Articles | Volume 17, issue 9
https://doi.org/10.5194/essd-17-4331-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-4331-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A typology of global relief classes derived from digital elevation models at 1 arcsec resolution
Xin Yang
State Key Laboratory of Climate System Prediction and Risk Management, Nanjing Normal University, Nanjing 210023, China
School of Geography, Nanjing Normal University, Nanjing 210023, China
Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
State Key Laboratory of Climate System Prediction and Risk Management, Nanjing Normal University, Nanjing 210023, China
School of Geography, Nanjing Normal University, Nanjing 210023, China
Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Junfei Ma
State Key Laboratory of Climate System Prediction and Risk Management, Nanjing Normal University, Nanjing 210023, China
School of Geography, Nanjing Normal University, Nanjing 210023, China
Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Yang Chen
State Key Laboratory of Climate System Prediction and Risk Management, Nanjing Normal University, Nanjing 210023, China
School of Geography, Nanjing Normal University, Nanjing 210023, China
Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Xingyu Zhou
State Key Laboratory of Climate System Prediction and Risk Management, Nanjing Normal University, Nanjing 210023, China
School of Geography, Nanjing Normal University, Nanjing 210023, China
Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Fayuan Li
State Key Laboratory of Climate System Prediction and Risk Management, Nanjing Normal University, Nanjing 210023, China
School of Geography, Nanjing Normal University, Nanjing 210023, China
Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Liyang Xiong
State Key Laboratory of Climate System Prediction and Risk Management, Nanjing Normal University, Nanjing 210023, China
School of Geography, Nanjing Normal University, Nanjing 210023, China
Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Chenghu Zhou
Institute of Geographical Information Science and Natural Resources, Chinese Academy of Science, Beijing 100101, China
Guoan Tang
CORRESPONDING AUTHOR
State Key Laboratory of Climate System Prediction and Risk Management, Nanjing Normal University, Nanjing 210023, China
School of Geography, Nanjing Normal University, Nanjing 210023, China
Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
Jiangsu Centre for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Michael E. Meadows
CORRESPONDING AUTHOR
School of Geography and Ocean Sciences, Nanjing University, Nanjing 210023, China
Department of Environmental & Geographical Science, University of Cape Town, Rondebosch 7701, South Africa
Related authors
Hui Zhu, Xin Yang, and Guoan Tang
Abstr. Int. Cartogr. Assoc., 6, 292, https://doi.org/10.5194/ica-abs-6-292-2023, https://doi.org/10.5194/ica-abs-6-292-2023, 2023
Lei Zhang, Lin Yang, Thomas W. Crowther, Constantin M. Zohner, Sebastian Doetterl, Gerard B. M. Heuvelink, Alexandre M. J.-C. Wadoux, A.-Xing Zhu, Yue Pu, Feixue Shen, Haozhi Ma, Yibiao Zou, and Chenghu Zhou
Earth Syst. Sci. Data, 17, 2605–2623, https://doi.org/10.5194/essd-17-2605-2025, https://doi.org/10.5194/essd-17-2605-2025, 2025
Short summary
Short summary
Current understandings of depth-dependent variations and controls of soil organic carbon turnover time (τ) at global, biome, and local scales remain incomplete. We used the state-of-the-art soil and root profile databases and satellite observations to generate new spatially explicit global maps of topsoil and subsoil τ, with quantified uncertainties for better user applications. The new insights from the resulting maps will facilitate efforts to model the carbon cycle and will support effective carbon management.
Hui Zhu, Xin Yang, and Guoan Tang
Abstr. Int. Cartogr. Assoc., 6, 292, https://doi.org/10.5194/ica-abs-6-292-2023, https://doi.org/10.5194/ica-abs-6-292-2023, 2023
Jun Qin, Weihao Pan, Min He, Ning Lu, Ling Yao, Hou Jiang, and Chenghu Zhou
Earth Syst. Sci. Data, 15, 331–344, https://doi.org/10.5194/essd-15-331-2023, https://doi.org/10.5194/essd-15-331-2023, 2023
Short summary
Short summary
To enrich a glacial surface air temperature (SAT) product of a long time series, an ensemble learning model is constructed to estimate monthly SATs from satellite land surface temperatures at a spatial resolution of 1 km, and long-term glacial SATs from 1961 to 2020 are reconstructed using a Bayesian linear regression. This product reveals the overall warming trend and the spatial heterogeneity of warming on TP glaciers and helps to monitor glacier warming, analyze glacier evolution, etc.
Junzhi Liu, Pengcheng Fang, Yefeng Que, Liang-Jun Zhu, Zheng Duan, Guoan Tang, Pengfei Liu, Mukan Ji, and Yongqin Liu
Earth Syst. Sci. Data, 14, 3791–3805, https://doi.org/10.5194/essd-14-3791-2022, https://doi.org/10.5194/essd-14-3791-2022, 2022
Short summary
Short summary
The management and conservation of lakes should be conducted in the context of catchments because lakes collect water and materials from their upstream catchments. This study constructed the first dataset of lake-catchment characteristics for 1525 lakes with an area from 0.2 to 4503 km2 on the Tibetan Plateau (TP), which provides exciting opportunities for lake studies in a spatially explicit context and promotes the development of landscape limnology on the TP.
Hou Jiang, Ling Yao, Ning Lu, Jun Qin, Tang Liu, Yujun Liu, and Chenghu Zhou
Earth Syst. Sci. Data, 13, 5389–5401, https://doi.org/10.5194/essd-13-5389-2021, https://doi.org/10.5194/essd-13-5389-2021, 2021
Short summary
Short summary
A multi-resolution (0.8, 0.3, and 0.1 m) photovoltaic (PV) dataset is established using satellite and aerial images. The dataset contains 3716 samples of PVs installed on various land and rooftop types. The dataset can support multi-scale PV segmentation (e.g., concentrated PVs, distributed ground PVs, and fine-grained rooftop PVs) and cross applications between different resolutions (e.g., from satellite to aerial samples and vice versa), as well as other research related to PVs.
Chongyang Wang, Li Wang, Danni Wang, Dan Li, Chenghu Zhou, Hao Jiang, Qiong Zheng, Shuisen Chen, Kai Jia, Yangxiaoyue Liu, Ji Yang, Xia Zhou, and Yong Li
Geosci. Model Dev., 14, 6833–6846, https://doi.org/10.5194/gmd-14-6833-2021, https://doi.org/10.5194/gmd-14-6833-2021, 2021
Short summary
Short summary
The turbidity maximum zone (TMZ) is a special phenomenon in estuaries worldwide. However, the extraction methods and criteria used to describe the TMZ vary significantly both spatially and temporally. This study proposes an new index, the turbidity maximum zone index, based on the corresponding relationship of total suspended solid concentration and Chl a concentration, which could better extract TMZs in different estuaries and on different dates.
Cited articles
Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, A., Malczyk, J., and Jetz, W.: A suite of global, cross-scale topographic variables for environmental and biodiversity modeling, Sci. Data, 5, 180040, https://doi.org/10.1038/sdata.2018.40, 2018.
Amatulli, G., McInerney, D., Sethi, T., Strobl, P., and Domisch, S.: Geomorpho90m, empirical evaluation and accuracy assessment of global high-resolution geomorphometric layers, Sci. Data, 7, 162, https://doi.org/10.1038/s41597-020-0479-6, 2020.
Beck, H. E., McVicar, T. R., Vergopolan, N., Berg, A., Lutsko, N. J., Dufour, A., Zeng, Z., Jiang, X., van Dijk, A. I., and Miralles, D. G.: High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections, Sci. Data, 10, 724, https://doi.org/10.1038/s41597-023-02549-6, 2023.
Chen, Y. and Digital Terrain Analysis Group: nnu-dta/Global-Relief-Classes: GRC-pre-release, Version pre-release, Zenodo [software], https://doi.org/10.5281/zenodo.16979975, 2025.
Drăguţ, L. and Blaschke, T.: Automated classification of landform elements using object-based image analysis, Geomorphology, 81, 330–344, https://doi.org/10.1016/j.geomorph.2006.04.013, 2006.
Drăguţ, L. and Eisank, C.: Object representations at multiple scales from digital elevation models, Geomorphology, 129, 183–189, https://doi.org/10.1016/j.geomorph.2011.03.003, 2011.
Drăguţ, L. and Eisank, C.: Automated object-based classification of topography from SRTM data, Geomorphology, 141–142, 21–33, https://doi.org/10.1016/j.geomorph.2011.12.001, 2012.
Dramis, F.: Geomorphological mapping for a sustainable development, J. Maps, 1, 53–55, https://www.tandfonline.com/doi/abs/10.4113/jom.2009.1084 (last access: 28 August 2025), 2009.
Dyba, K. and Jasiewicz, J.: Toward geomorphometry of plains-Country-level unsupervised classification of low-relief areas (Poland), Geomorphology, 413, 108373, https://doi.org/10.1016/j.geomorph.2022.108373, 2022.
Evans, I. S.: Geomorphometry and landform mapping: What is a landform?, Geomorphology, 137, 94–106, https://doi.org/10.1016/j.geomorph.2010.09.029, 2012.
Florinsky, I. V.: An illustrated introduction to general geomorphometry, Prog. Phys. Geogr., 41, 723–752, https://doi.org/10.1177/0309133317733667, 2017.
Gallant, A. L., Brown, D. D., and Hoffer, R. M.: Automated mapping of Hammond's landforms, IEEE Geosci. Remote Sens. Lett., 2, 384–388, https://doi.org/10.1109/LGRS.2005.848529, 2005.
Hammond, E. H.: Small-Scale Continental Landform Maps, Ann. Assoc. Am. Geogr., 44, 33–42, https://doi.org/10.1080/00045605409352120, 1954.
Hawker, L., Uhe, P., Paulo, L., Sosa, J., Savage, J., Sampson, C., and Neal, J.: A 30 m global map of elevation with forests and buildings removed, Environ. Res. Lett., 17, 024016, https://doi.org/10.1088/1748-9326/ac4d4f, 2022.
Howat, I., Porter, C., Smith, B. E., Noh, M. J., and Morin, P.: The Reference Elevation Model of Antarctica – Strips, Version 4.1, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/X7NDNY, 2022.
Hugenholtz, C. H., Levin, N., Barchyn, T. E., and Baddock, M. C.: Remote sensing and spatial analysis of aeolian sand dunes: A review and outlook, Earth-Sci. Rev., 111, 319–334, https://doi.org/10.1016/j.earscirev.2011.11.006, 2012.
Iwahashi, J. and Pike, R. J.: Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature, Geomorphology, 86, 409–440, 2007.
Iwahashi, J. and Yamazaki, D.: Global polygons for terrain classification divided into uniform slopes and basins, Prog. Earth Planet. Sci., 9, 33, https://doi.org/10.1186/s40645-022-00487-2, 2022.
Iwahashi, J., Kamiya, I., Matsuoka, M., and Yamazaki, D.: Global terrain classification using 280 m DEMs: segmentation, clustering, and reclassification, Prog. Earth Planet. Sci., 5, 1, https://doi.org/10.1186/s40645-017-0157-2, 2018.
Jasiewicz, J. and Stepinski, T. F.: Geomorphons – a pattern recognition approach to classification and mapping of landforms, Geomorphology, 182, 147–156, https://doi.org/10.1016/j.geomorph.2012.11.005, 2013.
Kapos, V., Rhind, J., Edwards, M., Price, M., Ravilious, C., and Butt, N.: Developing a map of the world's mountain forests, Forests in sustainable mountain development: a state of knowledge report for 2000, Task Force For. Sustain. Mt. Dev., 4–19, https://doi.org/10.1079/9780851994468.0004, 2000.
Karagulle, D., Frye, C., Sayre, R., Breyer, S., Aniello, P., Vaughan, R., and Wright, D.: Modeling global Hammond landform regions from 250-m elevation data, Trans. GIS, 21, 1040–1060, https://doi.org/10.1111/tgis.12265, 2017.
Körner, C., Paulsen, J., and Spehn, E. M.: A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data, Alp. Botany, 121, 73–78, https://doi.org/10.1007/s00035-011-0094-4, 2011.
Li, S., Xiong, L., Tang, G., and Strobl, J.: Deep learning-based approach for landform classification from integrated data sources of digital elevation model and imagery, Geomorphology, 354, 107045, https://doi.org/10.1016/j.geomorph.2020.107045, 2020.
Li, S., Xiong, L., Hu, G., Dang, W., Tang, G., and Strobl, J.: Extracting check dam areas from high-resolution imagery based on the integration of object-based image analysis and deep learning, Land Degrad. Dev., 32, 2303–2317, https://doi.org/10.1002/ldr.3908, 2021.
MacMillan, R. A. and Shary, P. A.: Landforms and landform 55 elements in geomorphometry, Dev. Soil Sci., 33, 227–254, https://doi.org/10.1016/S0166-2481(08)00009-3, 2009.
Martins, F. M. G., Fernandez, H. M., Isidoro, J. M. G. P., Jordán, A., and Zavala, L.: Classification of landforms in Southern Portugal (Ria Formosa Basin), J. Maps, 12, 422–430, https://doi.org/10.1080/17445647.2015.1035346, 2016.
Maxwell, A. E. and Shobe, C. M.: Land-surface parameters for spatial predictive mapping and modeling, Earth-Sci. Rev., 226, 103944, https://doi.org/10.1016/j.earscirev.2022.103944, 2022.
Meybeck, M., Green, P., and Vörösmarty, C.: A new typology for mountains and other relief classes, Mt. Res. Dev., 21, https://doi.org/10.1659/0276-4741(2001)021[0034:ANTFMA]2.0.CO;2, 2001.
Pennock, D. J., Zebarth, B. J., and De Jong, E.: Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada, Geoderma, 40, 297–315, https://doi.org/10.1016/0016-7061(87)90040-1, 1987.
Pepin, N. C., Arnone, E., Gobiet, A., Haslinger, K., Kotlarski, S., Notarnicola, C., Palazzi, E., Seibert, P., Serafin, S., Schöner, W., and Terzago, S.: Climate changes and their elevational patterns in the mountains of the world, Rev. Geophys., 60, e2020RG000730, https://doi.org/10.1029/2020RG000730, 2022.
Sayre, R., Frye, C., Karagulle, D., Krauer, J., Breyer, S., Aniello, P., Wright, D.J., Payne, D., Adler, C., Warner, H., and VanSistine, D. P.: A New High-Resolution Map of World Mountains and an Online Tool for Visualizing and Comparing Characterizations of Global Mountain Distributions, Mt. Res. Dev., 38. 240–249, https://doi.org/10.1659/MRD-JOURNAL-D-17-00107.1, 2018.
Sechu, L., Nilsson, B., Iversen, V., Greve, B., Børgesen, D., and Greve, H.: A stepwise GIS approach for the delineation of river valley bottom within drainage basins using a cost distance accumulation analysis, Water, 13, 827, https://doi.org/10.3390/w13060827, 2021.
Shumack, S., Hesse, P., and Farebrother, W.: Deep learning for dune pattern mapping with the AW3D30 global surface model, Earth Surf. Proc. Land., 45, 2417–2431, https://doi.org/10.1002/esp.4888, 2020.
Smith, B. and Mark, D. M.: Geographical categories: an ontological investigation, Int. J. Geogr. Inf. Sci., 15, 591–612, https://doi.org/10.1080/13658810110061199, 2001.
Smith, B. and Mark, D. M.: Do Mountains Exist? Towards an Ontology of Landforms, Environ. Plan. B, 30, 411–427, https://doi.org/10.1068/b12821, 2003.
Snethlage, M. A., Geschke, J., Ranipeta, A., Jetz, W., Yoccoz, N. G., Körner, C., Spehn, E. M., Fischer, M., and Urbach, D.: A hierarchical inventory of the world's mountains for global comparative mountain science, Sci. Data, 9, 149, https://doi.org/10.1038/s41597-022-01256-y, 2022.
Sujud, L. and Jaafar, H.: A global dynamic runoff application and dataset based on the assimilation of GPM, SMAP, and GCN250 curve number datasets, Sci. Data, 9, p. 706, https://doi.org/10.1038/s41597-022-01834-0, 2022.
Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., and Iwamoto, H.: Precise Global DEM Generation by ALOS PRISM, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-4, 71–76, https://doi.org/10.5194/isprsannals-II-4-71-2014, 2014.
Thornton, J.M., Palazzi, E., Pepin, N.C., Cristofanelli, P., Essery, R., Kotlarski, S., Giuliani, G., Guigoz, Y., Kulonen, A., Pritchard, D., and Li, X.: Toward a definition of essential mountain climate variables, One Earth, 4, 805–827, https://doi.org/10.1016/j.oneear.2021.05.005, 2021.
Thornton, J. M., Snethlage, M. A., Sayre, R., Urbach, D. R., Viviroli, D., Ehrlich, D., Muccione, V., Wester, P., Insarov, G., and Adler, C.: Human populations in the world's mountains: Spatio-temporal patterns and potential controls, PLoS One, 17, e0271466, https://doi.org/10.1371/journal.pone.0271466, 2022.
Viviroli, D., Kummu, M., Meybeck, M., Kallio, M., and Wada, Y.: Increasing dependence of lowland populations on mountain water resources, Nat. Sustain., 3, 917–928, https://doi.org/10.1038/s41893-020-0559-9, 2020.
Xiong, L., Li, S., Tang, G., and Strobl, J.: Geomorphometry and terrain analysis: Data, methods, platforms and applications, Earth-Sci. Rev., 104191, https://doi.org/10.1016/j.earscirev.2022.104191, 2022.
Xiong, L., Li, S., Hu, G., Wang, K., Chen, M., Zhu, A., and Tang, G.: Past rainfall-driven erosion on the Chinese loess plateau inferred from archaeological evidence from Wucheng City, Shanxi, Commun. Earth Environ., 4, p. 4, https://doi.org/10.1038/s43247-022-00663-8, 2023.
Yang, X., Li, S., Ma, J., Chen, Y., Zhou, X., Zhou, C., Meadows, M., Li, F., Xiong, L., and Tang, G.: Global Relief Clasess (GRC) Dataset, Zenodo [data set], https://doi.org/10.5281/zenodo.15641257, 2024.
Yu, L., Wang, J., and Gong, P.: Improving 30 m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets: a segmentation-based approach, Int. J. Remote Sens., 34, 5851–5867, https://doi.org/10.1080/01431161.2013.798055, 2013.
Zhou, C. H., Cheng, W. M., Qian, J. K., Li, B. Y., and Zhang, B. P.: Research on the classification system of digital land geomorphology of 1: 1000000 in China, J. Geo-Inf. Sci., 11, 707–724, https://doi.org/10.3724/SP.J.1047.2009.00707, 2009.
Zhou, Z. and Chen, Y.: How urban land expansion alters terrain in mountainous and hilly areas: An empirical study in China, Geogr. Sustain., 100304, https://doi.org/10.1016/j.geosus.2025.100304, 2025.
Short summary
Surveys of global relief classes are important for understanding the morphology and land processes of Earth's surface. This study proposes a novel framework integrating the accumulated slope and a new surface relief index for global relief classification (GRC) with 1 arcsec resolution. This dataset can provide abundant and detailed land surface information for the field of Earth sciences.
Surveys of global relief classes are important for understanding the morphology and land...
Altmetrics
Final-revised paper
Preprint