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Abstract. This paper presents a global-to-local fusion approach combining spaceborne synthetic aperture radar
(SAR) interferometry (InSAR) and lidar to create large-scale mosaics of forest stand height. The forest height
estimates are derived based on a semi-empirical InSAR scattering model, which links the forest height to repeat-
pass InSAR coherence magnitudes. The sparsely yet extensively distributed lidar samples provided by the Global
Ecosystem Dynamics Investigation (GEDI) mission enable the parameterization of the signal model at a finer
spatial scale. The proposed global-to-local fitting strategy allows for the efficient use of lidar samples to deter-
mine the adaptive model at a regional scale, leading to improved forest height estimates by integrating InSAR–
lidar under nearly concurrent acquisition conditions. This is supported by fusing the second generation of the
Advanced Land Observing Satellite (ALOS-2) and GEDI data at several representative forest sites. This ap-
proach is further applied to the open-access ALOS InSAR data to evaluate its large-scale mapping capabilities.
To address temporal mismatch between the GEDI and ALOS acquisitions, disturbances such as deforestation
are identified by integrating ALOS-2 backscatter products and GEDI data. A modified signal model is further
developed to account for natural forest growth over temperate forest regions where the intact forest landscape,
along with forest height, remains quite stable and only changes slightly as trees grow. In the absence of detailed
statistical data on forest growth, the modified signal model can be well approximated using the original model
at the regional scale via local fitting. To validate this, two forest height mosaic maps based on the open-access
ALOS-1 data were generated for the entire northeastern regions of the US and China with total area of 18 and 152
million ha, respectively. The validation of the forest height estimates demonstrates improved accuracy achieved
by the proposed approach compared to the previous efforts, i.e., reducing from a 4.4 m RMSE at a few-hectare
pixel size to 3.8 m RMSE at a sub-hectare pixel size. This updated fusion approach not only fills in the sparse
spatial sampling of individual GEDI footprints, but also improves the accuracy of forest height estimates by
20 % compared to the interpolated GEDI maps. Extensive evaluation of forest height inversion against Land,
Vegetation, and Ice Sensor (LVIS) lidar data indicates an accuracy of 3–4 m over flat areas and 4–5 m over hilly
areas in the New England region, whereas the forest height estimates over northeastern China are best compared
with small-footprint lidar validation data even at an accuracy of below 3.5 m and with a coefficient of determina-
tion (R2) mostly above 0.6. Given the achieved accuracy for forest height estimates, this fusion prototype offers
a cost-effective solution for public users to obtain wall-to-wall forest height maps at a large scale using freely
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accessible spaceborne repeat-pass L-band InSAR (e.g., forthcoming NISAR) and spaceborne lidar (e.g., GEDI)
data. These products are available via https://doi.org/10.5281/zenodo.11640299 (Yu and Lei, 2024).

1 Introduction

Forests play a crucial role in the terrestrial ecosystem as
they serve as one of the largest terrestrial carbon pools
(Pan et al., 2011). As identified by IPCC v6 (Masson-
Delmotte et al., 2021) and international forest monitoring
efforts such as the United Nation’s REDD+ program (An-
gelsen, 2009), large-scale (e.g., state, continental, and global)
forest height products are desired to quantify carbon storage
in forested resources due to their close relationship to above-
ground biomass (AGB). These products also help to deter-
mine forests’ roles in climate change mitigation and biodi-
versity conservation (Houghton et al., 2009). In this work,
“forest height” or “forest stand height” (FSH) is referred to as
the medium-footprint (25 m) lidar-determined relative height
at the 98th percentile (RH98) as measured by NASA’s GEDI
lidar mission on board the International Space Station (ISS).

Satellite-based remote sensing represents a cost-effective
method to investigate biophysical parameters of forests.
Commonly used remote sensing methods include optical
and microwave imaging observations, such as passive opti-
cal sensors including Landsat series (Loveland and Dwyer,
2012); lidar missions including ICESat-1/2 (Schutz et al.,
2005; Abdalati et al., 2010) and Global Ecosystem Dy-
namics Investigation (GEDI; Dubayah et al., 2020) mis-
sions; and synthetic aperture radar (SAR) systems such as
Japanese Aerospace Exploration Agency (JAXA)’s ALOS-
1/2 (Rosenqvist et al., 2007, 2014), Sentinel-1 (Torres et al.,
2012), and TanDEM-X (Krieger et al., 2007). Lidar and SAR
are promising for capturing the internal vertical structure of
forests: lidar is fundamentally sensitive to structural details,
while radar detects the three-dimensional distribution of veg-
etation elements (Ulaby et al., 1990). The backscatter infor-
mation from a single SAR image can be used for inferring
the AGB (Santoro et al., 2021) despite the fact that the actual
vertical information remains undetermined. As an extension
of SAR backscatter observation, SAR interferometry (In-
SAR) provides direct information related to the vertical for-
est structure (Treuhaft and Siqueira, 2000). Spaceborne In-
SAR can operate by either single-pass bistatic interferometer
(e.g., TanDEM-X missions; Krieger et al., 2007) or repeat-
pass InSAR (e.g., ALOS-1/2 L-band and Sentinel-1 C-band
missions). The short wavelength operated in former satel-
lites may restrict its sensing capabilities over dense forests,
while temporal decorrelation affects repeat-pass InSAR per-
formance (Zebker and Villasenor, 1992; Monti-Guarnieri et
al., 2020; Lavalle et al., 2012; Ahmed et al., 2011). Lidar has
been widely used for characterizing the forest vertical struc-
ture at a regional scale and can serve as a benchmark for cali-

brating inversion models and forest height estimates (Choi et
al., 2023; Askne et al., 2013). Spaceborne lidar (Schutz et al.,
2005) has been further developed for global ecosystem mon-
itoring. Because of observational constraints, these measure-
ments have been acquired based on such a spatial sampling
technique that collect sparse yet extensive measurements.

For instance, NASA’s GEDI mission is the first space-
borne lidar instrument designed to study ecosystems. Since
2019, GEDI has provided extensively distributed lidar wave-
form measurements covering nearly all global forests. These
waveform observations allow for the extraction of vari-
ous biophysical parameters, such as the canopy height and
leaf area index. However, GEDI collects only discrete foot-
print measurements, spaced approximately 60 m apart in
the along-track direction and 600 m apart in the cross-track
direction. To overcome this limitation and extend GEDI’s
measurements into continuous datasets, several fusion stud-
ies have been conducted. Notable examples include ef-
forts that incorporate radiometric information from optical
sensors, such as NASA’s Landsat (Potapov et al., 2021)
and ESA’s Sentinel-2 (Lang et al., 2022), as well as from
SAR backscatter signals (Shendryk, 2022). However, relying
solely on radiometric information to expand lidar observa-
tions has proven suboptimal, particularly in high-biomass re-
gions where signal saturation occurs (Kalacska et al., 2007;
Imhoff, 1995; Minh et al., 2014).

In contrast, because of its fundamental sensitivity to height
and/or variations in height, the fusion of SAR interferometry
and GEDI has gained much interests. For example, making
joint use of TanDEM-X and GEDI data has been assessed
and demonstrated for achieving wall-to-wall forest height
and AGB mapping (Qi and Dubayah, 2016; Choi et al., 2023;
Guliaev et al., 2021; Qi et al., 2019). Without temporal decor-
relation effects, TanDEM-X data offer opportunities to lever-
age very high resolution observations for addressing spatially
heterogeneous landscapes. However, the forest height was in-
verted in these studies based on the Random Volume Over
Ground (RVoG) model (Treuhaft and Siqueira, 2000; Cloude
and Papathanassiou, 1998), and an external constraint was
induced by GEDI waveform information. That is, only the
mean waveform information across the scene in these stud-
ies was used for model-based inversion, implying an under-
lying assumption that the forest objects over the scene share
a similar vertical structure. This may lead to a degraded per-
formance when dealing with spatially heterogeneous forests.
To address this, Qi et al. (2025) proposed a regional post-
processing correction model to refine suboptimal height es-
timates, while Hu et al. (2024) exploited local ICESat-2 li-
dar information, using regional polynomials and an adaptive
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window, to estimate equivalent forest phase centers under
homogeneous forest and terrain conditions. Additionally, a
potential limitation of TanDEM-X observations is the insuf-
ficient penetration capability over dense forests due to the
short wavelength of the X-band (∼ 3.1 cm) (Kugler et al.,
2014). This underlines the need for longer-wavelength SAR
systems (e.g., L-band) to enhance sensitivity in dense forest
environments.

Temporal decorrelation has been a widely studied topic in
InSAR research (Rocca, 2007; Ahmed et al., 2011; Bhoga-
purapu et al., 2024). Zebker and Villasenor (1992) proposed
a Gaussian model to analyze oceanic scenarios, while Monti-
Guarnieri et al. (2020) summarized the signal models tailored
for vegetated scenarios. Askne et al. (1997) introduced a co-
ordinate dependence of the vertical motion profile to ana-
lyze InSAR temporal decorrelation effects caused by wind.
Building upon the well-known RVoG model, several signal
models have been developed to explicitly incorporate tempo-
ral decorrelation effects (Lavalle et al., 2012; Papathanassiou
and Cloude, 2003; Lei et al., 2017a).

This study employs the RVoG-based temporal decorrela-
tion model (Lei et al., 2017a) to invert forest height. The
model-based inversion was first demonstrated using a rela-
tively small airborne lidar reference strip to generate a for-
est height mosaic over a two-state region in the northeastern
US (Lei et al., 2018). Given the limited availability of lidar
datasets at that time, scene-wide constant model parameters
for the relationship between the InSAR temporal decorrela-
tion and lidar observations were assumed, and the overlap-
ping area between InSAR scenes was used to propagate the
lidar information throughout the adjacent InSAR scenes. The
advent of NASA’s Global Ecosystem Dynamics Investiga-
tion (GEDI) mission has since enhanced this methodology
by integrating local GEDI samples directly into the inversion
framework (Lei and Siqueira, 2022; Yu et al., 2023). This in-
tegration enables spatially adaptive calibration of model pa-
rameters, overcoming prior limitations of constant parameter
assumptions and improving inversion accuracy in heteroge-
neous forest land covers.

This paper further removes the assumption of a spatially
constant temporal change model that was made in the pre-
vious efforts and develops a new inversion approach based
on a two-stage (global-to-local) inversion strategy. By effi-
ciently leveraging regional GEDI samples, this approach cal-
ibrates a semi-empirical, semi-physical repeat-pass InSAR
model at a finer spatial scale, substantially improving forest
height inversion accuracy. The method assumes that the tem-
poral decorrelation model remains spatially invariant at the
regional scale while permitting variability in forest height ob-
servations within those regions. This approach is validated by
fusing ALOS-2 InSAR and GEDI data acquired under nearly
concurrent conditions. Furthermore, the approach is applied
to the open-access ALOS InSAR data for evaluating its large-
scale mapping capability. To address the temporal mismatch
between the ALOS and GEDI acquisition, forest disturbance

can be detected by fusing SAR backscatter and lidar data
under nearly concurrent conditions. Furthermore, a modi-
fied model is developed to account for the natural growth
of forests over temperate forest regions where the intact for-
est landscape (IFL) exhibits slow changes in height. Without
available forest growth data, the modified signal model can
be well approximated using the original signal model at the
regional scale through local fitting. Two 30 m gridded forest
height mosaics were generated for the northeastern regions
of US and China. Validation of the generated forest height
mosaics against extensive airborne lidar observations demon-
strates enhanced inversion accuracy at sub-hectare pixel size.
The key contribution of this paper lies in the use local GEDI
information for radar–lidar data fusion, enabling large-scale
and efficient forest height mapping using open-access space-
borne data, such as GEDI and forthcoming NISAR (Siqueira
et al., 2024; Kellogg et al., 2020) data.

This paper is structured as follows: Sect. 2 describes the
study areas and remote sensing datasets, Sect. 3 details the
proposed inversion framework, and Sect. 4 validates forest
height estimates across diverse forest sites in the northeast-
ern US and China. Section 5 discusses the implications and
limitations of the methodology, and Sect. 8 concludes this
study.

2 Study area and datasets

2.1 Study area

This paper focuses on the northeastern regions of the US and
China. These regions contain transitional forests composed
of both coniferous and broad-leaved species. As shown in
Fig. 1, the New England region in the northeastern US (in-
cluding the states of Maine, New Hampshire, Vermont, Mas-
sachusetts, Connecticut, and Rhode Island) is selected for the
generation and validation of the large-scale mosaic of forest
height (covering a total area of 18 million ha) due to the avail-
ability of ample airborne lidar datasets. Forests in this area
are primarily dominated by coniferous forests (red pine, bal-
sam fir, hemlock etc.) and northern hardwoods (maple, oak,
beech, etc.). These forests exhibit stable intact forest land-
scapes (IFLs) and canopy heights, with changes driven pri-
marily by natural growth rather than anthropogenic distur-
bance (Riofrío et al., 2023).

Another large-scale forest height mosaic is also generated
over the northeast of China with a total area of 152 mil-
lion ha. As shown in Fig. 2, the forest height mosaic for
China covers five provinces: Hebei, Jilin, Liaoning, Inner
Mongolia, and Heilongjiang. Note that Jilin and Inner Mon-
golia provinces were not fully covered as only forested ar-
eas within the GEDI observation coverage (< 51.6° N) are
addressed. The forests in northeastern China can be primar-
ily grouped into four primary regions: (1) deciduous conif-
erous forest region located at the northernmost parts of In-
ner Mongolia and Heilongjiang provinces, (2) temperate
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Figure 1. Study area and validation sites for the New England region in the US. The generated forest height mosaic map covers the states
of Maine, New Hampshire, Massachusetts, Vermont, Connecticut, and Rhode Island. The inversion results are validated against the large-
footprint (25 m) LVIS data acquired in either 2009 or 2021 over the validation sites (denoted by red dot markers). At the White Mountain
National Forest (WMNF) site, small-footprint GRANIT lidar data are also used for validation after reprocessing into equivalent RH98 metric
maps. The features of the validation sites are summarized in Table 1. The optical basemap is from © Microsoft Bing Maps.

mixed-forest region (comprising evergreen coniferous and
deciduous broad-leaved species) primarily distributed in Hei-
longjiang and Jilin provinces, (3) northern temperate mixed-
forest subregion situated in Liaoning province, and (4) tem-
perate steppe region located partly in Hebei province and
partly in Inner Mongolia province.

The northeastern regions of the US and China were se-
lected as study areas for two key reasons. First, both regions
provide access to extensive airborne lidar datasets: NASA’s
Land, Vegetation, and Ice Sensor (LVIS) (Blair et al., 1999)
in the US and small-footprint airborne lidar data in China.
Second, the performance of forest height inversion can be as-
sessed in a unique way: the New England region offers abun-
dant GEDI calibration sites, while the northeastern part of
China is situated at a comparable region at a similar latitude
but without dedicated GEDI calibration sites.

Several experimental and validation sites are selected
across the northeastern regions of the US and China, with
their relevant information summarized in Tables 1 and 2,
respectively. In the New England region, validation is con-
ducted at various sites including the Howland Forest site in
Maine, the Harvard Forest site in Massachusetts, the White
Mountain National Forest (WMNF) site in New Hampshire,

the Green Mountain National Forest (GMNF) site in Ver-
mont, and the Naugatuck State Forest (NSF) site in Connecti-
cut. These forest validation sites are covered by medium-
footprint (25 m) LVIS data acquired in either 2009 or 2021.
Particularly, the forest height inversion over the WMNF site
was evaluated using GRANIT airborne laser scanning (ALS)
data acquired in 2011 (Haans et al., 2009), with the canopy
height product extracted from the waveform data at a raster
sampling spacing of 2 m.

Regarding northeastern China, evaluation was performed
at one forest site in each province: the Mengjiagang For-
est site in Heilongjiang province, the Dagujia Forest site
in Liaoning province, the Saihanba Forest site in Hebei
province, the Hubao National Park in Jilin province, and the
Genhe Forest Bureau in Inner Mongolia province. Valida-
tion of the forest height product across all the forest valida-
tion sites in China was done by comparisons with the small-
footprint (0.5–1 m) ALS data.

To provide a preliminary assessment of forest disturbances
in these two regions, forest disturbance maps derived from
global forest change products (Hansen et al., 2013) are shown
in Figs. 3 and 4.
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Figure 2. Study area and validation sites in northeastern China. Five provinces are covered in the generated forest height mosaic: Jilin,
Liaoning, Hebei, Heilongjiang, and Inner Mongolia. The performance of the forest height inversion is assessed by comparison with small-
footprint (0.5–1 m) lidar data at the validation forest sites (indicated by the red diamond markers) in each province. The features of the
validation sites are summarized in Table 2. The optical basemap is from © Microsoft Bing Maps.

Table 1. The forest validation sites covered by the airborne lidar observation in New England, US.

Validation Location Dominant Lidar data Slope ALS validation
species acquisition year statistics area (ha)

Howland Forest 68°44′W,
45°12′ N

Red spruce (Picea
rubens Sarg.), eastern
hemlock

2009 Mean: 2.3°
SD: 5.3

4.77× 104

Harvard Forest 72°11′W,
42°31′ N

Red oak, red maple,
black birch, white pine,
eastern hemlock

2021 Mean: 5.5°
SD: 4.6°

4.87× 104

White Mountain National
Forest

71°18′W,
44°6′ N

Red Spruce, eastern
hemlock, American
beech, red maple

2011 Mean: 9.7°
SD: 8.6°

1.20× 104

Green Mountain National
Forest

73°04′W,
43°57′ N

Sugar maple, American
beech, red maple,
yellow and paper birch

2021 Mean: 10.4°
SD: 7.6°

8.91× 104

Naugatuck State Forest 73°00′W
41°27′ N

Northern red oak,
mixed upland
hardwoods, yellow
poplar

2021 Mean: 5.2°
SD: 4.5°

3.58× 104
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Table 2. The forest validation sites covered by the ALS validation data in northeastern China.

Validation Location Dominant Lidar data Slope ALS validation
species acquisition year statistics area (ha)

Mengjiagang Forest site 130°42′ E,
46°25′ N

Coniferous plantations
(Larix gmelinii and
Pinus syvestris)

2017 Mean: 6.6°
SD: 5.6°

3.78× 104

Dagujia Forest site 125°′ E,
43°21′ N

Coniferous plantations
(Larix kaempferi,
Pinus koraiensis, etc.)

2018 Mean: 13.5°
SD: 7.4°

3.66× 104

Saihanba Forest site 117°18′ E,
42°24′ N

Larix
principis-rupprechtii,
Pinus syvestris, and
Betula platyphylla

2018 Mean: 8.7°
SD: 7.3°

2.98× 104

Genhe Forest bureau 121°32′ E,
50°47′ N

Larix gmelinii, Betula
platyphylla, Populus
davidiana

2022 Mean: 7.0°
SD: 5.4°

1.09× 105

Hubao Forest site 130°12′ E,
43°28′ N

Mongolian oak,
basswood, Betula
platyphylla

2018 Mean: 8.7°
SD: 7.4°

3.99× 105

Figure 3. Forest disturbance map of the New England region (2007–2023) derived from the Global Forest Change dataset (Hansen et al.,
2013). The binary classification distinguishes undisturbed areas (0) from disturbed areas (1) within the period. The optical basemap is from
© Microsoft Bing Maps.

Earth Syst. Sci. Data, 17, 4397–4429, 2025 https://doi.org/10.5194/essd-17-4397-2025



Y. Yu et al.: Mapping forest height with lidar–SAR fusion: northeastern US and China 4403

Figure 4. Forest disturbance map of northeastern China (2007–2023) derived from the Global Forest Change dataset (Hansen et al., 2013).
The binary classification distinguishes undisturbed areas (0) from disturbed areas (1) within the period. Province names are shown in green
on the central map. The optical basemap is from © Microsoft Bing Maps.

2.2 Spaceborne and airborne remote sensing datasets

The freely accessible L-band InSAR data from the Japanese
Aerospace Exploration Agency (JAXA)’s Advanced Land
Observing Satellite-1 (ALOS-1) mission were used for gen-
erating the InSAR correlation observations. In addition,
some radar data from ALOS-2 (a follow-up mission of
ALOS-1) were also employed as case studies for validat-
ing the fusion of radar–lidar under concurrent conditions.
Furthermore, the spaceborne lidar waveform-based metrics
(RH98 as a proxy for forest height) from the GEDI mis-
sion were used for parameterizing the temporal decorrelation
model.

2.2.1 Spaceborne InSAR datasets

Global fine beam dual-polarization (FBD) SAR images with
a spatial grid of 10× 3 m (for range and azimuth directions)
were collected by the ALOS-1 satellite from 2007 to 2010,
with a repeat cycle of 46 d. To generate a forest height mo-
saic, 100 cross-polarized ALOS-1 InSAR scenes (identified
by one pair of frame and orbit numbers) were processed to
cover the New England region in the US, whereas more than
600 InSAR scenes were processed for covering the north-
east of China. The InSAR preprocessing was done by the
Jet Propulsion Laboratory (JPL)’s InSAR Scientific Comput-

ing Software (ISCE) software (Rosen et al., 2012). It was re-
ported by Lei and Siqueira (2014) that the ALOS-1 InSAR
observations acquired during the summer/fall time frame of
2007 and 2010 tended to have higher InSAR coherence. In
practical processing, multiple cross-polarized interferograms
during the lifetime of ALOS-1 (2007–2011) were formed and
processed for each scene based on different combinations of
acquisition dates, allowing for the identification of the best
InSAR pair for each ALOS-1 observation scene.

As a follow-on mission to ALOS-1, ALOS-2 had a shorter
revisiting period (14 d), resulting in a better InSAR corre-
lation behavior. The acquisition started from 2016, allow-
ing for nearly concurrent observations with respect to GEDI
samples. However, the acquisition strategy and limited ac-
cess to the high-resolution dual-polarized strip-map data
have made it more difficult to form proper InSAR pairs and
perform large-scale mapping. The grid of ALOS-2 images in
FBD mode is at a grid of 8× 4 m for range and azimuth direc-
tions. A window size of 4× 8 looks is used for the coherence
estimation, resulting in an average pixel size of 30 m.

In this study, the use of limited ALOS-2 data is devoted
to demonstrating the proposed approach in the ideal case.
The large-scale mapping capabilities were demonstrated us-
ing free-access ALOS-1 data over the temperate forest re-
gions. It is also noted that there is a time discrepancy be-
tween the acquisition dates of ALOS-1 and GEDI. This dis-
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crepancy is addressed using the twofold solution as detailed
in Sect. 3.3. As for the abrupt discrepancy due to forest dis-
turbance (e.g., logging, deforestation, and fire) that usually
results in no/short vegetation with small backscatter values,
replacing the InSAR inverted forest estimates with those de-
rived from the appropriate ALOS-2 backscatter mosaic map
for short vegetation (as shown in Sect. 3.1) can detect the dis-
turbed forest areas, so the study area is mainly concentrated
on temperate and boreal forests, the heights of mature tem-
perate forests (intact forest landscape) remain almost stable
with slight changes. Nevertheless, a simulation in Sect. 3.4.3
shows that the approach of this study can approximate the
height of the forests subject to natural growth at a regional
scale. In other words, all the InSAR-based height inversions
are calibrated to the acquisition time of GEDI and thus best
compared with the concurrent airborne lidar validation data.

2.2.2 Spaceborne lidar datasets

As the first spaceborne lidar mission to characterize ecosys-
tem structure and its dynamics, the NASA’s GEDI mission
was launched in December 2018. GEDI provides near-global
measurements of forest structure metrics from 51.6° S to
51.6° N until 2024. With three lasers mounted, eight paral-
lel tracks of samples at a footprint of 25 m are simultaneously
collected. The spatial separation between samples during one
data take is 60 m in the along-track direction and 600 m in
the cross-track direction. The GEDI RH98 metric is selected
as an appropriate proxy for indicating forest canopy height
within each footprint because it has a lower sensitivity to er-
rors as compared to the RH100 metric (Hofton et al., 2020).
After filtering out GEDI samples with lower penetration sen-
sitivities (e.g., 95 % sensitivity, 50 m maximum elevation dif-
ference between GEDI and TanDEM-X measurements), the
remaining L2A version 2 GEDI samples are used for cali-
brating the inversion model.

2.2.3 Airborne lidar data

Medium-footprint lidar data

A significant amount of airborne full-waveform lidar data
was collected across the US using the LVIS sensor. The li-
dar data were processed into RH98 maps with a 25 m grid.
Specifically, lidar data over the Howland Forest site in Maine
were obtained in 2009. LVIS data acquired in 2021 for
GEDI calibration cover all the other forest sites in the New
England region, which were classified into four parts based
on the state boundaries of New Hampshire, Vermont, Mas-
sachusetts, and Connecticut.

Small-footprint lidar data

In some sites, small-footprint lidar data have to be used
for validation. The validation at the WNMF site utilized

Figure 5. Block diagram of the workflow for generating forest
height mosaics.

GRANIT lidar data, which has a 2 m footprint and was ac-
quired in 2011. All the forest heights in northeastern China
were validated using small-footprint lidar data. The airborne
lidar data, with an average point density of 6 pts m−2 over
Hubao National Park, were acquired using an airborne li-
dar system owned by the Chinese Academy of Forest In-
ventory and Planning. The observations covering all other
forest sites in the northeastern China were acquired during
2017–2022 using the airborne remote sensing system devel-
oped by the Chinese Academy of Forestry (Pang et al., 2016),
which has an average point density of 12 pts m−2. It should
be noted that validating the forest height estimates against
airborne LVIS observations is not straightforward as the foot-
print of these airborne data is much smaller than the footprint
of GEDI. To address this footprint difference, an equivalent
RH98 metric (referred to as ERH98 hereafter) needs to be
extracted at the position of the 98th percentile of the lidar
waveform or from the histogram formed by high-resolution
canopy height model (CHM) estimates within a matching
footprint size. Following this procedure, all small-footprint
lidar data were reprocessed to generate forest height esti-
mates based on the ERH98 metric using a 25 m footprint

2.2.4 Forest and non-forest maps

Non-forest areas including waterbodies and urban areas were
masked out using the 2021 National Land Cover Database
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Figure 6. An illustrative example of the processing steps at the Howland Forest site: (a) the input ALOS-1 coherence magnitude map, (b) the
GEDI RH98 samples, (c) the forest height estimates based on InSAR coherence information, (d) the backscatter-based height estimates, (e)
the final forest height map after replacing the estimates of short trees in (c) with the collocated pixels in (d). Panel (f) shows the airborne
LVIS lidar validation data.

(Homer et al., 2015) and the 2021 ESRI Global Land Cover
Map (Karra et al., 2021).

2.2.5 Backscatter mosaic map

This study used the global radar backscatter products gener-
ated by JAXA using ALOS-1/2 FBD images (Shimada et al.,
2016) after radiometric and geometric calibration (includ-
ing slope effects correction). Specifically, the global cross-
polarized backscatter products from 2019 and 2020 over the
northeast of the US and China were utilized to obtain height
estimates of short vegetation. These 2-year products were
used to account for missing data gaps and backscatter cali-
bration inconsistencies and to best match the acquisition time
of the validation airborne lidar data.

3 Methodology

This section first outlines the processing workflow and im-
plementation steps and then provides a detailed analysis of
the methodological principles.

3.1 Processing workflow

The entire processing workflow is illustrated in Fig. 5. Fig-
ure 6 provides a zoomed-in example of global-to-local for-
est height inversion over the Howland Forest site. The stan-
dard interferometric preprocessing (including coregistration,
topographic-phase compensation, interferometric formation,
and geocoding steps) for multiple ALOS-1 InSAR pairs is
performed using JPL’s ISCE software, in which the parallel
computing capabilities of graphic processing units (GPUs) is
utilized to enhance the processing efficiency, generating the
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InSAR coherence map as shown in Fig. 6a. After matching
the GEDI samples onto the grid of InSAR scene (the collo-
cated GEDI RH98 samples are shown in Fig. 6b), the global-
to-local inversion for each scene is carried out as follows:

1. Global fitting. As illustrated in Sect. 3.3, a global fitting
is first performed to obtain an initial guess of temporal
parameters (S0, C0) (see Eq. 3) using all the available
GEDI RH98 samples and corresponding InSAR obser-
vations over each InSAR scene. We noted earlier that
a moderate forest disturbance may result in an overes-
timation of forest height for global fitting (Lei et al.,
2017b), and a re-weighted iterative global fitting is in-
stead used to remove the gross errors induced by forest
disturbances after the first iteration.

2. Local fitting. A local fitting is then conducted
around each GEDI sample within a local boxcar
window with a constraint of a smaller searching
range in the vicinity of the initial estimates, i.e.,
(S ∈ [S0− rS,S0+ rS] ,C ∈ [C0− rC,C0+ rC]),
where rS and rC represent the searching region for
two parameters, respectively. Spatial distance-based
weights (e.g., Fig. 7) are preferred in local fitting for
preserving detailed information and ensuring the robust
inversion over large-scale application. An expensive
computational burden is implied for the local fitting so
that a GPU-based implementation (Yu et al., 2019) is
developed for enhancing processing efficiency.

3. Interpolation and inversion. The irregularly dis-
tributed temporal decorrelation parameters, i.e.,
{S (i,j ) ,C (i,j )}, with i,j denoting the latitude and
longitude for each GEDI sample, are interpolated onto
the regular grid of the InSAR coherence magnitude
map based on the Delaunay-triangulation-based natural
neighborhood interpolation. The forest height is then
inverted on a pixel-by-pixel basis using the InSAR
coherence observation and the inversion model (gener-
ating wall-to-wall forest height mapping as shown in
Fig. 6c).

4. Backscatter-based estimates. The forest height esti-
mates of short vegetation in the previous inversion are
replaced by the corresponding backscatter-based esti-
mates (see Fig. 6d): the GEDI RH98 samples over
bare ground and short vegetation land covers (i.e., 0≤
RH98≤ 10 m), along with the corresponding backscat-
ter information, are fitted using an exponential model,
which is then used to obtain backscatter-to-height esti-
mates (Lei et al., 2019). Short trees are identified using
a criterion where backscatter-derived forest height es-
timates fall below 10 m based on the maximum height
of shrubs (Lawrence, 2013; Allaby, 2012) and empirical
studies (Lei et al., 2019).

5. Mosaicking. A mosaicking approach is finally carried
out to pick up the best InSAR pairs based on the pre-
inversion metric and mosaicking the overlapping area
using the pixels with a better goodness of fit as dis-
cussed in Sect. 3.5.

3.2 Sinc inversion model

After standard InSAR preprocessing (including coregistra-
tion, topographic-phase compensation, etc.), a complex In-
SAR correlation observation between two SAR images can
be derived by

γ =
〈I1 · I

∗

2 〉L√
〈Ii · I

∗

1 〉L〈I2 · I
∗

2 〉L
, (1)

where I1 and I2 represent two SAR images from the first
and second acquisition, respectively, and the operator 〈·〉L is
used for spatial averaging of L looks. As a metric to mea-
sure similarity, the complex InSAR correlation accounts for
various forms of decorrelation (Zebker and Villasenor, 1992;
Gatelli et al., 1994; Treuhaft and Siqueira, 2000). If we con-
sider a pair of SAR images with short spatial separation over
forested area, InSAR coherence can be expressed as

|γ | = |γSNR| ·
∣∣γgeo

∣∣ · |γv&t| , (2)

where γSNR represents the decorrelation induced by the
radar-return signal-to-noise ratio and γgeo denotes the geo-
metric decorrelation due to the difference between two look-
ing angles. After accounting for signal-to-noise ratio (SNR)
decorrelation and performing common band filtering (Gatelli
et al., 1994), the remaining component of correlation, γv&t, is
only related to temporal changes and the distribution of scat-
terers in the vertical direction. The spatial separation for one
InSAR pair is usually indicated by the interferometric verti-
cal wavenumber κz (unit rad m−1) (Bamler and Hartl, 1998).
A small value of κz (less than 0.05 rad m−1) is suggested by
the analysis in Lei and Siqueira (2014).

For moderate and large temporal baselines, moisture-
induced dielectric fluctuations and wind-induced random
motion are identified as the primary factors influencing tem-
poral decorrelation (Lavalle et al., 2012; Askne et al., 1997).
Lei et al. (2017b) introduced a modified Random Volume
over Ground (RVoG) model that accounts for the coupled ef-
fects of dielectric changes and random motion in spaceborne
ALOS-1/2 observations. The model is further simplified by
assuming negligible ground scattering under cross-polarized
(HV) observations and short spatial baselines and establishes
a semi-empirical formula linking the cross-polarized InSAR
coherence magnitude (γHV

v&t ) to forest height (hv):

∣∣γHV
v&t
∣∣= S · sinc

(
hv

C

)
, with 0≤ hv ≤ πC, (3)

where S (ranging from 0 to 1; unitless) is a parameter primar-
ily connected to moisture-induced dielectric changes in the
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Figure 7. An illustrated example of distance-based weight setting
for a 0.96 km (32 by 32 pixels) wide moving boxcar window.

target and C (a positive value that has units of meters) relates
to the wind-induced random motion. In practice, ground scat-
tering remains present in cross-polarized signals, particularly
for low-frequency SAR observations. However, it is typically
minimal, with a ground-to-volume ratio generally lower than
0.1. This residual ground scattering can bias forest height es-
timates, particularly for short or very tall forest stands. It is
also important to note that this formula is valid when the
interferometric vertical wavenumber is below 0.15 rad m−1

and is most reliable when it is smaller than 0.05 rad m−1 (Lei
and Siqueira, 2014), which is consistent with the acquisition
geometry of ALOS-1/2 InSAR acquisition. Otherwise, the
presence of volumetric decorrelation will result in a compro-
mised inversion performance.

3.3 Fusing concurrent radar–lidar acquisitions by a
global-to-local inversion approach

Determination of the above temporal decorrelation model (3)
has to resort to ancillary forest height data, e.g., field in-
ventory data and lidar measurements. A global-to-local pro-
cedure is used for determination since regional forests are
usually relatively homogeneous, leading to the construction
of ill-conditioned observations for model determination. A
global initial guess is firstly needed for constraining the so-
lution space for subsequent fitting.

For one InSAR scene, a constant scene-wide behavior
of the temporal change parameters is firstly assumed, e.g.,
(Sscene,Cscene). For one candidate pair of these parameters,
forest height estimates ĥv are derived by solving model (3)
based on InSAR coherence magnitude. A covariance matrix
between ĥv and the ancillary forest height ha from lidar and
its eigen-decomposition are expressed by

6 =

[
cov

(
ĥv, ĥv

)
cov

(
ĥv,ha

)
cov

(
ĥv,ha

)
cov(ha,ha)

]
=Q3Q−1, (4)

where the 2×2 matrix Q contains the eigen vectors, the 2×2
diagonal matrix 3 comprises the eigen values. The function
cov(A,B) denotes the covariance between the two vectors A
and B:

cov(A,B)=
1

N − 1

∑N

i=1
(A−µA) · (B −µB ) , (5)

with µA and µB being the mean values of two input vectors.
Two fitting metrics, i.e., slope k and bias b, can be extracted
out of the constructed covariance matrix:

k =
Q21

Q11
, (6)

b = 2
µĥv
−µha

µĥv
+µha

. (7)

By defining a figure of merit, i.e., approaching zero bias and
unity slope (i.e., the 1 : 1 line), a pair of temporal parameters
is determined by minimizing the objective function:

{Sscene,Cscene} = argmin
(
b2
+ (k− 1)2

)
. (8)

Resolving model parameters (Sscene,Cscene) is referred to
as global fitting strategy. The effectiveness of this approach
was demonstrated over the northeastern US (Lei et al., 2018)
with well-constructed observation vectors including suffi-
cient samples ranging from low trees to tall trees.1

Because temporal change factors tend to be spatially vary-
ing with respect to vegetation types and weather/climate con-
ditions, inversion performance for solely global fitting as
described above is expected to deteriorate when applied to
large-scale inversion. With the availability of GEDI data, a
substantial improvement is expected by expressing the decor-
relation model at a finer spatial scale. A preliminary effort
was made in Lei and Siqueira (2022) where the determi-
nation of (S,C) is carried out on each GEDI lidar sam-
ple hgedi (i,j ) to obtain S (i,j ) and C (i,j ), where i and j
represent latitude and longitude for each GEDI sample. As
only one sample cannot provide sufficient observations to re-
solve two unknowns, an external constraint on the ratio of
S (i,j )/C (i,j ) was introduced.

Each individual GEDI measurement is subject to errors
caused by artifacts such as terrain slopes (Wang et al., 2019)
and systematic geolocation inaccuracies ranging from sev-
eral meters to tens of meters (Tang et al., 2023). Additionally,
the penetration of the lidar signal is sometimes limited within
GEDI’s coverage beams. InSAR coherence estimates also
experience measurement uncertainty (Rodriguez and Martin,
1992; Touzi et al., 1999). To address these challenges, spatial
averaging is commonly used to reduce errors for both coher-
ence and GEDI measurements.

1This fitting metric has proven to be more robust than the Eu-
clidean norm for a data cloud with a large measurement uncertainty
(Lei and Siqueira, 2014).
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In this context, a local fitting step is introduced to acquire
temporal change factors at a finer spatial scale using exten-
sive GEDI information: a circular window (32 pixels, 960 m
wide) is set for each GEDI sample to collect regional samples
and their corresponding InSAR coherence magnitude obser-
vations. A Euclidean norm-based fitting is used since a local
window tends to encompass homogeneous vegetation with
similar heights so that the global k− b fitting metric is no
longer robust. Assuming consistent temporal change factors
within each local window, the factors can be determined by

{S (i,j ) ,C (i,j )} = argmin
∑

(r,c)εW(
ĥv (i+ r,j + c)−hgedi (i+ r,j + c)

)2
, (9)

where W is the local searching window in the geographic
coordinate system, with r and c being local indices along the
latitude and longitude direction within the local window. To
preserve detailed information, weighting factors based on the
distance or similarity metric are used in local fitting, as in

{S (i,j ) ,C (i,j )} = argmin∑
(r,c)εW

[
w(r,c)

(
ĥv (i+ r,j + c)−hgedi (i+ r,j + c)

)]2
∑

(r,c)εW
(w (r,c))2 , (10)

where the weights can be set based on spatial distances be-
tween neighboring pixels and the central pixel within the
local window or adapted depending on land cover type
(Deledalle et al., 2014). For computational efficiency and
versatility, the spatial-distance-based weight setting, as ex-
emplified in Fig. 7, is used for inversion in this work. The
optimal local window size is determined by minimizing the
root mean square error (RMSE) of forest height estimates for
moderate-to-tall trees (> 10 m) across diverse window size
configurations validated against independent lidar datasets.
The selection of window size is always a compromise be-
tween smooth and detailed information. This window size
is selected here to include enough samples for model fitting
while maintaining local detailed information. As the param-
eters were determined on the grid of GEDI samples, a post-
interpolation is needed to obtain gridded temporal parame-
ters for matching the InSAR scene.

It should be noted that this physical scattering model (3)
is established for forested areas, meaning it does not ade-
quately address other land cover types, such as waterbod-
ies and urban areas. Furthermore, actively managed regions
(e.g., cropland) are subject to additional decorrelation effects
induced by human activities. It was suggested to use L-band
backscatter-based height estimates to improve the inversion
in these instances. The backscatter-based inversion are de-
rived based on an exponential model (Yu and Saatchi, 2016;
Lucas et al., 2006) which can be determined using the simi-
lar global-to-local routine as the proposed approach. In prac-

Figure 8. Example of fusing the ALOS-2 backscatter products and
GEDI to detect forest disturbances as defined by Global Forest
Change products (Hansen et al., 2013) over a representative region
in the New England region. Yellow pixels represent forest distur-
bance areas detected by backscatter-based estimates, while red pix-
els indicate disturbed areas as not identified by these estimates. The
optical basemap is from © Microsoft Bing Maps.

tice, only the global fitting strategy is used for model param-
eterization as it provides accurate estimates as compared to
global-to-local fitting (slightly worse), while it maintains an
affordable computational expense. After that, the estimates
of active land management areas in coherence-based inver-
sion are replaced by the corresponding backscatter-based es-
timates.

3.4 Fusing non-concurrent radar–lidar data

3.4.1 Addressing forest disturbance or deforestation

The acquisition times between repeat-pass InSAR and space-
borne lidar usually do not overlap in practice. For exam-
ple, the ALOS-2 InSAR acquisitions would match those of
GEDI ideally; however, there are not many ALOS-2 InSAR
pairs available in the data archive that are freely accessible.
In contrast, ALOS-1 InSAR pairs are consistently available
covering the study regions; however, there is an approximate
10-year time gap. To address this issue, a twofold solution
is provided in Sect. 3.4. The temporal evolution of forests
is primarily influenced by two factors: forest disturbance (in-
cluding deforestation) and natural growth. Forest disturbance
leads to forest loss and, in some cases, conversion to other
land uses, such as bare ground. This change is poorly char-
acterized by the signal model (3) and must be addressed in
advance.

The height of the bare ground and short vegetation (≤
10 m) (Lawrence, 2013; Allaby, 2012) is better inverted by
jointly using the SAR backscatter and spaceborne lidar data
compared to the InSAR correlation-based approach (Lei,
2016). Moreover, annual global backscatter products are
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Figure 9. (a) Scatterplot of forest height growth rate versus forest height derived from a comparison of LVIS forest height estimates between
2009 and 2021 at the Harvard Forest site, Massachusetts. The red line represents the fitted growth rate function of forest height in 2009 over
the high-density region. (b) The fitted forest height growth rate functions at typical forest sites of other states in the New England region.

Figure 10. Simulation results comparing the original sinc model
and its modified version incorporating natural forest growth at
the Harvard Forest site (with forest growth rate function of G=
−0.0134 ·hv (t1)+0.464). The blue line represents the original sinc
model with established temporal parameters, while the red line
shows the modified model accounting for forest height growth. The
dashed orange line highlights the region that cannot be character-
ized by the modified model. The y axis represents the coherence
magnitude estimated from Eqs. (3) and (15).

available from the archive of JAXA, enabling the fusion of
the ALOS-2 SAR backscatter information and spaceborne
lidar under nearly concurrent acquisition conditions. Fig-
ure 8 presents an example of forest loss detection by SAR
backscatter-based inversion within the New England region:
the majority of forest disturbance areas as defined by the
global forest change products (Hansen et al., 2013) were

detected by the backscatter-based estimates. Based on the
statistics over the New England region, 72 % of disturbed ar-
eas have been detected using the backscatter-based estimates.

Short forests undergoing rapid temporal height variations
within short intervals cannot be adequately captured by cur-
rent ALOS-1/2 datasets. These dynamic changes can be bet-
ter resolved using dense time series data from TanDEM-X
(Treuhaft et al., 2017; Lei et al., 2018), Sentinel-1 (Bhoga-
purapu et al., 2024), and the forthcoming NISAR mission.

3.4.2 A modified model considering the natural forest
growth

The natural growth of forests remains another concern. In
temperate forest regions, the intact forest landscape (IFL),
along with forest height, remains quite stable and only
changes slightly as trees grow (Potapov et al., 2008; Riofrío
et al., 2023). In the New England region, the growth rate was
found to be inversely proportional to forest height. This find-
ing is based on a comparison between ICESat-1 or LVIS lidar
data acquired before 2009 and LVIS lidar data collected in
2021. Using these datasets, the temporal evolution of forest
height at two epochs is modeled as follows:

hv (t2)= hv (t1)+G · (t2− t1) , (11)

where hv represents the time-dependent forest height and
t1andt2 denote the initial and subsequent epochs, respec-
tively. Although the forest growth rate is derived by compar-
ing pre- and post-growth states, it can be modeled based only
on forest height data from either epoch, for example, using
the initial forest height hv (t1):

G= a ·hv (t1)+ b, (12)

where a and b are linear coefficients. If a dense time series of
forest height data over certain forest land cover is provided,
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Figure 11. Approximating the modified sinc model with the original model by aligning two points at 10 and 30 m: the newly fitted parameters
at (a) Harvard Forest sites, (b) the forest site in Vermont, and (c) Howland Forest site. The y axis represents the coherence magnitude
estimated from Eqs. (3) and (15).

Figure 12. Approximating the modified sinc model with the original model by aligning two points at either 10 and 15 m or 25 and 30 m: the
newly fitted parameters at (a) the Harvard Forest site, (b) the White Mountain National Forest site, and (c) the Howland Forest site. The y
axis represents the coherence magnitude estimated from Eqs. (3) and (15).

the above equation can be constructed in a differential form
as

∂hv

∂t
= a ·hv+ b. (13)

This ordinary differential equation yields the following ex-
pression:

hv (t1)=
(
b

a
+H (t2)

)
e−a(t2−t1)

−
b

a
. (14)

This expression aligns with the Hossfeld model. However,
it requires statistical data on annual growth rates, which is of-
ten unavailable on a large scale in practice. When the param-
eter a is small, Eq. (14) simplifies to the form presented in
Eq. (12). Evaluation in the New England region indicates the
absolute value of a is less than 0.02. By substituting Eq. (12)
into the signal model, the following modified model is ob-
tained:∣∣γHV

t&v (t1)
∣∣= S (t1) · sinc

(
hv (t2)− b · dt

(1− a · dt) ·C (t1)

)
, (15)

where
∣∣γHV

t&v (t1)
∣∣ represents the InSAR coherence at initial

time t1, and it follows that the model is shifted and scaled
with respect to original model (3); dt = t2− t1.

As a representative example, Fig. 9 illustrates the fit-
ted forest growth rate (G=−0.0134 ·hv (t1)+ 0.464; unit:
m yr−1) for the forest height interval with the highest den-
sity at the Harvard Forest site in Massachusetts. This anal-
ysis compares LVIS lidar data acquired in 2009 and 2021
after filtering out disturbed forests areas (G≤−0.1 m yr−1)
and short vegetation (hv ≤ 10m). To illustrate how the In-
SAR correlation observations from ALOS-1 data are linked
to GEDI forest estimates (with time gap of around 10 years),
a simulation can be performed by inserting the fitted growth
rate into model (15) and settings S (t1)= 0.9 and C (t1)= 11.
Figure 10 presents the simulated results of original sinc
model and its modified version. It follows that the forest
height below b · dt cannot be well characterized. This value
usually ranges from 8 to 15 in the investigation over the New
England region. This finding also highlights the importance
of utilizing backscatter information to estimate the heights
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Figure 13. Illustration of the dynamic behavior of fitted (S,C) pa-
rameters for three representative forest sites when approximating
the modified sinc model with original model by local fitting at fix-
ing points at each forest height interval [x,x+ 5].

Figure 14. Density scatterplot illustration of relation between
repeat-pass ALOS-1 InSAR coherence (3×10 window at 30 m grid)
and GEDI RH98, and a red dashed fitted line with the slope as the
pre-inversion metric.

of short forests in this case. We remark that natural growth
functions are highly species-specific. From a practical inver-
sion perspective, the application of the modified model re-
quires precise detailed statistics of natural growth across var-
ious forest types on a large scale. However, such data are cur-
rently unavailable as existing spaceborne lidar datasets lack
collocated measurements from two distinct time periods. In
the absence of comprehensive forest growth data, this model
is not yet recommended for direct large-scale use. Instead, it
can be integrated into the framework of the original model
by adjusting temporal parameters. The following subsection
provides simulation examples to demonstrate this adaptation.

Table 3. An example to illustrate the pre-inversion metric (slope)
and their inversion performance (root mean square error, RMSE,
and coefficient of determination, R2) for the available InSAR pairs
in 2007 at the Howland Forest site in Maine, US.

InSAR pairs (time vs. time) Slope RMSE R2

20070710–20070825 −2.82 4.09 0.45
20070825–20071010 −2.57 4.14 0.45
20070710–20071010 −4.76 3.8 0.47

3.4.3 Approximating the modified model with the original
model in the absence of natural growth data

Without detailed forest growth statistics, this subsection
demonstrates that the modified sinc model can be well ap-
proximated in the framework of the original sinc model but
with updated parameters

(
S′, C′

)
using simulations. This en-

ables large-scale application achieved in the framework of
the original model without detailed growth statistics.

It is almost impossible to derive S′ and C′ based on a
direct one-to-one analytical transformation between models
(15) and (3). Instead, such parameters can be determined by
aligning the original model and modified model at two fixed
points. For example, Fig. 11 presents the resolved parame-
ters when the alignment is performed for two points at 10 and
30 m for global fitting at three typical forest sites (e.g., scenes
with large forest height ranges). The best approximation is
observed at the Howland Forest site, where the forest height
changes slowly. Model mismatches are observed at 20 m at
other two forest sites. This can be addressed by aligning two
models for each short interval. Figure 12 presents the behav-
ior of newly fitted parameters when aligning either a short
forest interval (e.g., 10–15 m) or a tall forest interval (e.g.,
25–30 m). The results suggest that the modified sinc model is
better approximated through piecewise fitting, emphasizing
the importance of local fitting to approximate modified mod-
els for a short height range within relatively homogeneous
forest areas. Notably, S′ increases and even exceeds 1, partic-
ularly for taller trees, deviating from its original physical def-
inition S′ ≤ 1 (e.g., only due to moisture-induced dielectric
decorrelation in the original model). As seen in the behavior
of the fitted parameters for each short interval [x,x+ 5] in
Fig. 13, the C′ parameter is larger than the original param-
eter C for short vegetation but approaches C as vegetation
height increases, while the S′ parameter is close to the orig-
inal S parameter for short trees and becomes biased for tall
trees. For the three forest sites analyzed, the White Moun-
tain National Forest shows a larger forest height change rate,
leading to a greater deviation between the fitted parameters(
S′,C′

)
and the original parameters (S,C).
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Figure 15. 30 m gridded forest height mosaic map based on ALOS-1 InSAR and GEDI RH98 metric for the New England region in the US,
with a total area of 18 million ha. The color map ranges from 0 m (“blue” for bare surfaces) to 35 m (“red” for tall trees). It was projected onto
the map coordinate of Shuttle Radar Topography Mission (SRTM) DEM products. The optical basemap is from © Microsoft Bing Maps.

Figure 16. 30 m gridded forest height mosaic map based on the ALOS-1 InSAR and GEDI RH98 metric for the northeastern region of
China, with a total area of 152 million ha. The optical basemap is from © Microsoft Bing Maps.
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Figure 17. Density scatterplots comparing lidar validation data with forest height inversion estimates across multiple sites of the New
England: the left panels show ALOS-1-based estimates; the right panels show ALOS-2-based estimates.
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Table 4. Comparison of GLAD, ETH, and our ALOS-1-based canopy height products with airborne lidar data across all forest sites in the
New England region.

Validation sites GEDI-Sentinel GEDI-Landsat GEDI-ALOS
(ETH) (GLAD) (Our product)

Howland Forest RMSE 5.71 5.59 3.80
R2 0.57 0.10 0.47
Bias 4.60 −1.87 −0.34
Standard deviation 3.38 5.21 3.78

Harvard Forest RMSE 4.79 5.66 4.11
R2 0.74 0.24 0.56
Bias 3.35 −0.78 0.31
Standard deviation 3.45 4.62 4.10

White Mountain National Forest RMSE 5.98 5.46 4.08
R2 0.58 0.22 0.33
Bias 4.34 −0.87 1.29
Standard deviation 4.04 5.20 3.87

Green Mountain National Forest RMSE 5.55 5.78 4.97
R2 0.69 0.18 0.53
Bias 3.93 −1.79 0.46
Standard deviation 3.92 5.09 4.95

Naugatuck State Forest RMSE 4.89 5.07 5.06
R2 0.67 0.45 0.47
Bias 2.83 1.16 −0.84
Standard deviation 3.98 4.43 5.00

Figure 18. Validation of forest height inversion results at the Howland Forest site: (a) LVIS RH98 canopy height map (30 m grid), (b) inver-
sion extracted from ALOS-1 mosaic, and (c) ALOS-2-based inversion.
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Figure 19. The differential height maps of (a) ALOS-1-based in-
version versus LVIS data and (b) ALOS-2-based inversion versus
LVIS data.

3.5 The selection of proper InSAR pairs and mosaicking

Due to several decorrelation factors (induced by precipita-
tion, human activities, etc.), the temporal decorrelation be-
havior over forested scenarios is complicated in the context
of repeat-pass InSAR. For example, total decorrelation is
possible to occur for ALOS-1 InSAR pairs with a temporal
span larger than 2 months during the monsoon season. In this
case, the InSAR correlation behavior is dominated by addi-
tional decorrelation sources and hence would no longer be
well suited for forest height inversion.

In this context, a pre-inversion metric and a post-inversion
error assessment need to be defined when multiple InSAR
pairs are available to eliminate those scenes that would not
work well for forest height inversion.

An example of this evaluation is illustrated in Fig. 14 and
Table 3 below. Here, the fitness of temporal change model (3)
for a given InSAR scene can be evaluated by testing the un-
derlying assumption of the physical scattering model. Specif-
ically, taller trees are more easily decorrelated over time due
to the larger deviation of random motions compared to the
short ones. A simple yet effective pre-evaluation metric can
be attained by linear regression between the GEDI RH98
samples (only keeping forested land cover) and the coher-
ence magnitude observations. A negative slope in the linear
regression usually indicates a relevant validity of the inver-
sion model. As shown in Fig. 14 and Table 3, InSAR pairs
with a negative slope tend to yield more accurate estimates
(e.g., the image pair with a slope of −4.76 gives better es-

timates with respect to the image pairs with slopes higher
than −3). Note that while InSAR pairs with short temporal
baselines may present higher correlation values, they may oc-
casionally not be well suited for the temporal decorrelation
model due to regional precipitation.

The post-inversion metric is defined using the figure of
merit during the local fitting (see Eq. 10): once one pair
of temporal parameters ({S (i,j ) ,C (i,j )}) is determined, a
weighted squared summation of the differences between in-
verted height estimates and GEDI measurements over a re-
gional window is given by

ε (i,j )=∑
(r,c)εW

[
w(r,c)

(
ĥv (i+ r,j + c)−hgedi (i+ r,j + c)

)]2

∑
(r,c)εW

w(r,c)2 . (16)

It can be noted that the derived post-inversion metric ε (i,j )
is also in the same coordinate system as GEDI samples. A
Delaunay-triangulation-based natural neighborhood interpo-
lation (Park et al., 2006) can be used afterwards to attain
pixel-by-pixel evaluation. This assessment serves to guide
the mosaicking of overlapping regions between consecutive
InSAR scenes by preserving estimates with lower ε (i,j ).

It should also be noted that since there are not enough In-
SAR pairs each year for ALOS-1 data, in this work, we only
use the above-mentioned pre- and post-inversion metrics to
select the best InSAR pair. However, if there are sufficient
pairs from more recent spaceborne repeat-pass InSAR mis-
sions (such as 12 d for NISAR, 14 d for ALOS-4, and 4–8 d
for LuTan-1), a synthetic InSAR coherence map can be gen-
erated by applying the monthly, seasonal median, or maxi-
mum operations (Kellndorfer et al., 2022).

4 Results

This section begins by presenting large-scale forest height
mosaic maps for the northeastern regions of the US and
China and is followed by extensive validation for representa-
tive individual forest sites.

4.1 Forest height mosaic generation

The proposed inversion approach was developed as an au-
tomated open-source software serving as version 2 of the
Forest Stand Height (FSH) software (https://github.com/
Yanghai717/FSHv2 Lei and Yu, 2025, last access: 29 July
2025).

For generating the forest height mosaic map over the New
England region (a total area of 18 million ha), over 100
ALOS-1 InSAR scenes were processed using multi-look av-
eraging with 2 range looks and 10 azimuth looks, leading
to a pixel size of 20 by 30 m, consistent with the SRTM
grid. Approximately 15 million GEDI RH98 samples were
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Figure 20. (a) Global-fitting-based inversion (Lei et al., 2019) applied to the scene (S = 0.94,C = 9). (b) Comparing 90 m gridded maps
from (a) with corresponding LVIS data. (c) Interpolated 30 m gridded GEDI height map. (d) Density scatterplot comparing the interpolated
30 m GEDI map with LVIS lidar data. (e) Density scatterplot comparing ALOS-2-based inversion results with LVIS lidar data.

Figure 21. The interpolated maps of temporal change parameters
for (a) S and (b) C.

used for model parameterization. The height estimates of
short vegetation were replaced with the backscatter-based
estimates using the ALOS-2 backscatter products in either
2019 or 2021. A few ALOS-2 InSAR pairs were also used
for demonstrating radar–lidar fusion under concurrent acqui-
sitions. Non-forest areas were masked out based on the 2021
National Land Cover Database (NLCD) products. The mo-
saic was projected onto the same geographic coordinate grid
as the SRTM DEM product. The forest height mosaic is de-
picted in Fig. 15. The absence of discontinuity between ad-
jacent scenes confirms the consistency of the forest height
estimates. Additionally, the coastal region is included in the
inversion despite potential challenges posed by weather con-
ditions (as reported in Lei et al., 2019). This underscores the
advantage of using the global-to-local two-stage inversion
approach to handle fast spatially varying temporal change
factors induced by different land covers or weather/climate
conditions. Further quantitative evaluation is conducted in
subsequent sections, with a focus on each individual forest
site.

For the northeast of China, 688 ALOS-1 InSAR scenes
and 160 million GEDI samples were used to generate the mo-
saic covering the 5 provinces (total area of 152 million ha).
Non-forested areas were masked out based on the 2021 ESRI
global land cover maps. ALOS-2 global backscatter maps for
2019 and 2020 were employed to estimate the height of short
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Figure 22. Validation of 30 m gridded forest height inversion at the Harvard Forest site: (a) LVIS lidar RH98, (b) ALOS-1-based estimates,
and (c) ALOS-2-based inversion.

trees to match the acquisition time of the validation airborne
lidar data. The final forest height mosaic is shown in Fig. 16.
It is noted the area outside the coverage of GEDI observation
(> 51.6° N) was discarded.

The generated products are made available via
https://doi.org/10.5281/zenodo.11640299 (Yu and Lei,
2024). Further evaluation is shown in Sect. 4.2 and 4.3.
In both cases, small values of κz are maintained for all
available InSAR pairs (κz are below 0.15 rad m−1, and the
mean values are 0.032 and 0.029 rad m−1 for Chinese and
American datasets, respectively), which conforms to the
assumption made in Lei and Siqueira (2014).

4.2 Validation over the New England region

This subsection presents the validation of forest height in-
version across representative test sites in New England, US.
First, we assess the accuracy of the inversion results for
all selected forest sites using density scatterplots and corre-
sponding error metrics including the root mean square error
(RMSE), coefficient of determination (R2), standard devia-
tion (SD), and bias. Unless otherwise stated, all density scat-
terplots and associated error metrics in this study are based
on a 0.8 ha (3× 3 pixel) aggregated pixel size. A compara-
tive analysis is then conducted between our inversion results
and two existing forest height products: (1) the 30 m reso-

lution GLAD canopy height map, derived by fusing GEDI
and Landsat time series (Potapov et al., 2021), and (2) the
10 m resolution ETH canopy height map, generated by fusing
GEDI and Sentinel-2 data (Lang et al., 2022). Both products
are validated against reference lidar data.

Subsequently, case studies are presented to evaluate in-
version performance under varying conditions. The How-
land Forest site is analyzed to quantify improvements over
our earlier methodology. A second case study focuses on
the high-biomass region at the Harvard Forest site to as-
sess inversion robustness in dense canopies. Finally, vali-
dation is extended to the White Mountain National Forest
(WMNF) site with hilly topography using high-resolution
small-footprint lidar data as the validation data.

4.2.1 Summary of the validation results over the
northeastern US

Figure 17 presents density scatterplots comparing forest
height estimates (derived from ALOS-1 mosaics or ALOS-2
single-scene inversions where suitable InSAR pairs are avail-
able) across all test sites in the New England region of the
US. Error metrics for these estimates are reported in the cor-
responding scatterplots.

In short, the proposed inversion approach is capable of es-
timating forest height with an RMSE of 3–4 m in areas such
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Figure 23. Differential height maps over the Harvard Forest site:
(a) ALOS-1 mosaic versus LVIS lidar, and (b) ALOS-2 single scene
versus LVIS lidar.

as Howland and Harvard Forest sites, characterized by rel-
atively flat topography and minimal human activity influ-
ence. In contrast, hilly or suburban areas, such as WMNF,
GMNF, and Naugatuck State Forest (NSF) sites, exhibit
slightly lower accuracy (RMSE 4–5 m). The ALOS-2-based
inversion generally presents superior performance due to en-
hanced InSAR correlation behavior resulting from shorter
temporal baselines and less temporal discrepancy between
radar and lidar data. For ALOS-1 inversion, the time mis-
match between ALOS-1 and GEDI data is not a fatal prob-
lem as the inversion is carried out for temperate regions
where the intact forest landscapes and forest height (of ma-
ture forests) remain stable. While our solution for addressing
forest growth may not fully resolve temporal uncertainties,
the resulting errors remain relatively minor, as evidenced by
an RMSE of 3–4 m. This is also supported by the finding that
the ALOS-1-based inversion is occasionally more accurate
than ALOS-2-based estimates.

In addition, we evaluate the inversion performance of two
widely recognized global forest products: the GEDI-Sentinel
(ETH) product (Lang et al., 2022) and the GEDI-Landsat
(GLAD) product (Potapov et al., 2021). As shown in Table 4,
both products exhibit significant biases across forest sites in
the New England region compared with our ALOS-1-based

estimates. Specifically, the GLAD product systematically un-
derestimates canopy height, likely due to saturation effects in
dense canopies, while the ETH product demonstrates larger
systematic biases, consistently overestimating canopy height
at all sites. These findings are consistent with the analysis by
Qi et al. (2025). In contrast, our inversion method achieves
lower RMSE and smaller biases in most cases, with the ex-
ception of Naugatuck State Forest. At this site, hilly topog-
raphy and suburban land cover likely contribute to reduced
inversion accuracy. Notably, the ETH product exhibits lower
SD and higher height-related R2 values, which is likely at-
tributable to its integration of high-resolution Sentinel-2 data.

4.2.2 Howland Forest site

The Howland Forest was selected as one of the representa-
tive test sites, continuing from previous efforts in developing
the inversion approaches (Lei et al., 2018; Lei and Siqueira,
2022). Comparing results from these earlier studies with the
current work allows for an evaluation of performance im-
provements. A strip of LVIS lidar data acquired in 2009 was
used as the reference to assess the inversion accuracy of both
the ALOS-1-based forest height mosaic map and the ALOS-
2-based inversion from a single pair of ALOS-2 data (frame:
890, orbit: 37). The comparison between the inverted for-
est height estimates, and the LVIS lidar data is presented in
Fig. 18, generating the differential height maps between the
inversion and the lidar data as shown in Fig. 19a and b. For
quantitative analysis, density scatterplots and corresponding
statistical error metrics comparing inversion results with val-
idation data are displayed in the first row of Fig. 17.

The comparison reveals that the ALOS-1-based mosaic in-
version estimates forest height with an RMSE of 3.8 m. In
contrast, the ALOS-2-based single-scene inversion achieves
enhanced accuracy (RMSE = 3.6 m), likely due to improved
correlation from its 14 d temporal baseline. To compare these
results against our earlier work (Lei et al., 2019), we applied
the global-fitting-based inversion method (in the left panel of
Fig. 20), which yielded an inversion accuracy of RMSE =
4.38 m at an aggregated pixel size of 0.81 ha. This demon-
strates that the global-to-local two-stage inversion approach
significantly improves inversion accuracy, particularly over
tall forest regions.

By synergistically combining SAR data with GEDI sam-
ples, this methodology not only resolves the wall-to-wall
mapping limitations inherent to GEDI’s discrete sampling,
but also improves inversion precision. As shown in the right
panel of Fig. 20, the 30 m interpolated GEDI-based forest
height maps still face discontinuity problems. However, an
accuracy improvement of up to 20 % has been achieved for
ALOS-2-based estimates. This enhancement stems from the
refined characterization of temporal parameters (S,C) en-
abled by leveraging GEDI’s dense spatial sampling, as shown
in Fig. 21. As anticipated in Sect. 3.4.3, the saturation behav-
ior of S parameters arises from approximating modified for-
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Figure 24. (a) An example of a histogram formed by small-footprint CHM values within the GEDI footprint, with the mean height and 98th
percentile height marked by the red dashed and red solid lines, respectively. (b) 30 m gridded reprocessed forest height based on the ERH50
metric, (c) 30 m gridded reprocessed forest height based on the ERH98 metric, and (d) corresponding forest height estimates extracted from
ALOS-1 mosaic.

est growth model (15) using original model (3) in the local
window with taller forests.

4.2.3 Harvard Forest site

The Harvard Forest site was selected to evaluate the inversion
in a region characterized by high biomass up to 400 Mg ha−1

(Tang et al., 2021). Figure 22 presents the LVIS validation
data acquired in 2021 covering the Harvard Forest area in
panel (a) and the forest height estimates extracted from the
ALOS-1 mosaic and the ALOS-2 single-scene inversion re-
sults (frame: 2770, orbit: 141) in panels (b) and (c). The com-
parison of ALOS-1 and ALOS-2 inversion results against the
validation data is illustrated in the differential height maps in
Figure 23. The density scatterplots from these two compar-
isons are given in the second row of Fig. 17.

Both the ALOS-1 mosaic and ALOS-2 single-scene inver-
sion are capable of estimating forest height with an RMSE
of 4 m. The biased estimates occurred in taller forest stands
may be attributed to the degraded sensitivity of GEDI mea-
surements over dense forest stands (Fayad et al., 2022).

4.2.4 White Mountain National Forest site

The evaluation of the forest height inversion will also be ex-
tended to mountainous areas such as the WMNF site, con-
sidering the potential challenges GEDI and InSAR observa-
tions might face in these regions. These challenges include
GEDI’s geolocation shifts and slope effects as well as the
radar’s viewing geometry problems (e.g., layover, shadow,
and foreshortening).

A high-resolution canopy height model (CHM), derived
from small-footprint GRANIT lidar data, serves as the vali-
dation reference. As outlined in Sect. 2.2.3, due to the foot-
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Figure 25. Differential height map between the ALOS-1 mosaic
and GRANIT ERH98 map.

print difference between small-footprint lidar data and GEDI
observations, an equivalent RH metric must be extracted
within the same footprint size as GEDI observations to en-
sure comparability. Without this adjustment, directly com-
paring GEDI-based forest height inversions with the repro-
jected CHM (via resampling or multi-pixel averaging) in-
troduces significant bias. Figure 24 illustrates the difference
between the ERH98 metric and the mean value (or ERH50
metric) in panel (a) and shows the maps of these two metrics
in panels (b) and (c). Notably, ALOS-1-based forest height
estimates (Fig. 24d) align closely with the ERH98 metric
(Fig. 24b). The differential map between the ALOS-1 mo-
saic and GRANIT ERH98 map is shown in Fig. 25, and the
associated density scatterplot can be found in the third row
of Fig. 17.

4.3 Validation against ALS data over the northeastern
region of China

The forest height mosaic for northeastern China was vali-
dated exclusively against small-footprint airborne laser scan-
ning (ALS) data at representative forest sites. These high-
resolution ALS datasets were processed into ERH98 metric
maps following the methodology detailed in Sect. 2.2.3. Ini-
tial analysis focused on density scatterplots across all sur-
veyed sites. For a deeper investigation, two case studies were
examined: Hubao National Park and Genhe Forest Bureau.
Hubao National Park was selected due to the absence of sig-
nificant forest disturbance, as demonstrated in Fig. 4, while
Genhe Forest Bureau was chosen for testing the inversion
performance over the boreal forest bioregion in China.

4.3.1 Summary of the validation over the northeast of
China

Forest height estimates across all sites across the northeast of
China were validated against ERH98 metrics derived from
small-footprint airborne lidar data. Density scatterplots as
well as error metrics for the representative forest sites are
summarized in Fig. 26. The highest accuracy was observed
at the Mengjiagang Forest site, achieving an RMSE of 3.32 m
and an R2 of up to 0.84. Most inversions exhibit a slight
negative bias, likely due to GEDI’s reduced signal penetra-
tion capability compared to airborne lidar. Slightly less ac-
curate estimates are provided by the ALOS-2-based inver-
sion at the Saihanba forest site, which is attributed to the
limited overlapping area between the ALOS-2 single-scene
inversion and ALS validation observations. This limitation
arises from the distribution of heterogeneous land cover in-
fluenced by human activities. Overall, forest height estimates
align closely with ERH98 lidar benchmarks, with accuracies
of 3–4 m (even below 3.5 m at three sites) and R2 predomi-
nantly exceeding 0.65.

Notably, inversion performance in northeastern China sur-
passes results from GEDI calibration sites in the northeast-
ern US, likely due to fewer forest disturbance in the selected
represented forest sites (See Fig. 4) compared to those in the
northeastern US, as shown in Fig. 3.

4.3.2 Hubao National Park Forest site

Hubao National Park is selected as it represents one of the
typical temperate regions with the richest biodiversity in
terms of wildlife and plants in the Northern Hemisphere. Fig-
ure 27a displays an ERH98 map derived from reprocessed
1 m resolution canopy height model (CHM) data acquired in
2018 using a window size same as GEDI footprints. Pan-
els (b) and (c) present forest height estimates from ALOS-1
single-scene inversion (Frame 860, Orbit 421) and ALOS-2
single-pair InSAR data (Frame 860, Orbit 130), respectively.
The detailed differential height maps are provided in Fig. 28.

As shown in the density scatterplots (see the bottom
row of Fig. 26), both ALOS-1 mosaic and ALOS-2 single-
scene inversions align closely with ALS-derived ERH98
data, achieving accuracies of 3.5–3.8 m with an R2 of up to
0.7. These results demonstrate the inversion precision com-
parable to airborne lidar measurements across both short and
tall vegetation types. Differential height maps highlight dis-
crepancies in transitional zones between forested and bare
surfaces, underscoring the need for higher-spatial-resolution
data integration (e.g., fusing TDX-GEDI data; Hu et al.,
2024; Lei et al., 2021; Qi et al., 2025) to refine estimates
in such areas.

Slightly better performance for ALOS-1-based inversion
is attributed to the fact that the ALOS-1 InSAR data archive
offers the possibility of picking out the best InSAR pair
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Figure 26. Density scatterplots comparing lidar validation data with forest height inversion estimates across multiple sites of northeastern
China based on the ALOS-1 InSAR observation (left panels) and the ALOS-2 observation (right panels).
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Figure 27. Comparison of the forest height inversion with lidar data at the Hubao National Park site: (a) ALS ERH98 metric map. The red
rectangle denotes the coverage of (b) ALOS-1-based single-scene inversion, whereas the blue rectangle indicates the coverage of (c) ALOS-
2-based single-scene inversion.

with better correlation behavior; however, the availability of
proper ALOS-2 InSAR data is limited.

4.3.3 Genhe Forest Bureau

A second case study examines the Genhe Forest Bureau situ-
ated in northeastern China within one of the country’s north-
ernmost boreal forest regions. Figure 29 presents the (a) ref-
erence ERH98 map derived from 1 m resolution airborne li-
dar data, (b) forest height estimates from the ALOS-1-based
mosaic, and (c) results from the ALOS-2 single-scene in-
version. Differential height maps are shown in Fig. 30. The
spatial distribution of forest heights in both ALOS-1 and
ALOS-2 inversions closely matches the reference ERH98
map, though primary discrepancies occur in short vegetation
and bare surfaces, which is likely linked to anthropogenic
disturbances.

Quantitative validation (see the third row of Fig. 26) con-
firms strong agreement between inverted and reference for-

est height estimates, with an RMSE of 3.6 m and an R2 of
0.65, demonstrating the method’s effectiveness and accuracy
in boreal ecosystems.

5 Discussion

This section outlines key limitations of the proposed inver-
sion in the framework. A primary challenge stems from the
complex InSAR correlation behavior induced by weather
fluctuations (e.g., precipitation), particularly when con-
strained by a limited number of InSAR pairs. Future mis-
sions, such as NISAR and BIOMASS (Quegan et al., 2019),
are expected to mitigate this issue. As data stacks accumulate
rapidly within each season, seasonally synthesized coherence
maps could be produced by averaging or selecting maximum
coherence values from all available pairs (Kellndorfer et al.,
2022). For example, leveraging NISAR’s 12 d repeat cycle
would generate 7 interferometric pairs per season (or 30 an-
nually), enabling the creation of seasonally or annually av-
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Figure 28. Differential height map between (a) the ALOS-1-based inversion and ERH98 validation data and between (b) the ALOS-2-based
inversion and ERH98 validation data.

eraged coherence maps. These refined datasets could signifi-
cantly enhance the robustness of forest height inversion.

To address the temporal mismatch between ALOS-1 and
GEDI datasets, we propose a twofold solution to account for
forest change dynamics. While this approach does not fully
capture inherent forest variability, the achieved forest height
estimation accuracy of 3–4 m ha−1 suggests that its impact
is negligible in temperate regions, where intact forest land-
scapes exhibit minimal canopy height variation due to grad-
ual tree growth.

The methodology also depends on precise, spatially rep-
resentative calibration samples from GEDI. Two key chal-
lenges arise: (1) slope-induced biases in GEDI forest height
estimates and (2) sparse sampling coverage in boreal and
equatorial tropical regions. The first limitation can be mit-
igated using the RH metric derived from slope-corrected
waveforms (Wang et al., 2019). The second issue may be
resolved by integrating complementary lidar datasets, such
as NASA’s ICESat-1/2 missions. Combining ALOS-1/2 data
with both GEDI and ICESat-1/2 observations would improve

https://doi.org/10.5194/essd-17-4397-2025 Earth Syst. Sci. Data, 17, 4397–4429, 2025



4424 Y. Yu et al.: Mapping forest height with lidar–SAR fusion: northeastern US and China

Figure 29. Comparison of the forest height mapping over the Genhe Forest Bureau: (a) ALS ERH98 metric generated based on 25 m
footprint, (b) ALOS-1 mosaic with red rectangle box indicating the overlapping area with (a), and (c) ALOS-2-based single-scene inversion.

the method’s accuracy and adaptability, particularly in tropi-
cal ecosystems.

Finally, the current inversion framework employs a fixed-
size, distance-based weighting window to perform local fit-
ting. This approach could be enhanced using an adaptively

spatially varying window size driven by multi-parameter
classification.
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Figure 30. Differential height map between (a) the ALOS-1-based inversion and ERH98 validation data and between (b) the ALOS-2-based
inversion and ERH98 validation data.

6 Data availability

The forest height mosaics over the northeast-
ern parts of US and China are available at
https://doi.org/10.5281/zenodo.11640299 (Yu and Lei,
2024). The used ALOS-1 data can be found via the Alaska
Satellite Facility at https://search.asf.alaska.edu/#/?dataset=
_ALOS (Alaska Satellite Facility, 2025). GEDI data (from
2018 to 2023) can be downloaded from the EARTHDATA
SEARCH website at https://search.earthdata.nasa.gov/ (Na-
tional Aeronautics and Space Administration, 2025a). Re-
garding the validation data, the LVIS and GRANIT lidar data
can be found at https://lvis.gsfc.nasa.gov/Home/index.html
(National Aeronautics and Space Administration, 2025b)
and https://lidar.unh.edu/map/, University of Hampshire,
2025.

7 Code availability

The forest height mosaics are generated using the follow-
ing software tools. First, ISCE Version 2.4+ (https://github.
com/isce-framework/isce2, Jet Propulsion Laboratory, 2025;
in particular the stripmapApp function) is used to prepro-
cess the two ALOS-1/-2 images for producing geocoded
interferometric coherence maps. Then, FSH software Ver-
sion 2 (https://doi.org/10.5281/zenodo.16547783, Lei and

Yu, 2025) is used to invert forest height by fusing GEDI and
InSAR data and perform the mosaicking. Several preprocess-
ing steps utilize basic Python libraries from FSH Version 1:
https://github.com/leiyangleon/FSH; leiyangleon, 2025.

8 Conclusions

This paper presents a global-to-local two-stage forest height
inversion approach for large-scale forest stand height map-
ping using L-band spaceborne repeat-pass InSAR and space-
borne GEDI lidar. This work extended our previous efforts
in forest stand height mapping (FSH: https://github.com/
leiyangleon/FSH, last access: 29 July 2025; Lei and Siqueira,
2014; Lei and Siqueira, 2015; Lei et al., 2018) at a large
scale by incorporating GEDI lidar samples for capturing lo-
cal information. The sparsely yet extensively distributed li-
dar samples provided by the GEDI mission are used to pa-
rameterize the semi-empirical InSAR scattering model and
to obtain forest height estimates. Building on earlier works
(Lei et al., 2019; Lei and Siqueira, 2022), this paper removed
the assumptions previously imposed by the limited availabil-
ity of calibration samples before and developed a new in-
version approach based on a global-to-local two-stage inver-
sion scheme. An effective use of regional GEDI samples in
this approach allows for a finer characterization of tempo-
ral decorrelation patterns and thus higher accuracy in forest
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height inversion while also suppressing issues in individual
GEDI sample, e.g., geolocation errors. This approach was
supported by fusing the ALOS-2 InSAR data and GEDI data
under nearly concurrent conditions. This approach is further
applied to open-access ALOS-1 data for testing its mapping
capabilities at a large scale. To address the temporal mis-
match between ALOS-1 data and GEDI data, the introduc-
tion of fusing ALOS-2 backscatter data and GEDI data pro-
vides us with the ability to detect disturbed forest areas. Fur-
thermore, a modified signal model is derived for addressing
natural forest growth over temperate forest regions, where
the intact forest landscape and forest height are stable with
slight changes. In the absence of detailed forest growth data,
simulations confirmed that the modified model can be effec-
tively approximated by the original model’s form through lo-
cal fitting. For evaluating its performance, two forest height
mosaic maps were generated to investigate the northeastern
regions in the US and China, covering a total area of 18 and
152 million ha, respectively. Validation of the forest height
estimates demonstrates substantial accuracy improvements
achieved by the proposed approach compared to the previ-
ous efforts, i.e., from 4 m RMSE for 6.25 ha aggregated pixel
size to 3.8 m RMSE for 0.81 ha aggregated pixel size at the
Howland Forest site. The proposed fusion approach not only
addresses the sparse spatial sampling problem of the GEDI
mission, but also improves the accuracy of forest height es-
timates compared to the GEDI interpolated height estimates
by 20 %. The extensive evaluation of forest height inversion
against LVIS lidar data over the northeastern US indicates an
accuracy of 3–4 m on the order of 0.81 ha over smooth areas
and 4–5 m over hilly areas, while the forest height estimates
over northeastern China compare well with small-footprint
lidar validation data even at an accuracy of below 3.5 m on
the order of sub-hectares and with an R2 mostly above 0.6.

Despite the limitations outlined in Sect. 5, the method
demonstrates promising forest height accuracy at the sub-
hectare scale using open-access InSAR and lidar datasets,
underscoring its potential for integration with current and
future missions (e.g., ALOS-4, NISAR, LuTan-1, MOLI,
TECIS). This framework offers a cost-effective solution for
large-scale forest height mapping based on open-access re-
mote sensing data, particularly in regions lacking multi-
baseline bistatic InSAR data for advanced techniques such
as PolInSAR or TomoSAR.
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