org/10.1016/S0924-2716(99)00002-7, 1999.
Choi, C., Cazcarra-Bes, V., Guliaev, R., Pardini, M., Papathanassiou, K. P., Qi, W., Armston, J., and Dubayah, R. O.: Large-scale forest height mapping by combining TanDEM-X and GEDI data, IEEE J. Sel. Top. Appl., 16, 2374–2385, https://doi.org/10.1109/JSTARS.2023.3244866, 2023.
Cloude, S. R. and Papathanassiou, K. P.: Polarimetric SAR interferometry, IEEE T. Geosci. Remote Sens., 36, 1551–1565, https://doi.org/10.1109/36.718859, 1998.
Deledalle, C.-A., Denis, L., Tupin, F., Reigber, A., and Jäger, M.: NL-SAR: A unified nonlocal framework for resolution-preserving (Pol)(In) SAR denoising, IEEE T. Geosci. Remote S., 53, 2021–2038, https://doi.org/10.1109/TGRS.2014.2352555, 2014.
Dubayah, R., Blair, J. B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, S., Hofton, M., Hurtt, G., Kellner, J., and Luthcke, S.: The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth's forests and topography, Sci. Remote Sens., 1, 100002, https://doi.org/10.1016/j.srs.2020.100002, 2020.
Fayad, I., Baghdadi, N., and Lahssini, K.: An assessment of the GEDI lasers' capabilities in detecting canopy tops and their penetration in a densely vegetated, tropical area, Remote Sens., 14, 2969, https://doi.org/10.3390/rs14132969, 2022.
leiyangleon: FSH, GitHub [code], https://github.com/leiyangleon/FSH (last access: 29 July 2025), 2025.
Gatelli, F., Guamieri, A. M., Parizzi, F., Pasquali, P., Prati, C., and Rocca, F.: The wavenumber shift in SAR interferometry, IEEE T. Geosci. Remote, 32, 855–865, https://doi.org/10.1109/36.298013, 1994.
Guliaev, R., Cazcarra-Bes, V., Pardini, M., and Papathanassiou, K.: Forest height estimation by means of TanDEM-X InSAR and waveform lidar data, IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 14, 3084–3094, https://doi.org/10.1109/JSTARS.2021.3058837, 2021.
Haans, F., Paul, M., and Steven, D.: Derived Lidar products and forestry applications: Crawford study area-White Mountain National Forest, Report: RSAC-0999-BRIEF3. Salt Lake City, UT: US Department of Agriculture Forest Service, Remote Sensing Applications Center, 2009.
Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., and Loveland, T. R.: High-resolution global maps of 21st-century forest cover change, Science, 342, 850–853, https://doi.org/10.1126/science.1244693, 2013.
Hofton, M., Blair, J. B., Story, S., and Yi, D.: Algorithm Theoretical Basis Document (ATBD), Washington, DC, USA, NASA, 2020.
Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N., Wickham, J., and Megown, K.: Completion of the 2011 National Land Cover Database for the conterminous United States – representing a decade of land cover change information, Photogramm. Eng. Rem. S., 81, 345–354, https://doi.org/10.1016/S0099-1112(15)30100-2, 2015.
Houghton, R., Hall, F., and Goetz, S. J.: Importance of biomass in the global carbon cycle, J. Geophys. Res.-Biogeo., 114, G00E03, https://doi.org/10.1029/2009JG000935, 2009.
Hu, H., Zhu, J., Fu, H., Liu, Z., Xie, Y., and Liu, K.: Automated estimation of sub-canopy topography combined with single-baseline single-polarization TanDEM-X InSAR and ICESat-2 data, Remote Sens., 16, 1155, https://doi.org/10.3390/rs16071155, 2024.
Imhoff, M. L.: Radar backscatter and biomass saturation: Ramifications for global biomass inventory, IEEE T. Geosci. Remote, 33, 511–518, https://doi.org/10.1109/TGRS.1995.8746034, 1995.
Jet Propulsion Laboratory: Interferometric synthetic aperture radar Scientific Computing Environment, GitHub [code], https://github.com/isce-framework/isce2 (last access: 29 July 2025), 2025.
Kalacska, M., Sanchez-Azofeifa, G. A., Rivard, B., Caelli, T., White, H. P., and Calvo-Alvarado, J.: Ecological fingerprinting of ecosystem succession: Estimating secondary tropical dry forest structure and diversity using imaging spectroscopy, Remote Sens. Environ., 108, 82–96, https://doi.org/10.1016/j.rse.2006.11.007, 2007.
Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., and Brumby, S. P.: Global land use/land cover with Sentinel 2 and deep learning, 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 4704–4707, https://doi.org/10.1109/IGARSS47720.2021.9553499, 2021.
Kellndorfer, J., Cartus, O., Lavalle, M., Magnard, C., Milillo, P., Oveisgharan, S., Osmanoglu, B., Rosen, P. A., and Wegmüller, U.: Global seasonal Sentinel-1 interferometric coherence and backscatter data set, Sci. Data, 9, 73, https://doi.org/10.1038/s41597-022-01189-6, 2022.
Kellogg, K., Hoffman, P., Standley, S., Shaffer, S., Rosen, P., Edelstein, W., Dunn, C., Baker, C., Barela, P., and Shen, Y.: NASA-ISRO synthetic aperture radar (NISAR) mission, 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 1–21, https://doi.org/10.1109/AERO47225.2020.9172638, 2020.
Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M., Younis, M., and Zink, M.: TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry, IEEE T. Geosci. Remote, 45, 3317–3341, https://doi.org/10.1109/TGRS.2007.900693, 2007.
Kugler, F., Schulze, D., Hajnsek, I., Pretzsch, H., and Papathanassiou, K. P.: TanDEM-X Pol-InSAR performance for forest height estimation, IEEE T. Geosci. Remote Sens., 52, 6404–6422, https://doi.org/10.1109/TGRS.2013.2296533, 2014.
Lang, N., Kalischek, N., Armston, J., Schindler, K., Dubayah, R., and Wegner, J. D.: Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles, Remote Sens. Environ., 268, 112760, https://doi.org/10.1016/j.rse.2021.112760, 2022.
Lavalle, M., Simard, M., and Hensley, S.: A Temporal Decorrelation Model for Polarimetric Radar Interferometers, IEEE T. Geosci. Remote, 50, 2880–2888, https://doi.org/10.1109/TGRS.2011.2174367, 2012.
Lawrence, A.: Plant identification: creating user-friendly field guides for biodiversity management, Routledge, https://doi.org/10.4324/9781849772198, 2013.
Lei, Y.: Electromagnetic scattering models for InSAR correlation measurements of vegetation and snow, PhD thesis, University of Massachusetts Amherst, https://doi.org/10.7275/8327395.0, 2016.
Lei, Y. and Siqueira, P.: Estimation of forest height using spaceborne repeat-pass L-band InSAR correlation magnitude over the US state of Maine, Remote Sens., 6, 10252–10285, https://doi.org/10.3390/rs61110252, 2014.
Lei, Y. and Siqueira, P.: An Automatic Mosaicking Algorithm for the Generation of a Large-Scale Forest Height Map Using Spaceborne Repeat-Pass InSAR Correlation Magnitude, 7, 5639–5659, https://doi.org/10.3390/rs70505639, 2015.
Lei, Y. and Siqueira, P.: Refined forest stand height inversion approach with spaceborne repeat-pass l-band sar interferometry and gedi lidar data, IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, 6388–6391, https://doi.org/10.1109/IGARSS46834.2022.9884755, 2022.
Lei, Y., and Yu, Y.: Yanghai717/FSHv2: v1.0.0, Zenodo [code], https://doi.org/10.5281/zenodo.16547783, 2025.
Lei, Y., Siqueira, P., and Treuhaft, R.: A physical scattering model of repeat-pass InSAR correlation for vegetation, Wave. Random Complex, 27, 129–152, https://doi.org/10.1080/17455030.2016.1209594, 2017a.
Lei, Y., Lucas, R., Siqueira, P., Schmidt, M., and Treuhaft, R.: Detection of forest disturbance with spaceborne repeat-pass SAR interferometry, IEEE T. Geosci. Remote, 56, 2424–2439, https://doi.org/10.1109/TGRS.2017.2780158, 2017b.
Lei, Y., Siqueira, P., Torbick, N., Ducey, M., Chowdhury, D., and Salas, W.: Generation of Large-Scale Moderate-Resolution Forest Height Mosaic With Spaceborne Repeat-Pass SAR Interferometry and Lidar, IEEE T. Geosci. Remote, 57, 770–787, https://doi.org/10.1109/TGRS.2018.2860590, 2019.
Lei, Y., Treuhaft, R., Keller, M., dos-Santos, M., Gonçalves, F., and Neumann, M.: Quantification of selective logging in tropical forest with spaceborne SAR interferometry, Remote Sens. Environ., 211, 167–183, https://doi.org/10.1016/j.rse.2018.04.009, 2018.
Lei, Y., Treuhaft, R., and Gonçalves, F.: Automated estimation of forest height and underlying topography over a Brazilian tropical forest with single-baseline single-polarization TanDEM-X SAR interferometry, Remote Sens. Environ., 252, 112132, https://doi.org/10.1016/j.rse.2020.112132, 2021.
Loveland, T. R. and Dwyer, J. L.: Landsat: Building a strong future, Remote Sens. Environ., 122, 22–29, https://doi.org/10.1016/j.rse.2011.09.022, 2012.
Lucas, R. M., Cronin, N., Lee, A., Moghaddam, M., Witte, C., and Tickle, P.: Empirical relationships between AIRSAR backscatter and LiDAR-derived forest biomass, Queensland, Australia, Remote Sens. Environ., 100, 407–425, https://doi.org/10.1016/j.rse.2005.10.019, 2006.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.: Climate change 2021: the physical science basis, Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2, 2391, https://doi.org/10.1017/9781009157896, 2021.
Minh, D. H. T., Toan, T. L., Rocca, F., Tebaldini, S., d'Alessandro, M. M., and Villard, L.: Relating P-Band Synthetic Aperture Radar Tomography to Tropical Forest Biomass, IEEE T. Geosci. Remote Sens., 52, 967–979, https://doi.org/10.1109/TGRS.2013.2246170, 2014.
Monti-Guarnieri, A., Manzoni, M., Giudici, D., Recchia, A., and Tebaldini, S.: Vegetated target decorrelation in SAR and interferometry: models, simulation, and performance evaluation, Remote Sens., 12, 2545, https://doi.org/10.3390/rs12162545, 2020.
National Aeronautics and Space Administration, Earthdata Search, https://search.earthdata.nasa.gov/ (last access: 29 July 2025), 2025a.
National Aeronautics and Space Administration: Land, Vegetation, and Ice Sensor, https://lvis.gsfc.nasa.gov/Home/index.html (last access: 29 July 2025), 2025b.
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., and Canadell, J. G.: A large and persistent carbon sink in the world's forests, Science, 333, 988–993, https://doi.org/10.1126/science.1201609, 2011.
Pang, Y., Li, Z., Ju, H., Lu, H., Jia, W., Si, L., Guo, Y., Liu, Q., Li, S., Liu, L., Xie, B., Tan, B., and Dian, Y.: LiCHy: The CAF's LiDAR, CCD and Hyperspectral Integrated Airborne Observation System, Remote Sens., 8, 398, https://doi.org/10.3390/rs8050398, 2016.
Papathanassiou, K. P. and Cloude, S. R.: The effect of temporal decorrelation on the inversion of forest parameters from Pol-InSAR data, IGARSS 2003, 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), Toulouse, France, 1429–1431, https://doi.org/10.1109/IGARSS.2003.1294134, 2003.
Park, S. W., Linsen, L., Kreylos, O., Owens, J. D., and Hamann, B.: Discrete sibson interpolation, IEEE T. Vis. Comput. Gr., 12, 243–253, https://doi.org/10.1109/TVCG.2006.27, 2006.
Potapov, P., Li, X., Hernandez-Serna, A., Tyukavina, A., Hansen, M. C., Kommareddy, A., Pickens, A., Turubanova, S., Tang, H., and Silva, C. E.: Mapping global forest canopy height through integration of GEDI and Landsat data, Remote Sens. Environ., 253, 112165, https://doi.org/10.1016/j.rse.2020.112165, 2021.
Potapov, P., Yaroshenko, A., Turubanova, S., Dubinin, M., Laestadius, L., Thies, C., Aksenov, D., Egorov, A., Yesipova, Y., and Glushkov, I.: Mapping the world's intact forest landscapes by remote sensing, Ecol. Soc., 13, 2, https://doi.org/10.5751/ES-02670-130251, 2008.
Qi, W. and Dubayah, R. O.: Combining Tandem-X InSAR and simulated GEDI lidar observations for forest structure mapping, Remote Sens. Environ., 187, 253–266, https://doi.org/10.1016/j.rse.2016.10.018, 2016.
Qi, W., Lee, S.-K., Hancock, S., Luthcke, S., Tang, H., Armston, J., and Dubayah, R.: Improved forest height estimation by fusion of simulated GEDI Lidar data and TanDEM-X InSAR data, Remote Sens. Environ., 221, 621–634, https://doi.org/10.1016/j.rse.2018.11.035, 2019.
Qi, W., Armston, J., Choi, C., Stovall, A., Saarela, S., Pardini, M., Fatoyinbo, L., Papathanassiou, K., Pascual, A., and Dubayah, R.: Mapping large-scale pantropical forest canopy height by integrating GEDI lidar and TanDEM-X InSAR data, Remote Sens. Environ., 318, 114534, https://doi.org/10.1016/j.rse.2024.114534, 2025.
Quegan, S., Le Toan, T., Chave, J., Dall, J., Exbrayat, J.-F., Minh, D. H. T., Lomas, M., D'alessandro, M. M., Paillou, P., and Papathanassiou, K.: The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space, Remote Sens. Environ., 227, 44–60, https://doi.org/10.1016/j.rse.2019.03.032, 2019.
Riofrío, J., White, J. C., Tompalski, P., Coops, N. C., and Wulder, M. A.: Modelling height growth of temperate mixedwood forests using an age-independent approach and multi-temporal airborne laser scanning data, Forest Ecol. Manage., 543, 121137, https://doi.org/10.1016/j.foreco.2023.121137, 2023.
Rocca, F.: Modeling interferogram stacks, IEEE T. Geosci. Remote, 45, 3289–3299, https://doi.org/10.1109/TGRS.2007.902286, 2007.
Rodriguez, E. and Martin, J. M.: Theory and design of interferometric synthetic aperture radars, IEE P. F (Radar and Signal Processing), 139, 147–159, https://doi.org/10.1049/ip-f-2.1992.0018, 1992.
Rosen, P. A., Gurrola, E., Sacco, G. F., and Zebker, H.: The InSAR scientific computing environment, EUSAR 2012; 9th European conference on synthetic aperture radar, 730–733, 2012.
Rosenqvist, A., Shimada, M., Ito, N., and Watanabe, M.: ALOS PALSAR: A pathfinder mission for global-scale monitoring of the environment, IEEE T. Geosci. Remote, 45, 3307–3316, https://doi.org/10.1109/TGRS.2007.901027, 2007.
Rosenqvist, A., Shimada, M., Suzuki, S., Ohgushi, F., Tadono, T., Watanabe, M., Tsuzuku, K., Watanabe, T., Kamijo, S., and Aoki, E.: Operational performance of the ALOS global systematic acquisition strategy and observation plans for ALOS-2 PALSAR-2, Remote Sens. Environ., 155, 3–12, https://doi.org/10.1016/j.rse.2014.04.011, 2014.
Santoro, M., Cartus, O., Carvalhais, N., Rozendaal, D. M. A., Avitabile, V., Araza, A., de Bruin, S., Herold, M., Quegan, S., Rodríguez-Veiga, P., Balzter, H., Carreiras, J., Schepaschenko, D., Korets, M., Shimada, M., Itoh, T., Moreno Martínez, Á., Cavlovic, J., Cazzolla Gatti, R., da Conceição Bispo, P., Dewnath, N., Labrière, N., Liang, J., Lindsell, J., Mitchard, E. T. A., Morel, A., Pacheco Pascagaza, A. M., Ryan, C. M., Slik, F., Vaglio Laurin, G., Verbeeck, H., Wijaya, A., and Willcock, S.: The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations, Earth Syst. Sci. Data, 13, 3927–3950, https://doi.org/10.5194/essd-13-3927-2021, 2021.
Schutz, B. E., Zwally, H. J., Shuman, C. A., Hancock, D., and DiMarzio, J. P.: Overview of the ICESat mission, Geophys. Res. Lett., 32, 21, https://doi.org/10.1029/2005GL024009, 2005.
Shendryk, Y.: Fusing GEDI with earth observation data for large area aboveground biomass mapping, Int. J. Appl. Earth Obs. Geoinf., 115, 103108, https://doi.org/10.1016/j.jag.2022.103108, 2022.
Shimada, M., Itoh, T., Motooka, T., Watanabe, M., and Thapa, R.: Generation of the first PALSAR-2 global mosaic 2014/2015 and change detection between 2007 and 2015 using the PALSAR and PALSAR-2, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 3871–3872, https://doi.org/10.1109/IGARSS.2016.7730004, 2016.
Siqueira, P., Armston, J., Chapman, B., Christensen, A., Cushman, K., Das, A., Dubayah, R., Kellndorfer, J., McDonald, K., and Patnaik, C.: Ecosystem Science with NISAR: Final Preparations in The Pre-Launch Period, IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium, 6628–6630, https://doi.org/10.1109/IGARSS53475.2024.10642754, 2024.
Tang, H., Ma, L., Lister, A., O'Neill-Dunne, J., Lu, J., Lamb, R. L., Dubayah, R., and Hurtt, G.: High-resolution forest carbon mapping for climate mitigation baselines over the RGGI region, USA, Environ. Res. Lett., 16, 035011, https://doi.org/10.1088/1748-9326/abd2ef, 2021.
Tang, H., Stoker, J., Luthcke, S., Armston, J., Lee, K., Blair, B., and Hofton, M.: Evaluating and mitigating the impact of systematic geolocation error on canopy height measurement performance of GEDI, Remote Sens. Environ., 291, 113571, https://doi.org/10.1016/j.rse.2023.113571, 2023.
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B., Floury, N., and Brown, M.: GMES Sentinel-1 mission, Remote Sens. Environ., 120, 9–24, https://doi.org/10.1016/j.rse.2011.05.028, 2012.
Touzi, R., Lopes, A., Bruniquel, J., and Vachon, P. W.: Coherence estimation for SAR imagery, IEEE T. Geosci. Remote Sens., 37, 135–149, https://doi.org/10.1109/36.739146, 1999.
Treuhaft, R., Lei, Y., Gonçalves, F., Keller, M., Santos, J. R. d., Neumann, M., and Almeida, A.: Tropical-Forest Structure and Biomass Dynamics from TanDEM-X Radar Interferometry, Forests, 8, 277, https://doi.org/10.3390/f8080277, 2017.
Treuhaft, R. N. and Siqueira, P. R.: Vertical structure of vegetated land surfaces from interferometric and polarimetric radar, Radio Sci., 35, 141–177, https://doi.org/10.1029/1999RS900108, 2000.
Ulaby, F. T., Sarabandi, K., McDonald, K., Whitt, M., and Dobson, M. C.: Michigan microwave canopy scattering model, Int. J. Remote Sens., 11, 1223–1253, https://doi.org/10.1080/01431169008955090, 1990.
University of New Hampshire: GRANIT LiDAR data, University of New Hampshire [data set], https://lidar.unh.edu/map/ (last access: 29 July 2025), 2025.
Wang, Y., Ni, W., Sun, G., Chi, H., Zhang, Z., and Guo, Z.: Slope-adaptive waveform metrics of large footprint lidar for estimation of forest aboveground biomass, Remote Sens. Environ., 224, 386–400, https://doi.org/10.1016/j.rse.2019.02.017, 2019.
Yu, Y. and Saatchi, S.: Sensitivity of L-band SAR backscatter to aboveground biomass of global forests, Remote Sens., 8, 522, https://doi.org/10.3390/rs8060522, 2016.
Yu, Y., Lei, Y., and Siqueira, P.: Large-Scale Forest Height Mapping in the Northeastern U.S. using L-Band Spaceborne Repeat-Pass SAR Interferometry and GEDI LiDAR Data, IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium, 16–21 July 2023, 1760–1763, https://doi.org/10.1109/IGARSS52108.2023.10281488, 2023.
Yu, Y. and Lei, Y: Large-scale Forest Stand Height mapping for the northeast of U.S. and China using L-band spaceborne repeat-pass InSAR and GEDI, Zenodo [data set], https://doi.org/10.5281/zenodo.11640299, 2024.
Yu, Y., Balz, T., Luo, H., Liao, M., and Zhang, L.: GPU accelerated interferometric SAR processing for Sentinel-1 TOPS data, Comput. Geosci., 129, 12–25, https://doi.org/10.1016/j.cageo.2019.04.010, 2019.
Zebker, H. A. and Villasenor, J.: Decorrelation in interferometric radar echoes, IEEE T. Geosci. Remote, 30, 950–959, https://doi.org/10.1109/36.175330, 1992.
Short summary
This study proposes a global-to-local approach for estimating forest height by fusing repeat-pass synthetic aperture radar interferometry and Global Ecosystem Dynamics Investigation (GEDI) data. Using Advanced Land Observing Satellite (ALOS-1) data and a twofold strategy to address temporal gaps, the method produced 30 m gridded forest height mosaics for the northeastern United States and China, demonstrating promising accuracies and offering potential for fusing data from future missions.
This study proposes a global-to-local approach for estimating forest height by fusing...
Altmetrics
Final-revised paper
Preprint