Articles | Volume 17, issue 8
https://doi.org/10.5194/essd-17-3757-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/essd-17-3757-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biologically effective daily radiant exposure for erythema appearance, previtamin D3 synthesis, and clearing of psoriatic lesions derived from erythemal broadband meters at Belsk, Poland, for the period 1976–2023
Janusz W. Krzyścin
CORRESPONDING AUTHOR
Institute of Geophysics, Polish Academy of Sciences, Warsaw, 01-452, Poland
Agnieszka Czerwińska
Institute of Geophysics, Polish Academy of Sciences, Warsaw, 01-452, Poland
Bonawentura Rajewska-Więch
Institute of Geophysics, Polish Academy of Sciences, Warsaw, 01-452, Poland
Janusz Jarosławski
Institute of Geophysics, Polish Academy of Sciences, Warsaw, 01-452, Poland
Piotr S. Sobolewski
Institute of Geophysics, Polish Academy of Sciences, Warsaw, 01-452, Poland
Izabela Pawlak
Institute of Geophysics, Polish Academy of Sciences, Warsaw, 01-452, Poland
Related authors
Agnieszka Czerwińska, Janusz Krzyścin, Janusz Jarosławski, Piotr S. Sobolewski, and Aleksander Pietruczuk
EGUsphere, https://doi.org/10.5194/egusphere-2025-1129, https://doi.org/10.5194/egusphere-2025-1129, 2025
Short summary
Short summary
Excessive levels of ultraviolet solar radiation at the Earth's surface have been linked to several types of skin cancer. The world's longest record of solar radiation intensities causing harmful skin redness comes from observations at Belsk, Poland, between 1976 and 2023. In this century, the intensity of such radiation is stable, but 15 % higher than in the 1970s. This trend is due to the combined effects of a decrease in stratospheric ozone and an increase in cloud transparency before 2000.
Janusz Krzyścin
Atmos. Chem. Phys., 23, 3119–3132, https://doi.org/10.5194/acp-23-3119-2023, https://doi.org/10.5194/acp-23-3119-2023, 2023
Short summary
Short summary
We propose indices to obtain the current stage of total column ozone (TCO3) recovery attributed to ozone-depleting substance (ODS) changes in the stratosphere. The indices are calculated using TCO3 values in key years of the ODS changes. The ozone recovery stage is derived for 16 sites in the NH mid-latitudes using results from ground and satellite measurements and reanalysis data. In Europe, there is a slow TCO3 recovery. A continuous TCO3 decline has been occurring in some sites since 1980.
Janusz W. Krzyścin, Bonawentura Rajewska-Więch, and Janusz Jarosławski
Earth Syst. Sci. Data, 13, 4425–4436, https://doi.org/10.5194/essd-13-4425-2021, https://doi.org/10.5194/essd-13-4425-2021, 2021
Short summary
Short summary
The article presents a dataset comprising all manual observations of total column ozone taken at Belsk (Poland) from 23 March 1963 up to 31 December 2019 by the Dobson spectrophotometer. The dataset contains results of ~115 000 intraday measurements. The original data can be used for trend analyses as the instrument's aging has not been detected. For comparative research with other ozone data sources, correction procedures (for adjustments to the Brewer spectrophotometer output) are proposed.
Simone Pulimeno, Angelo Lupi, Vito Vitale, Claudia Frangipani, Carlos Toledano, Stelios Kazadzis, Natalia Kouremeti, Christoph Ritter, Sandra Graßl, Kerstin Stebel, Vitali Fioletov, Ihab Abboud, Sandra Blindheim, Lynn Ma, Norm O’Neill, Piotr Sobolewski, Pawan Gupta, Elena Lind, Thomas F. Eck, Antti Hyvärinen, Veijo Aaltonen, Rigel Kivi, Janae Csavina, Dmitry Kabanov, Sergey M. Sakerin, Olga R. Sidorova, Robert S. Stone, Hagen Telg, Laura Riihimaki, Raul R. Cordero, Martin Radenz, Ronny Engelmann, Michel Van Roozendal, Anatoli Chaikovsky, Philippe Goloub, Junji Hisamitsu, and Mauro Mazzola
EGUsphere, https://doi.org/10.5194/egusphere-2025-2527, https://doi.org/10.5194/egusphere-2025-2527, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study analyzed aerosols optical properties over the Arctic and Antarctic to measure them even during long periods of darkness. It found that pollution in the Arctic is decreasing, likely due to European emission regulations, while wildfires are becoming a more important source of particles. In Antarctica, particle levels are higher near the coast than inland, and vary by season. These results help us better understand how air pollution and climate are changing at the Earth’s poles.
Izabela Pawlak, Anna Odzimek, Daniel Kȩpski, and José Tacza
Ann. Geophys., 43, 391–416, https://doi.org/10.5194/angeo-43-391-2025, https://doi.org/10.5194/angeo-43-391-2025, 2025
Short summary
Short summary
The electric state of the Earth’s atmosphere is manifested in the surface electric potential gradient (PG). In fair weather the PG should follow the variation of the global source of electric current in the atmosphere, called the global electric circuit. The PG is also influenced by local conditions. We use long-term series of PG and analyse PG variations during conditions of low aerosol concentrations to minimise the aerosol influence on PG obscuring its change due to the global source.
Agnieszka Czerwińska, Janusz Krzyścin, Janusz Jarosławski, Piotr S. Sobolewski, and Aleksander Pietruczuk
EGUsphere, https://doi.org/10.5194/egusphere-2025-1129, https://doi.org/10.5194/egusphere-2025-1129, 2025
Short summary
Short summary
Excessive levels of ultraviolet solar radiation at the Earth's surface have been linked to several types of skin cancer. The world's longest record of solar radiation intensities causing harmful skin redness comes from observations at Belsk, Poland, between 1976 and 2023. In this century, the intensity of such radiation is stable, but 15 % higher than in the 1970s. This trend is due to the combined effects of a decrease in stratospheric ozone and an increase in cloud transparency before 2000.
Janusz Krzyścin
Atmos. Chem. Phys., 23, 3119–3132, https://doi.org/10.5194/acp-23-3119-2023, https://doi.org/10.5194/acp-23-3119-2023, 2023
Short summary
Short summary
We propose indices to obtain the current stage of total column ozone (TCO3) recovery attributed to ozone-depleting substance (ODS) changes in the stratosphere. The indices are calculated using TCO3 values in key years of the ODS changes. The ozone recovery stage is derived for 16 sites in the NH mid-latitudes using results from ground and satellite measurements and reanalysis data. In Europe, there is a slow TCO3 recovery. A continuous TCO3 decline has been occurring in some sites since 1980.
Janusz W. Krzyścin, Bonawentura Rajewska-Więch, and Janusz Jarosławski
Earth Syst. Sci. Data, 13, 4425–4436, https://doi.org/10.5194/essd-13-4425-2021, https://doi.org/10.5194/essd-13-4425-2021, 2021
Short summary
Short summary
The article presents a dataset comprising all manual observations of total column ozone taken at Belsk (Poland) from 23 March 1963 up to 31 December 2019 by the Dobson spectrophotometer. The dataset contains results of ~115 000 intraday measurements. The original data can be used for trend analyses as the instrument's aging has not been detected. For comparative research with other ozone data sources, correction procedures (for adjustments to the Brewer spectrophotometer output) are proposed.
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Alois W. Schmalwieser, Panagiotis I. Raptis, Kyriakoula Papachristopoulou, Ilias Fountoulakis, Akriti Masoom, Alkiviadis F. Bais, Julia Bilbao, Mario Blumthaler, Axel Kreuter, Anna Maria Siani, Kostas Eleftheratos, Chrysanthi Topaloglou, Julian Gröbner, Bjørn Johnsen, Tove M. Svendby, Jose Manuel Vilaplana, Lionel Doppler, Ann R. Webb, Marina Khazova, Hugo De Backer, Anu Heikkilä, Kaisa Lakkala, Janusz Jaroslawski, Charikleia Meleti, Henri Diémoz, Gregor Hülsen, Barbara Klotz, John Rimmer, and Charalampos Kontoes
Atmos. Meas. Tech., 14, 5657–5699, https://doi.org/10.5194/amt-14-5657-2021, https://doi.org/10.5194/amt-14-5657-2021, 2021
Short summary
Short summary
Large-scale retrievals of the ultraviolet index (UVI) in real time by exploiting the modern Earth observation data and techniques are capable of forming operational early warning systems that raise awareness among citizens of the health implications of high UVI doses. In this direction a novel UVI operating system, the so-called UVIOS, was introduced for massive outputs, while its performance was tested against ground-based measurements revealing a dependence on the input quality and resolution.
Cited articles
AERONET: Aerosol Robotic Network, https://aeronet.gsfc.nasa.gov/, last access: 15 April 2025.
Berger, D. S.: The sunburning ultraviolet meter: design and performance, Photochem. Photobiol., 24, 587–593, https://doi.org/10.1111/j.1751-1097.1976.tb06877.x, 1976.
Blumthaler, M., Ambach, W., Morys, M., and Slomka, J.: Comparison of Robertson-Berger UV Meters from Innsbruck and Belsk, Publs. Inst. Geophys. Pol. Acad. Sc., D-32, 69–75, 1989.
Borkowski, J. L.: Reevaluation of series of solar UV-B radiation data, Publs. Inst. Geophys. Pol. Acad. Sc., D-48, 81–89, 1998.
Borkowski, J. L.: Homogenization of the Belsk UV-B series (1976–1997) and trend analysis, J. Geophys. Res., 105, 4873–4878, https://doi.org/10.1029/1999JD900500, 2000.
Borkowski, J. L.: Modelling of UV radiation variations at different time scales, Ann. Geophys., 26, 441–446, https://doi.org/10.5194/angeo-26-441-2008, 2008.
Chubachi, S.: Preliminary result of ozone observations at Syowa Station from February, 1982 to January, 1983, Mem. Natl. Inst. Polar Res., Spec. Issue (Jpn), 34, 13–20, 1984.
Chubarova, N. E., Pastukhova, A. S., Galin, V. Y., and Smyshlyaev, S. P.: Long-Term Variability of UV Irradiance in the Moscow Region according to Measurement and Modeling Data, Izv. Atmos. Ocean. Phy.+, 54, 139–146, https://doi.org/10.1134/S0001433818020056, 2018.
Chubarova, N. Y. and Nezval', Y. I.: Thirty year variability of UV irradiance in Moscow, J. Geophys. Res., 105, 12529–12539, https://doi.org/10.1029/1999JD901192, 2000.
CIE (Commission Internationale de l'Eclairage): Action Spectrum for the Production of Previtamin D3 in Human Skin, CIE 174:2006, https://www.normsplash.com/Samples/CIE/121612983/CIE-174-2006-en.pdf (last access: 15 April 2025), 2006.
CIE (Commission Internationale de l'Eclairage): Erythema Reference Action Spectrum and Standard Erythema Dose, CIE 17166:2019, https://www.iso.org/standard/74167.html (last access: 15 April 2025), 2019.
Čížková, K., Láska, K., Metelka, L., and Staněk, M.: Reconstruction and analysis of erythemal UV radiation time series from Hradec Králové (Czech Republic) over the past 50 years, Atmos. Chem. Phys., 18, 1805–1818, https://doi.org/10.5194/acp-18-1805-2018, 2018.
Cleveland, W. S.: Robust Locally Weighted Regression and Smoothing Scatterplots, J. Am. Stat. Assoc., 74, 829–836, https://doi.org/10.1080/01621459.1979.10481038, 1979.
Czerwińska, A. and Krzyścin, J.: Measurements of biologically effective solar radiation using erythemal weighted broadband meters, Photochem. Photobio. S., 23, 479–492, https://doi.org/10.1007/s43630-023-00532-z, 2024a.
Czerwińska, A. and Krzyścin, J.: Modeling of Biologically Effective Daily Radiant Exposures over Europe from Space Using SEVIRI Measurements and MERRA-2 Reanalysis, Remote Sens.-Basel, 16, 3797, https://doi.org/10.3390/rs16203797, 2024b.
Dave, J. V. and Halpern, P.: Effect of changes in ozone amount on the ultraviolet radiation received at sea level of a model atmosphere, Atmos. Environ., 10, 547–555, https://doi.org/10.1016/0004-6981(76)90181-5, 1976.
den Outer, P. N., Slaper, H., Kaurola, J., Lindfors, A., Kazantzidis, A., Bais, A. F., Feister, U., Junk, J., Janouch, M., and Josefsson, W.: Reconstructing of erythemal ultraviolet radiation levels in Europe for the past 4 decades, J. Geophys. Res., 115, D10102, https://doi.org/10.1029/2009JD012827, 2010.
Downham 2nd, T. F.: The shadow rule: a simple method for sun protection, South Med. J., 91, 619–623, 1998.
ERA5: ERA5 hourly data on single levels from 1940 to present, ERA5 [data set], https://doi.org/10.24381/cds.bd0915c6, 2025.
ESRL: The NOAA Earth System Research Laboratories, https://www.esrl.noaa.gov/gmd/grad/neubrew/SatO3DataTimeSeries.jsp, last access: 6 May 2025.
Farman, J., Gardiner, B., and Shanklin, J.: Large losses of total ozone in Antarctica reveal seasonal interaction, Nature, 315, 207–210, https://doi.org/10.1038/315207a0, 1985.
Giovanni: The Bridge Between Data and Science v 4.40, https://giovanni.gsfc.nasa.gov/giovanni/, last access: 15 April 2025.
GMAO: MERRA-2 tavg1_2d_rad_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Radiation Diagnostics V5.12.4 (M2T1NXRAD) Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/Q9QMY5PBNV1T, 2025.
Gröbner, J., Hülsen, G., Vuilleumier, L., Blumthaler, M., Vilaplana, J. M., Walker, D., and Gill, J. E.: Report of the PMOD/WRC-COST Calibration and Intercomparison of Erythemal Radiometers, Physical Meteorological Observatory Davos World Radiation Center (PMOD-WRC) Pub., Brussels, Belgium, 109 pp., 2009.
Hülsen, G. and Gröbner, J.: Characterization and calibration of ultraviolet broadband radiometers measuring erythemally weighted irradiance, Appl. Optics, 46, 5877–5886, https://doi.org/10.1364/AO.46.005877, 2007.
Koepke, P., De Backer, H., Bais, A., Curylo, A., Eerme, K., Feister, U., Johnsen, B., Junk, J., Kazantzidis, A., Krzyścin, J., Lindfors, A., Olseth, J. A., den Outer, P., Pribullova, A., Schmalwieser, A. W., Slaper, H., Staiger, H., Verdebout, J., Vuilleumier, L., and Weihs, P.: Modelling solar UV radiation in the past: Comparison of algorithms and input data, Proc. SPIE, 6362, Remote Sensing of Clouds and the Atmosphere XI, 636215, https://doi.org/10.1117/12.687682, 2006.
Koskela, T., Taalas, P., and Leszczynski, K.: Correction method for Robertson Berger type ultraviolet radiometer data, in: Proceedings of the 8th Conference on Atmospheric Radiation, Nashville, Tennessee, USA, 23–28 January 1994, 161–163, 1994.
Krzyścin, J. W.: Biologically effective solar radiation (daily radiant exposure and irradiance at noon) at Belsk from 1 January 1976 to 31 December 2023 based on homogenised measurements with broadband radiometers, IG PAS [data set], https://doi.org/10.25171/InstGeoph_PAS_IGData_Biologically_Effective_Solar_Radiation_Belsk_1976_2023, 2024.
Krzyścin, J. W. and Puchalski, S.: Aerosol impact on the surface UV radiation from the ground-based measurements taken at Belsk, Poland, 1980–1996, J. Geophys. Res., 103, 16175–16181, https://doi.org/10.1029/98JD00899, 1998.
Krzyścin, J. W., Sobolewski, P. S., Jarosławski, J., Podgórski, J., and Rajewska-Więch, B.: Erythemal UV observations at Belsk, Poland, in the period 1976–2008: Data homogenization, climatology, and trends, Acta Geophys., 59, 155–182, https://doi.org/10.2478/s11600-010-0036-3, 2011.
Krzyścin, J. W., Jarosławski, J., Rajewska-Więch, B., Sobolewski, P. S., Narbutt, J., Lesiak, A., and Pawlaczyk, M.: Effectiveness of heliotherapy for psoriasis clearance in low and mid-latitudinal regions: A theoretical approach, J. Photoch. Photobio. B, 115, 35–41, https://doi.org/10.1016/j.jphotobiol.2012.06.008, 2012.
Krzyścin, J. W., Sobolewski, P., Czerwińska, A., Rajewska-Więch, B., and Jarosławski, J.: Biologically weighted daily radiant exposure for erythema appearance, previtamin D3 synthesis and clearing of psoriatic lesions from erythema biometers at Belsk, Poland, for the period 1976–2023, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.972139, 2024.
Leszczynski, K., Jokela, K., Ylianttila, L., Visuri, R., and Blumthaler, M.: Erythemally Weighted Radiometers in Solar UV Monitoring: Results from the WMO/STUK Intercomparison, Photochem. Photobiol., 67, 212–221, https://doi.org/10.1111/j.1751-1097.1998.tb05189.x, 1998.
Madronich, S.: UV radiation in the natural and perturbed atmosphere, in: UV-B Radiation and Ozone Depletion. Effects on Humans, Animals, Plants, Microorganisms, and Materials, edited by: Tevini, M., Lewis, Boca Raton, Ann Arbor, London, UK, Tokyo, Japan, 17–69, ISBN 978-0873719117, 1993.
Molina, M. J. and Rowland, F. S.: Stratospheric sink for chlorofluoromethanes: chlorine atom-catalyzed destruction of ozone, Nature, 249, 810–812, https://doi.org/10.1038/249810a0, 1974.
NDACC: Network for the Detection of Atmospheric Composition Change, https://www-air.larc.nasa.gov/missions/ndacc/, last access: 15 April 2025.
Neale, R. E., Lucas, R. M., Byrne, S. N., Hollestein, L., Rhodes, L. E., Yazar, S., Young, A. R., Berwick, M., Ireland, R. A., and Olsen, C. M.: The effects of exposure to solar radiation on human health, Photochem. Photobio. S., 22, 1011–1047, https://doi.org/10.1007/s43630-023-00375-8, 2023.
Posyniak, M., Szkop, A., Pietruczuk, A., Podgórski, J., and Krzyścin, J.: The long-term (1964–2014) variability of aerosol optical thickness and its impact on solar irradiance based on the data taken at Belsk, Poland, Acta Geophys., 64, 1858–1874, https://doi.org/10.1515/acgeo-2016-0026, 2016.
Puchalski, S.: Preliminary results of the comparison of Robertson-Berger meter with the UV-Biometer MOD 501A, version 3, produced by Solar Light Co., Publs. Inst. Geophys. Pol. Acad. Sc., D-42, 113–115, 1995.
Rieder, H. E., Holawe, F., Simic, S., Blumthaler, M., Krzyścin, J. W., Wagner, J. E., Schmalwieser, A. W., and Weihs, P.: Reconstruction of erythemal UV-doses for two stations in Austria: a comparison between alpine and urban regions, Atmos. Chem. Phys., 8, 6309–6323, https://doi.org/10.5194/acp-8-6309-2008, 2008.
Schmalwieser, A. W., Eschenbacher, S., and Schreder, J.: UV-Biometer – The usage of erythemal weighted broadband meters for other biological effects, J. Photoch. Photobio. B, 230, 112442, https://doi.org/10.1016/j.jphotobiol.2022.112442, 2022.
Scotto, J., Cotton, G., Urbach, F., Berger, D., and Fears, T.: Biologically effective ultraviolet radiation: surface measurements in the United States, 1974 to 1985, Science, 239, 762–764, https://doi.org/10.1126/SCIENCE.3340857, 1988.
Słomka, J. and Słomka, K.: Comparison of Robertson-Berger ultraviolet meter counts with the UVB and UVer radiation inflow determined from Dave-Halpern's model, Publs. Inst. Geophys. Pol. Acad. Sc., D-22, 133–143, 1985.
Słomka, J. and Słomka, K.: Biologically active solar UV radiation at Belsk in the years 1976–1992, Publs. Inst. Geophys. Pol. Acad. Sc., D-40, 71–81, 1993.
TUV: Tropospheric Ultraviolet and Visible (TUV) Radiation Model, https://www2.acom.ucar.edu/modeling/tropospheric-ultraviolet-and-visible-tuv-radiation-model, last access: 15 April 2025.
Volpert, E. V. and Chubarova, N. E.: Long-term changes in solar radiation in Northern Eurasia during the warm season according to measurements and reconstruction model, Russ. Meteorol. Hydro.+, 46, 507–518, https://doi.org/10.3103/S1068373921080021, 2021.
Weatherhead, E. C., Reinsel, G. C., Tiao, G. C., Meng, X., Choi, D., Cheang, W., Keller, T., DeLuisi, J., Wuebbles, D. J., Kerr, J. B., Miller, A. J., Oltmans, S. J., and Frederick, J. E.: Factors affecting the detection of trends: Statistical considerations and applications to environmental data, J. Geophys. Res., 103, 17149–17161, https://doi.org/10.1029/98JD00995, 1998.
WMO (World Meteorological Organization): Report of the Meeting of Experts on UV-B Monitoring and Research (16–20 May 1977), WMO Global Ozone Research and Monitoring Project – Report no.3, WMO, Geneva, Switzerland, 30 pp., 1977.
WOUDC: World Ozone and Ultraviolet Radiation Data Centre, https://woudc.org/data.php, last access: 15 April 2025.
Short summary
Time series (1976−2023) of biologically effective (for skin redness, vitamin D3 production, and psoriasis healing) daily radiant exposure (RE) at Belsk from standard erythemal biometers are examined. Comparisons of the measured data for cloudless days with values from a radiation transfer model provide a basis for data homogenisation. Averaged results from different versions of the recalculated data give the 1976−2004 trend of about 6 % per 10 years in annual RE for all biological effects.
Time series (1976−2023) of biologically effective (for skin redness, vitamin D3 production, and...
Altmetrics
Final-revised paper
Preprint